CN102055480B - Sampling frequency conversion device - Google Patents

Sampling frequency conversion device Download PDF

Info

Publication number
CN102055480B
CN102055480B CN 200910209422 CN200910209422A CN102055480B CN 102055480 B CN102055480 B CN 102055480B CN 200910209422 CN200910209422 CN 200910209422 CN 200910209422 A CN200910209422 A CN 200910209422A CN 102055480 B CN102055480 B CN 102055480B
Authority
CN
China
Prior art keywords
frequency
audio signal
digital audio
filter
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 200910209422
Other languages
Chinese (zh)
Other versions
CN102055480A (en
Inventor
冯乐天
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ali Corp
Original Assignee
Ali Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ali Corp filed Critical Ali Corp
Priority to CN 200910209422 priority Critical patent/CN102055480B/en
Publication of CN102055480A publication Critical patent/CN102055480A/en
Application granted granted Critical
Publication of CN102055480B publication Critical patent/CN102055480B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Television Receiver Circuits (AREA)

Abstract

The invention provides a sampling frequency conversion device which can convert an analog audio signal into a digital audio signal with a target frequency. The sampling frequency conversion device comprises a delta-sigma modulator, a first down-conversion filtering module, a down-conversion module and a third down-conversion filtering module. The sigma-delta modulator samples the analog audio signal to generate a digital audio signal at a first frequency. The first frequency-reducing filtering module filters and reduces the frequency of the digital audio signal with the first frequency to generate a digital audio signal with a second frequency. The frequency raising and reducing module raises and reduces the frequency of the digital audio signal with the second frequency to generate a digital audio signal with a third frequency. The third frequency-reducing filter module receives the digital audio signal output by the frequency-increasing and frequency-reducing module to generate a digital audio signal with a target frequency. The ADC of the invention does not need to use an additional quartz oscillator or a phase-locked loop to generate sampling frequency, thereby effectively reducing the circuit area and the manufacturing cost.

Description

取样频率转换装置Sampling Frequency Converter

技术领域technical field

本发明是关于一种取样频率转换装置,尤指一种应用于一音频模拟数字转换器的取样频率转换装置,使该音频模拟数字转换器不需要利用石英振荡器或锁相回路产生取样频率。The present invention relates to a sampling frequency conversion device, especially a sampling frequency conversion device applied to an audio analog-digital converter, so that the audio analog-digital converter does not need to use a crystal oscillator or a phase-locked loop to generate sampling frequency.

背景技术Background technique

目前多媒体的主流音频格式上大多使用48kHz、44.1kHz或32kHz这三种基准频率乘或除以一正整数N,作为音频输出信号的取样频率。举例来说,高清晰音效(High Definition Audio)规格的取样频率192kHz为48kHz的四倍(48kHz*4);MPEG-4CELP规格的取样频率8kHz为32kHz的四分之一(32kHz/4)。为了支援不同的取样频率,音频模拟数字转换器(Analog-to-DigitalConverter,ADC)使用的工作频率必须是取样频率的整数倍。假设上述的取样频率为Fs,一般常见的工作频率包含(256*Fs)、(384*Fs)、(512*Fs)以及(768*Fs)。然而,上述的工作频率并不存在于原本的系统中。为因应不同取样频率的音频播放功能,在音频ADC的设计上必须增加一个能产生对应工作频率的石英震荡器(crystal oscillator)或锁相回路(Phase Lock Loop,PLL)电路。Most of the current mainstream audio formats of multimedia use three reference frequencies of 48kHz, 44.1kHz or 32kHz to multiply or divide by a positive integer N as the sampling frequency of the audio output signal. For example, the sampling frequency of 192kHz of the High Definition Audio specification is four times (48kHz*4) of 48kHz; the sampling frequency of 8kHz of the MPEG-4CELP specification is a quarter of 32kHz (32kHz/4). In order to support different sampling frequencies, the operating frequency used by the audio analog-to-digital converter (ADC) must be an integer multiple of the sampling frequency. Assuming that the above sampling frequency is Fs, common working frequencies include (256*Fs), (384*Fs), (512*Fs) and (768*Fs). However, the above operating frequency does not exist in the original system. In order to cope with the audio playback function of different sampling frequencies, a crystal oscillator (crystal oscillator) or a phase-locked loop (Phase Lock Loop, PLL) circuit that can generate the corresponding operating frequency must be added to the design of the audio ADC.

请参考图1,图1为现有技术的音频ADC100架构的示意图。音频ADC100包含一三角积分调变器(Sigma-Delta Modulator,SDM)110、一梳型滤波器(comb filter)120、一N倍降频器130、一降频滤波模块140以及一模拟锁像回路(Analog Phase Lock Loop,APLL)150。音频ADC100根据APLL150所产生的工作频率,将一模拟音频信号转换为一目标取样频率Fs的数字音频信号。SDM110用来对一模拟音频信号进行超取样(over-sampling),以将该模拟音频信号转换为一数字音频信号。在对一信号取样时常常会引起交迭(aliasing)现象,而导致信号失真,为避免此一情形,在对该信号取样时的取样频率必须大于该信号的奈奎斯特率(Nyquist rate),也就是该信号的两倍信号频率,而SDM110在对模拟音频信号进行超取样的超取样率(Oversampling Rate,OSR)更是必须远大于该模拟音频信号的两倍信号频率。如此一来,在对该模拟音频信号取样时所产生的量化噪声(quantization noise)会平均分布于更高的频宽之间,因此可有效降低信号频宽内的量化噪声。Please refer to FIG. 1 . FIG. 1 is a schematic diagram of the architecture of an audio ADC 100 in the prior art. The audio ADC 100 includes a delta-sigma modulator (Sigma-Delta Modulator, SDM) 110, a comb filter (comb filter) 120, an N-fold down-converter 130, a down-frequency filter module 140, and an analog image-locking loop (Analog Phase Lock Loop, APLL) 150. The audio ADC100 converts an analog audio signal into a digital audio signal with a target sampling frequency Fs according to the operating frequency generated by the APLL150. The SDM 110 is used for over-sampling an analog audio signal to convert the analog audio signal into a digital audio signal. When sampling a signal, it often causes aliasing, which leads to signal distortion. In order to avoid this situation, the sampling frequency when sampling the signal must be greater than the Nyquist rate of the signal. , which is twice the signal frequency of the signal, and the oversampling rate (Oversampling Rate, OSR) of the SDM110 for oversampling the analog audio signal must be much greater than twice the signal frequency of the analog audio signal. In this way, the quantization noise generated when the analog audio signal is sampled will be evenly distributed among higher bandwidths, so the quantization noise within the signal bandwidth can be effectively reduced.

梳型滤波器120为一串联积分梳型(Cascaded Integrated Comb,CIC)滤波器,其主要功能是用来排除信号频段以外的噪声,以防止在取样后噪声进入信号频段内(in-band)。一般来说,CIC滤波器用于降频(decimation)取样以及升频(interpolation)取样的应用上。在降频取样的应用上,CIC滤波器有防混迭滤波(anti-aliasing)的功效,而在升频取样的应用上,CIC滤波器可用来防止镜像(anti-image)。使用CIC滤波器最大的好处是在将演算法实现到硬件时并不需要使用到乘法器,而仅利用到简单的加法器及减法器,因而能简化硬件复杂度并降低系统功率。在现有技术的音频ADC100架构中,N倍降频器130电性连接于梳型滤波器120,以形成一降频取样滤波器,用来将SDM110所输出的数字音频信号降频N倍数(意即将该数字音频信号的频率除以N),其中N为一正整数。The comb filter 120 is a cascaded integrated comb (CIC) filter whose main function is to eliminate noise outside the signal frequency band to prevent the noise from entering the signal frequency band (in-band) after sampling. Generally, the CIC filter is used for down-sampling and up-sampling applications. In the application of down-sampling, the CIC filter has the function of anti-aliasing, and in the application of up-sampling, the CIC filter can be used to prevent anti-image. The biggest advantage of using the CIC filter is that it does not need to use a multiplier when implementing the algorithm to hardware, but only uses simple adders and subtractors, thus simplifying hardware complexity and reducing system power. In the architecture of the audio ADC 100 in the prior art, the N-fold down-converter 130 is electrically connected to the comb filter 120 to form a down-sampling filter for down-converting the digital audio signal output by the SDM 110 by a factor of N ( means to divide the frequency of the digital audio signal by N), where N is a positive integer.

降频滤波模块140用来将N倍降频器130所输出的数字音频信号进一步地降频一正整数(举例来说,降频4倍数),以产生目标取样频率Fs的数字音频信号。一般来说,降频滤波模块140包含一衰减补偿滤波器(Dropcompensation Filter,DCF)141、一第一半频带滤波器(half band filter)142、一第一二倍降频器143、一第二半频带滤波器144以及一第二二倍降频器145。由于CIC滤波器会造成通带(passband)中高频部分信号能量的衰减,因此DCF141可用来补偿该增益的衰减。第一半频带滤波器142电性连接于DCF141,为一低通滤波器(low pass filter,LPF),用来对DCF141所输出的数字音频信号进行滤波,以避免信号在经过第一两倍降频器143后,产生信号交迭(aliasing)的现象,影响音频输出信号的品质。第一二倍降频器143电性连接于第一半频带滤波器142,用来将DCF141所输出的数字音频信号降频2倍。第二半频带滤波器144电性连接于第一二倍降频器143,而第二二倍降频器145电性连接于第二半频带滤波器144。第二半频带滤波器144以及第二二倍降频器145的运作原理与第一半频带滤波器142以及第一二倍降频器143类似。因此,降频滤波模块140将N倍降频器130所输出的数字音频信号再降频4倍。The down-frequency filtering module 140 is used for further down-converting the digital audio signal output by the N-fold down-converter 130 by a positive integer (for example, a factor of 4), so as to generate a digital audio signal with a target sampling frequency Fs. In general, the down-frequency filtering module 140 includes an attenuation compensation filter (Dropcompensation Filter, DCF) 141, a first half-band filter (half band filter) 142, a first double frequency down-converter 143, a second A half-band filter 144 and a second double downconverter 145 . Because the CIC filter will cause the attenuation of the signal energy of the high frequency part in the passband (passband), the DCF141 can be used to compensate for the attenuation of the gain. The first half-band filter 142 is electrically connected to the DCF141 and is a low pass filter (low pass filter, LPF), which is used to filter the digital audio signal output by the DCF141, so as to prevent the signal from passing through the first double drop. After the frequency converter 143, the phenomenon of signal aliasing (aliasing) occurs, which affects the quality of the audio output signal. The first double down-converter 143 is electrically connected to the first half-band filter 142 and used for down-converting the digital audio signal output by the DCF 141 by 2 times. The second half-band filter 144 is electrically connected to the first double downconverter 143 , and the second double-downconverter 145 is electrically connected to the second half-band filter 144 . The operating principles of the second half-band filter 144 and the second down-converter 145 are similar to those of the first half-band filter 142 and the first down-converter 143 . Therefore, the down-frequency filtering module 140 further down-converts the digital audio signal output by the N-fold down-converter 130 by 4 times.

为了支援上述的取样频率(48kHz、44.1kHz或32kHz),APLL150可根据取样频率Fs产生音频ADC100的工作频率Fs*4N。根据业界现今常见的规格,假设音频ADC100欲产生的取样频率Fs为44.1kHz,以作为音频输出信号的取样频率Fs,其中N为32,则APLL150所产生的频率为5.6448MHz(44.1kHz*4*32)。然而,虽然APLL150可以根据不同音频信号来产生对应的取样频率,但APLL150在积体电路中所占用面积相较为大,因此所需成本相对较高。In order to support the aforementioned sampling frequency (48kHz, 44.1kHz or 32kHz), the APLL150 can generate the working frequency Fs*4N of the audio ADC100 according to the sampling frequency Fs. According to the current common specifications in the industry, assuming that the sampling frequency Fs to be generated by the audio ADC100 is 44.1kHz as the sampling frequency Fs of the audio output signal, where N is 32, the frequency generated by the APLL150 is 5.6448MHz (44.1kHz*4* 32). However, although the APLL 150 can generate corresponding sampling frequencies according to different audio signals, the area occupied by the APLL 150 in the integrated circuit is relatively large, so the required cost is relatively high.

发明内容Contents of the invention

因此,本发明的一目的在于提供一种应用于一音频模拟数字转换器的取样频率转换装置。Therefore, an object of the present invention is to provide a sampling frequency conversion device applied to an audio analog-to-digital converter.

本发明提供一种取样频率转换装置,用来将一模拟音频信号转换为一目标频率的数字音频信号。该取样频率转换装置包含一三角积分调变器、一第一降频滤波模块、一升降频模块以及一第三降频滤波模块。该三角积分调变器用来根据一工作频率对该模拟音频信号进行取样,以产生一第一频率的数字音频信号。该第一降频滤波模块电性连接于该三角积分调变器,用来接收该第一频率的数字音频信号,并对该第一频率的数字音频信号进行滤波以及降频,以产生一第二频率的数字音频信号。该升降频模块电性连接于该第一降频滤波模块,用来对该第二频率的数字音频信号进行升频以及降频,以产生一第三频率的数字音频信号。该第三降频滤波模块电性连接于该升降频模块,用来接收该升降频模块输出的数字音频信号以产生目标频率的数字音频信号。The invention provides a sampling frequency converting device, which is used for converting an analog audio signal into a digital audio signal of a target frequency. The sampling frequency conversion device includes a delta-sigma modulator, a first down-frequency filter module, a down-frequency module and a third down-frequency filter module. The delta-sigma modulator is used for sampling the analog audio signal according to a working frequency to generate a digital audio signal of a first frequency. The first down-frequency filtering module is electrically connected to the delta-sigma modulator for receiving the digital audio signal of the first frequency, and filtering and down-converting the digital audio signal of the first frequency to generate a first frequency. Two-frequency digital audio signal. The up-converting module is electrically connected to the first down-frequency filtering module, and is used for up-converting and down-converting the digital audio signal of the second frequency to generate a digital audio signal of a third frequency. The third down-frequency filtering module is electrically connected to the up-down frequency module for receiving the digital audio signal output by the up-down frequency module to generate a digital audio signal of a target frequency.

其中,升降频模块更包含一第二降频滤波模块,当第三频率的数字音频信号为一预设频率的2n倍时,输出该第三频率的数字音频信号至第三降频滤波模块;当第三频率的数字音频信号不为该预设频率的2n倍时,对该第三频率的数字音频信号进行滤波以及降频,以产生一第四频率的数字音频信号至第三降频滤波模块。其中n为一整数。Wherein, the frequency reduction module further includes a second frequency reduction filter module, and when the digital audio signal of the third frequency is 2 n times of a preset frequency, the digital audio signal of the third frequency is output to the third frequency reduction filter module ; When the digital audio signal of the third frequency is not 2 n times of the preset frequency, the digital audio signal of the third frequency is filtered and frequency-reduced to produce a digital audio signal of the fourth frequency to the third drop frequency filter module. where n is an integer.

本发明提供一取样频率转换功能的音频ADC,可利用一系统时脉产生的工作频率将一模拟音频信号转换为一目标频率的数字音频信号。由于本发明的ADC不需要利用额外的石英振荡器或锁相回路产生取样频率,因此可有效降低电路面积及制造成本。The invention provides an audio ADC with a sampling frequency conversion function, which can convert an analog audio signal into a digital audio signal of a target frequency by using an operating frequency generated by a system clock. Since the ADC of the present invention does not need to use an additional crystal oscillator or a phase-locked loop to generate sampling frequency, the circuit area and manufacturing cost can be effectively reduced.

附图说明Description of drawings

图1为现有技术的音频模拟数字转换器架构的取样频率转换装置的示意图;1 is a schematic diagram of a sampling frequency conversion device of an audio analog-to-digital converter architecture in the prior art;

图2A为说明本发明的音频模拟数字转换器的取样频率转换装置的示意图;2A is a schematic diagram illustrating a sampling frequency conversion device of an audio analog-to-digital converter of the present invention;

图2B为说明本发明音频模拟数字转换器的取样频率转换装置的另一实施例的示意图;2B is a schematic diagram illustrating another embodiment of the sampling frequency conversion device of the audio analog-to-digital converter of the present invention;

图3为说明工作频率、目标频率以及第一至第五参数的关系表;Fig. 3 is the relationship table illustrating operating frequency, target frequency and first to fifth parameters;

图4为说明不同的工作频率的第一至第五参数的关系表;Fig. 4 is the relationship table illustrating the first to fifth parameters of different operating frequencies;

图5A为根据图2A的取样频率转换装置所变化的实施例的示意图;FIG. 5A is a schematic diagram of a modified embodiment of the sampling frequency conversion device according to FIG. 2A;

图5B为根据图2B的取样频率转换装置所变化的实施例的示意图。FIG. 5B is a schematic diagram of a modified embodiment of the sampling frequency converting device according to FIG. 2B .

附图标号:Figure number:

100                  音频模拟数字转换器100 Audio Analog to Digital Converter

200、201、500、501   取样频率转换装置200, 201, 500, 501 Sampling frequency conversion device

110、210             三角积分调变器110, 210 Delta-sigma modulator

120                  滤波器120 filter

130                  N倍降频器130 N-fold down-converter

140                  降频滤波模块140 Down frequency filter module

150                  模拟锁相回路150 Analog PLL

220                  第一降频滤波模块220 The first frequency down filter module

221                  第一升频器221 The first upconverter

222                  第一滤波器222 first filter

223                  第一降频器223 The first down-converter

230                  升降频模块230 Frequency conversion module

231                  第二升频器231 Second upconverter

232                  第二降频器232 Second down-converter

233                  低通滤波器233 Low-pass filter

240                  第二降频滤波模块240 Second frequency down filter module

241                  第二滤波器241 Second filter

242                  第三降频器242 The third down-converter

250                  第三降频滤波模块250 The third frequency down filter module

141、251             衰减补偿滤波器141, 251 Attenuation compensation filter

142、252             第一半频带滤波器142, 252 First half-band filter

143                  第一二倍降频器143 The first and second down-converter

144、254             第二半频带滤波器144, 254 Second half-band filter

145                  第二二倍降频器145 Second double down frequency converter

253                  第四降频器253 Fourth Downconverter

255                  第五降频器255 Fifth Downconverter

A~E                  第一~第五参数A~E The first~fifth parameters

Fs                   目标频率Fs Target frequency

Fs2                  第二频率Fs2 Second frequency

Fs3                  第三频率Fs3 Third frequency

Fs4                  第四频率Fs4 Fourth frequency

Fsc                  工作频率Fsc Working Frequency

P1                   第一路径P1 The first path

P2                   第二路径P2 Second Path

具体实施方式Detailed ways

请参考图2A,图2A为说明本发明的音频ADC的取样频率转换装置200的示意图。取样频率转换装置200包含一三角积分调变器(Sigma-DeltaModulator,SDM)210、一第一降频滤波模块220、一升降频模块230以及一第三降频滤波模块250。其中,升降频模块中更包含一第二降频滤波模块240。取样频率转换装置200利用SDM210对一模拟音频信号进行超取样(Over-sampling),以产生一数字音频信号,其中第一降频滤波模块220、升降频模块230、第二降频滤波模块240以及第三降频滤波模块250分别根据不同的参数来对该数字音频信号进行升频及降频,以产生一目标频率Fs的数字音频信号。Please refer to FIG. 2A . FIG. 2A is a schematic diagram illustrating an audio ADC sampling frequency conversion device 200 of the present invention. The sampling frequency converting device 200 includes a delta-sigma modulator (Sigma-Delta Modulator, SDM) 210 , a first down-frequency filtering module 220 , a down-frequency down-frequency module 230 and a third down-frequency filtering module 250 . Wherein, the frequency reduction module further includes a second frequency reduction filter module 240 . Sampling frequency conversion device 200 utilizes SDM210 to carry out over-sampling (Over-sampling) to an analog audio signal, to generate a digital audio signal, wherein the first down-frequency filtering module 220, up-down frequency module 230, second down-frequency filtering module 240 and The third down-frequency filtering module 250 up-converts and down-converts the digital audio signal according to different parameters to generate a digital audio signal with a target frequency Fs.

SDM210用来对一模拟音频信号进行超取样,以将该模拟音频信号转换为一数字音频信号。在本实施例中,SDM210根据一系统时脉产生的工作频率Fsc(举例来说,系统时脉为24MHz,工作频率Fsc为6MHz)来对该模拟音频信号超取样,以输出一频率Fsc的数字音频信号。The SDM 210 is used for over-sampling an analog audio signal to convert the analog audio signal into a digital audio signal. In this embodiment, SDM210 oversamples the analog audio signal according to an operating frequency Fsc generated by a system clock (for example, the system clock is 24MHz, and the operating frequency Fsc is 6MHz) to output a digital frequency Fsc audio signal.

第一降频滤波模块220用来将频率Fsc的数字音频信号降频,以产生一第二频率Fs2的数字音频信号。第一降频滤波模块220包含一第一升频器221、一第一滤波器222以及一第一降频器223。在频率Fsc的数字音频信号输入第一滤波器222之前,第一降频滤波模块220根据第一升频器221中一第一参数A来重复接收该数字音频信号,以对频率Fsc的数字音频信号进行升频。举例来说,当第一参数A为4时,数字音频信号会重复4次输入第一滤波器222,也就是将数字音频信号升频4倍。第一滤波器222对该数字音频信号进行滤波后,第一降频器223根据一第二参数B将该数字音频信号降频,以产生第二频率Fs2的数字音频信号。举例来说,当第一参数A及第二参数B分别为2及125时,第二频率Fs2为Fsc*2/125。其中,第一滤波器222可以用梳型滤波器(comb filter),亦可用一般数字滤波器替换,但并不局限于此实施例;举例来说,一般数字滤波器可为有限脉冲响应(Finite Impulse Response,FIR)或无限脉冲响应(Infinite Impulse Response,IIR)滤波器。The first down-frequency filtering module 220 is used for down-converting the digital audio signal with the frequency Fsc to generate a digital audio signal with the second frequency Fs2. The first down-frequency filtering module 220 includes a first up-converter 221 , a first filter 222 and a first down-converter 223 . Before the digital audio signal of frequency Fsc is input to the first filter 222, the first down-frequency filtering module 220 repeatedly receives the digital audio signal according to a first parameter A in the first upconverter 221, so as to perform a digital audio signal of frequency Fsc The signal is up-converted. For example, when the first parameter A is 4, the digital audio signal will be repeatedly input into the first filter 222 4 times, that is, the digital audio signal will be up-converted by 4 times. After the first filter 222 filters the digital audio signal, the first down-converter 223 down-converts the digital audio signal according to a second parameter B to generate a digital audio signal with a second frequency Fs2. For example, when the first parameter A and the second parameter B are 2 and 125 respectively, the second frequency Fs2 is Fsc*2/125. Wherein, the first filter 222 can be replaced by a comb filter (comb filter) or a general digital filter, but is not limited to this embodiment; for example, a general digital filter can be a finite impulse response (Finite Impulse Response, FIR) or infinite impulse response (Infinite Impulse Response, IIR) filter.

升降频模块230包含一第二升频器231、一第二降频器232以及一第二降频滤波模块240。第二升频器231电性连接于第一降频滤波模块220的第一降频器223,用来接收第二频率Fs2的数字音频信号。第二降频器232电性连接于第二升频器231。升降频模块230利用第二升频器231根据一第三参数C来对第二频率Fs2的数字音频信号进行升频,然后再利用第二降频器232根据一第四参数D来对该数字音频信号进行降频,以产生一第三频率Fs3的数字音频信号。The up-converter module 230 includes a second up-converter 231 , a second down-converter 232 and a second down-converter filter module 240 . The second up-converter 231 is electrically connected to the first down-converter 223 of the first down-frequency filter module 220 for receiving the digital audio signal of the second frequency Fs2. The second down-converter 232 is electrically connected to the second up-converter 231 . The up-converter module 230 uses the second up-converter 231 to up-convert the digital audio signal of the second frequency Fs2 according to a third parameter C, and then uses the second down-converter 232 to up-convert the digital audio signal according to a fourth parameter D. The audio signal is down-converted to generate a digital audio signal with a third frequency Fs3.

第二降频滤波模块240包含一第一路径P1与一第二路径P2。其中,第一路径P1中具有一第二滤波器241以及一第三降频器242,而第二路径P2则直接将第三频率Fs3的数字音频信号输出至第三降频滤波模块250。第二降频滤波模块240电性连接于第二降频器232,用来接收第三频率Fs3的数字音频信号。The second down-frequency filtering module 240 includes a first path P1 and a second path P2. Wherein, the first path P1 has a second filter 241 and a third down-converter 242 , and the second path P2 directly outputs the digital audio signal of the third frequency Fs3 to the third down-frequency filter module 250 . The second down-frequency filtering module 240 is electrically connected to the second down-converter 232 for receiving the digital audio signal of the third frequency Fs3.

当第三频率Fs3的数字音频信号为一预设频率Fd(举例来说,预设频率Fd为48kHz)的(2-n)倍时,第二降频滤波模块240经由第二路径P2直接输出第三频率Fs3的数字音频信号,其中n为整数。当第三频率Fs3的数字音频信号不是预设频率Fd的(2-n)倍时,第二降频滤波模块240经由第一路径P1将第三频率Fs3的数字音频信号传送到第二滤波器241。第二滤波器241对该数字音频信号进行滤波后,第三降频器242根据一第五参数E来对该数字音频信号降频,以产生一第四频率Fs4的数字音频信号。When the digital audio signal of the third frequency Fs3 is (2-n) times of a preset frequency Fd (for example, the preset frequency Fd is 48kHz), the second down-frequency filtering module 240 directly outputs the A digital audio signal of the third frequency Fs3, wherein n is an integer. When the digital audio signal of the third frequency Fs3 is not (2-n) times of the preset frequency Fd, the second down-frequency filtering module 240 transmits the digital audio signal of the third frequency Fs3 to the second filter via the first path P1 241. After the second filter 241 filters the digital audio signal, the third down-converter 242 down-converts the digital audio signal according to a fifth parameter E to generate a digital audio signal of a fourth frequency Fs4.

举例来说,假设第三降频模块250固定降四倍频,当目标频率为12KHz、24KHz、48KHz、96KHz或192KHz等频率时,第三频率Fs3的数字音频信号为48KHz、96KHz、192KHz、384KHz或768KHz,第三频率Fs3为预设频率(48kHz)的(2-0、2-1、2-2、23或24)倍,第二降频滤波模块240经由第二路径P2直接输出第三频率Fs3的数字音频信号;当第三频率Fs3的数字音频信号为832KHz、1.323MHz、1.664MHz、2.646MHz、3.328MHz、5.292MHz、6.656MHz、10.584MHz、13.312MHz或21.168MHz等频率时,由于第三频率Fs3不是预设频率(48kHz)的(2-n)倍,所以第二降频滤波模块240经由第一路径P1将第三频率Fs3的数字音频信号传送到第二滤波器241。第二滤波器241对该数字音频信号进行滤波后,第三降频器242根据第五参数E来对该数字音频信号降频,以产生一第四频率Fs4的数字音频信号。其中,第二滤波器241亦可用梳型滤波器或一般数字滤波器(如上述的FIR或IIR滤波器)替换。For example, assuming that the third frequency reduction module 250 fixedly reduces the frequency by four times, when the target frequency is 12KHz, 24KHz, 48KHz, 96KHz or 192KHz, the digital audio signal of the third frequency Fs3 is 48KHz, 96KHz, 192KHz, 384KHz Or 768KHz, the third frequency Fs3 is (2-0, 2-1, 2-2, 23 or 24) times the preset frequency (48kHz), the second down-frequency filtering module 240 directly outputs the third frequency via the second path P2 The digital audio signal of frequency Fs3; when the digital audio signal of the third frequency Fs3 is 832KHz, 1.323MHz, 1.664MHz, 2.646MHz, 3.328MHz, 5.292MHz, 6.656MHz, 10.584MHz, 13.312MHz or 21.168MHz and other frequencies, due to The third frequency Fs3 is not (2-n) times the preset frequency (48kHz), so the second down-frequency filtering module 240 transmits the digital audio signal of the third frequency Fs3 to the second filter 241 via the first path P1. After the second filter 241 filters the digital audio signal, the third down-converter 242 down-converts the digital audio signal according to the fifth parameter E to generate a digital audio signal with a fourth frequency Fs4. Wherein, the second filter 241 can also be replaced by a comb filter or a general digital filter (such as the above-mentioned FIR or IIR filter).

第三降频滤波模块250电性连接于该第二降频滤波模块240。第三降频滤波模块250包含一衰减补偿滤波器(Drop compensation Filter,DCF)251、一第一半频带滤波器(half-band filter)252、一第四降频器253、一第二半频带滤波器254以及一第五降频器255。第三降频滤波模块250可对因为第二滤波器对该数字音频信号的高频部分所造成的衰减进行补偿。另外,第三降频滤波模块250亦同时将第二降频滤波模块240所输出的第三频率Fs3或第四频率Fs4的数字音频信号更进一步降频,最后产生目标频率Fs的数字音频信号。于本实施例中,第四降频器253及第五降频器255分别进行二倍降频,所以第三降频滤波模块250将第二降频滤波模块所输出的第三频率Fs3或第四频率Fs4的数字音频信号降频四倍。第四降频器253及第五降频器255的降频倍数仅为本实施例所用,使用者可依实际需求变更第四降频器253或第五降频器255的降频倍数。The third frequency reduction filter module 250 is electrically connected to the second frequency reduction filter module 240 . The third down-frequency filtering module 250 includes an attenuation compensation filter (Drop compensation Filter, DCF) 251, a first half-band filter (half-band filter) 252, a fourth down-converter 253, and a second half-band A filter 254 and a fifth down-converter 255 . The third down-frequency filtering module 250 can compensate the attenuation of the high-frequency part of the digital audio signal caused by the second filter. In addition, the third down-frequency filtering module 250 further down-converts the digital audio signal of the third frequency Fs3 or the fourth frequency Fs4 output by the second down-frequency filtering module 240 at the same time, and finally generates a digital audio signal of the target frequency Fs. In this embodiment, the fourth frequency down-converter 253 and the fifth frequency down-converter 255 perform frequency down-conversion twice respectively, so the third down-frequency filtering module 250 converts the third frequency Fs3 or the third frequency Fs3 output by the second down-frequency filtering module The digital audio signal of the quad frequency Fs4 is down-converted by four times. The frequency reduction multiples of the fourth downconverter 253 and the fifth downconverter 255 are only used in this embodiment, and users can change the frequency reduction multiples of the fourth downconverter 253 or the fifth downconverter 255 according to actual needs.

再者,图2A所示的音频ADC的取样频率转换装置200仅为本发明的实施例示意图。本领域技术人员当可据以做不同的修饰或变化。请参考图2B,图2B为说明本发明的音频ADC的取样频率转换装置210的示意图。取样频率转换装置201相似于图2A中取样频率转换装置200,其相异之处为升降频模块230中第二降频滤波模块240可将原先的两个路径结合为一个路径,通过硬件选择第二滤波器241使其为一可调整系数的滤波器,利用系数调整使第二滤波器241可成为一全通滤波器或是一低通滤波器。Furthermore, the sampling frequency conversion device 200 of the audio ADC shown in FIG. 2A is only a schematic diagram of an embodiment of the present invention. Those skilled in the art may make various modifications or changes accordingly. Please refer to FIG. 2B . FIG. 2B is a schematic diagram illustrating a sampling frequency conversion device 210 of an audio ADC of the present invention. The sampling frequency conversion device 201 is similar to the sampling frequency conversion device 200 in FIG. 2A, the difference is that the second down-frequency filtering module 240 in the up-down frequency module 230 can combine the original two paths into one path, and select the second path through hardware. The second filter 241 is a filter with adjustable coefficients, and the second filter 241 can be an all-pass filter or a low-pass filter by adjusting the coefficients.

当第三频率Fs3的数字音频信号为一预设频率Fd(举例来说,预设频率Fd为48kHz)的(2-n)倍时,第二滤波器241通过系数调整为全通滤波器,而第三降频器242的第五参数E设为1,使其不对第三频率Fs3的数字音频信号进行滤波及降频,直接输出第三频率Fs3的数字音频信号,其中n为整数。当第三频率Fs3的数字音频信号不是预设频率Fd的(2-n)倍时,第二滤波器241通过系数调整为低通滤波器,第二滤波器241对该数字音频信号进行滤波后,第三降频器242根据一第五参数E来对该数字音频信号降频,以产生一第四频率Fs4的数字音频信号。When the digital audio signal of the third frequency Fs3 is (2-n) times of a preset frequency Fd (for example, the preset frequency Fd is 48kHz), the second filter 241 is adjusted to an all-pass filter by coefficients, The fifth parameter E of the third down-converter 242 is set to 1, so that it does not filter and down-convert the digital audio signal of the third frequency Fs3, and directly outputs the digital audio signal of the third frequency Fs3, wherein n is an integer. When the digital audio signal of the third frequency Fs3 is not (2-n) times of the preset frequency Fd, the second filter 241 is adjusted to a low-pass filter through coefficients, and the second filter 241 filters the digital audio signal , the third down-converter 242 down-converts the digital audio signal according to a fifth parameter E, so as to generate a digital audio signal with a fourth frequency Fs4.

在本发明的实施例中,第一至第五参数A、B、C、D及E根据工作频率Fsc以及设定的目标频率Fs预先计算所得到。不同的目标频率Fs及工作频率Fsc的组合会产生不同的第一至第五参数A、B、C、D及E。请参考同时参考图2A以及图3。图3为说明工作频率Fsc、目标频率Fs以及第一至第五参数A、B、C、D及E的关系表。以下将利用图2A中的音频ADC的取样频率转换装置200以及图3的关系表来说明如何根据本发明的音频ADC200利用系统时脉产生的工作频率Fsc(也就是不需要额外的振荡器或锁相回路),将模拟音频信号转换为目标频率Fs的数字音频信号。假设工作频率Fsc、目标频率Fs以及预设频率Fd分别为6MHz、64kHZ以及48kHz,第一至第五参数A、B、C、D及E分别为(1、8、71、8、26)。SDM210首先根据工作频率Fsc(6MHz)来对模拟音频信号进行超取样,以输出工作频率Fsc(6MHz)的数字音频输出信号。由于第一参数A为1,因此数字音频输出信号会在不改变(Fsc*1=Fsc)的情况下传输至第一滤波器222。第一滤波器222对该数字音频输出信号滤波后,第一降频器223根据第二参数B将工作频率Fsc(6MHz)的数字音频信号降频8倍,以产生第二频率Fs2的数字音频信号,而第二频率Fs2为750kHz(6MHz/8=750kHz)。接着,第二升频器231根据第三参数C将第二频率Fs2(750kHz)的数字音频信号升频,然后第二降频器232根据第四参数D将该数字音频信号降频,以产生第三频率Fs3的数字音频信号。因此,第三频率Fs3为6656.25kHz(750kHz*71/8=6656.25kHz)。由于第三频率Fs3的数字音频信号不是该预设频率Fd(48kHz)的2n倍,第二降频滤波模块240切换于第一路径P1。第二滤波器241对该数字音频输出信号滤波后,第三降频器242根据第五参数E将第三频率Fs3的数字音频信号降频26倍,并据以产生第四频率Fs4的数字音频信号;而第四频率Fs4为256kHz(6656.25kHz/26=256kHz)。最后,第三降频滤波模块250将第四频率Fs4的数字音频信号降频四倍,以产生目标频率Fs(256kHz/4=64kHz)的数字音频信号。In the embodiment of the present invention, the first to fifth parameters A, B, C, D and E are pre-calculated according to the operating frequency Fsc and the set target frequency Fs. Different combinations of the target frequency Fs and the working frequency Fsc will produce different first to fifth parameters A, B, C, D and E. Please refer to FIG. 2A and FIG. 3 at the same time. FIG. 3 is a table illustrating the relationship between the working frequency Fsc, the target frequency Fs, and the first to fifth parameters A, B, C, D, and E. Referring to FIG. The following will use the audio ADC sampling frequency conversion device 200 in FIG. 2A and the relationship table in FIG. 3 to illustrate how the audio ADC 200 according to the present invention utilizes the operating frequency Fsc generated by the system clock (that is, no additional oscillator or lock is required. phase loop) to convert the analog audio signal into a digital audio signal of the target frequency Fs. Assuming that the working frequency Fsc, target frequency Fs and preset frequency Fd are 6 MHz, 64 kHz and 48 kHz respectively, the first to fifth parameters A, B, C, D and E are (1, 8, 71, 8, 26) respectively. SDM210 first oversamples the analog audio signal according to the working frequency Fsc (6MHz) to output a digital audio output signal with the working frequency Fsc (6MHz). Since the first parameter A is 1, the digital audio output signal will be transmitted to the first filter 222 without changing (Fsc*1=Fsc). After the first filter 222 filters the digital audio output signal, the first down-converter 223 reduces the frequency of the digital audio signal at the working frequency Fsc (6 MHz) by 8 times according to the second parameter B, to generate the digital audio at the second frequency Fs2 signal, and the second frequency Fs2 is 750kHz (6MHz/8=750kHz). Next, the second upconverter 231 upconverts the digital audio signal of the second frequency Fs2 (750kHz) according to the third parameter C, and then the second downconverter 232 downconverts the digital audio signal according to the fourth parameter D to generate A digital audio signal of a third frequency Fs3. Therefore, the third frequency Fs3 is 6656.25 kHz (750 kHz*71/8=6656.25 kHz). Since the digital audio signal of the third frequency Fs3 is not 2n times the preset frequency Fd (48kHz), the second down-frequency filtering module 240 switches to the first path P1. After the second filter 241 filters the digital audio output signal, the third down-converter 242 down-converts the digital audio signal of the third frequency Fs3 by 26 times according to the fifth parameter E, and generates digital audio of the fourth frequency Fs4 accordingly signal; and the fourth frequency Fs4 is 256kHz (6656.25kHz/26=256kHz). Finally, the third down-frequency filtering module 250 down-converts the digital audio signal of the fourth frequency Fs4 by four times to generate a digital audio signal of the target frequency Fs (256kHz/4=64kHz).

须注意的是,在相同目标频率Fs及工作频率Fsc的组合下,仍可能会产生不同组合的第一至第五参数A、B、C、D及E。举例来说,请继续参考图3,当工作频率Fsc及目标频率Fs分别设定为6MHz以及192kHz时,第一参数A可为16、8或4。当第一参数A为16时,频率Fsc的数字音频信号输入第一滤波器222时,会先升频16倍而成为96MHz。在现有的系统架构下,在第一降频模块220采用96MHz较高的工作频率,将提升该电路设计的成本;系统中亦不一定存在如此高速的工作时脉。因此使用者可选择第一参数A为8或4来降低第一降频模块220的工作频率,而第三参数C亦对应地调整为2或4。此调整并不影响在输出端Fs数字音频的品质。It should be noted that under the same combination of the target frequency Fs and the working frequency Fsc, different combinations of the first to fifth parameters A, B, C, D and E may still be generated. For example, please continue to refer to FIG. 3 , when the working frequency Fsc and the target frequency Fs are respectively set to 6 MHz and 192 kHz, the first parameter A can be 16, 8 or 4. When the first parameter A is 16, when the digital audio signal with the frequency Fsc is input into the first filter 222, the frequency will be up-converted by 16 times to 96 MHz. Under the existing system architecture, adopting a higher operating frequency of 96 MHz in the first down-frequency module 220 will increase the cost of the circuit design; such a high-speed operating clock does not necessarily exist in the system. Therefore, the user can select the first parameter A to be 8 or 4 to reduce the operating frequency of the first down-frequency module 220 , and the third parameter C is adjusted to 2 or 4 accordingly. This adjustment does not affect the quality of the digital audio at the output Fs.

请参考图4。图4为说明不同的工作频率Fsc的第一至第五参数A、B、C、D及E的关系表。本发明的音频ADC200亦可用于不同的工作频率Fsc,如1.5MHz、3MHz、6MHz、12MHz或24MHz。以工作频率Fsc、目标频率Fs以及预设频率Fd分别为12MHz、96kHZ以及48kHz为例,第一至第五参数A、B、C、D及E分别为(4或2、125、1或2、1、1)。SDM210首先根据工作频率Fsc(12MHz)来对模拟音频信号进行超取样,以输出工作频率Fsc(12MHz)的数字音频输出信号。由于第一参数A为4或2,因此第一升频器221根据第一参数A将工作频率Fsc(12MHz)的数字音频信号升频四倍(Fsc*4=48MHz)或二倍(Fsc*2=24MHz)。如前所述,第一降频模块220采用较高的工作频率,将提升该电路设计的成本,而系统中亦不一定存在如此高速的工作时脉。因此,选择第一参数A为2可降低第一参数A为4时第一降频模块220的工作频率,意即第三参数C亦对应地调整为2。数字音频输出信号会在升频二倍(Fsc*2=24MHz)的情况下传输至第一滤波器222。第一滤波器222对该数字音频输出信号滤波后,第一降频器223根据第二参数B将工作频率Fsc(24MHz)的数字音频信号降频125倍,以产生第二频率Fs2的数字音频信号,而第二频率Fs2为192kHz(24MHz/125=192kHz)。接着,第二升频器231根据第三参数C将第二频率Fs2(192kHz)的数字音频信号升频,然后第二降频器232根据第四参数D将该数字音频信号降频,以产生第三频率Fs3的数字音频信号。因此,第三频率Fs3为384kHz(192kHz*2/1=384kHz)。由于第三频率Fs3的数字音频信号为该预设频率Fd(48kHz)的(23)倍,第二降频滤波模块240切换于第二路径P2,以经由第二路径P2直接输出第三频率Fs3的数字音频信号。最后,第三降频滤波模块250将第三频率Fs3的数字音频信号降频四倍,以产生目标频率Fs(384kHz/4=96kHz)的数字音频信号。Please refer to Figure 4. FIG. 4 is a relational table illustrating first to fifth parameters A, B, C, D and E of different working frequencies Fsc. The audio frequency ADC 200 of the present invention can also be used for different operating frequencies Fsc, such as 1.5MHz, 3MHz, 6MHz, 12MHz or 24MHz. Taking the working frequency Fsc, the target frequency Fs and the preset frequency Fd as 12MHz, 96kHZ and 48kHz respectively as an example, the first to fifth parameters A, B, C, D and E are respectively (4 or 2, 125, 1 or 2 , 1, 1). SDM210 firstly oversamples the analog audio signal according to the working frequency Fsc (12MHz) to output a digital audio output signal with the working frequency Fsc (12MHz). Since the first parameter A is 4 or 2, the digital audio signal of the working frequency Fsc (12MHz) is up-converted four times (Fsc*4=48MHz) or doubled (Fsc*4=48MHz) by the first upconverter 221 according to the first parameter A 2=24MHz). As mentioned above, the first frequency reduction module 220 adopts a higher operating frequency, which will increase the cost of the circuit design, and such a high-speed operating clock does not necessarily exist in the system. Therefore, selecting the first parameter A to be 2 can reduce the operating frequency of the first down-frequency module 220 when the first parameter A is 4, that is, the third parameter C is also adjusted to 2 correspondingly. The digital audio output signal is transmitted to the first filter 222 under the condition of up-converting twice (Fsc*2=24MHz). After the first filter 222 filters the digital audio output signal, the first down-converter 223 reduces the frequency of the digital audio signal at the working frequency Fsc (24 MHz) by 125 times according to the second parameter B to generate the digital audio at the second frequency Fs2 signal, and the second frequency Fs2 is 192kHz (24MHz/125=192kHz). Next, the second upconverter 231 upconverts the digital audio signal of the second frequency Fs2 (192kHz) according to the third parameter C, and then the second downconverter 232 downconverts the digital audio signal according to the fourth parameter D to generate A digital audio signal of a third frequency Fs3. Therefore, the third frequency Fs3 is 384kHz (192kHz*2/1=384kHz). Since the digital audio signal of the third frequency Fs3 is (23) times the preset frequency Fd (48kHz), the second down-frequency filtering module 240 switches to the second path P2 to directly output the third frequency Fs3 via the second path P2 digital audio signal. Finally, the third down-frequency filtering module 250 down-converts the digital audio signal of the third frequency Fs3 by four times to generate a digital audio signal of the target frequency Fs (384kHz/4=96kHz).

再者,图2A与图2B所示的取样频率转换装置200与取样频率转换装置201仅为本发明的实施例示意图。本领域技术人员当可据以做不同的修饰或变化。请参考图5A与图5B,其中,图5A为根据图2A的取样频率转换装置200所变化的实施例的示意图。取样频率转换装置相似于图2A中的取样频率转换装置,其相异之处为升降频模块230可另包含一低通滤波器(Low PassFilter,LPF)233,电性连接于第二升频器231及第二降频器232之间,用来在该第二频率Fs2的数字音频信号进行升频和降频之间对该数字音频信号进行镜像信号的滤波。同理,请参考图5B,图5B为根据图2B的取样频率转换装置201所变化的实施例的示意图。取样频率转换装置501相似于图2B中的取样频率转换装置201,其相异之处为升降频模块230可另包含一低通滤波器(Low Pass Filter,LPF)233,电性连接于第二升频器231及第二降频器232之间,用来在该第二频率Fs2的数字音频信号进行升频和降频之间对该数字音频信号进行镜像信号的滤波。Furthermore, the sampling frequency conversion device 200 and the sampling frequency conversion device 201 shown in FIG. 2A and FIG. 2B are only schematic diagrams of an embodiment of the present invention. Those skilled in the art may make various modifications or changes accordingly. Please refer to FIG. 5A and FIG. 5B , wherein FIG. 5A is a schematic diagram of a modified embodiment of the sampling frequency conversion device 200 according to FIG. 2A . The sampling frequency conversion device is similar to the sampling frequency conversion device in FIG. 2A, and the difference is that the up/down frequency module 230 may further include a low-pass filter (Low Pass Filter, LPF) 233, electrically connected to the second up-converter 231 and the second down-converter 232 , used to filter the image signal of the digital audio signal of the second frequency Fs2 before up-converting and down-converting the digital audio signal. Similarly, please refer to FIG. 5B , which is a schematic diagram of a modified embodiment of the sampling frequency conversion device 201 according to FIG. 2B . The sampling frequency conversion device 501 is similar to the sampling frequency conversion device 201 in FIG. Between the up-converter 231 and the second down-converter 232 , it is used to filter the image signal of the digital audio signal of the second frequency Fs2 before the digital audio signal is up-converted and down-converted.

在现有技术中,虽然音频ADC的取样频率转换装置100的APLL150可根据不同音频信号来产生对应模拟/数字转换时的取样频率,但一APLL在一般积体电路0.16微米的工艺下,约需要500*400(20k)个逻辑闸。在无减损数字音频输出品质的条件下,本发明音频ADC的取样频率转换装置200利用一升降频模块230以及一第二降频滤波模块240,而不需使用APLL150。升降频模块230所需的逻辑闸约为0.3k个,而第二滤波器所需的逻辑闸约为2K个,所以本发明音频ADC的取样频率转换装置只需约2.3k个逻辑闸。相较于现有技术,本发明音频ADC的取样频率转换装置可节省约17.7k个逻辑闸,也就是节省大约88%的逻辑闸数目。因此,本发明音频ADC的取样频率转换装置200占用较小电路面积,可有效降低成本。In the prior art, although the APLL150 of the sampling frequency conversion device 100 of the audio ADC can generate the sampling frequency corresponding to the analog/digital conversion according to different audio signals, an APLL needs about 500*400 (20k) logic gates. Under the condition of not degrading the output quality of digital audio, the sampling frequency conversion device 200 of the audio ADC of the present invention uses a frequency reduction module 230 and a second frequency reduction filter module 240 without using the APLL 150 . The up/down frequency module 230 needs about 0.3k logic gates, and the second filter needs about 2K logic gates, so the sampling frequency conversion device of the audio ADC of the present invention only needs about 2.3k logic gates. Compared with the prior art, the sampling frequency conversion device of the audio ADC of the present invention can save about 17.7k logic gates, that is, save about 88% of the number of logic gates. Therefore, the sampling frequency conversion device 200 of the audio ADC of the present invention occupies a small circuit area, which can effectively reduce the cost.

综上所述,本发明提供一取样频率转换功能的音频ADC,可利用一系统时脉产生的工作频率将一模拟音频信号转换为一目标频率的数字音频信号。由于本发明的ADC不需要利用额外的石英振荡器或锁相回路产生取样频率,因此可有效降低电路面积及制造成本。To sum up, the present invention provides an audio ADC with a sampling frequency conversion function, which can convert an analog audio signal into a digital audio signal of a target frequency by using a working frequency generated by a system clock. Since the ADC of the present invention does not need to use an additional crystal oscillator or a phase-locked loop to generate sampling frequency, the circuit area and manufacturing cost can be effectively reduced.

以上所述仅为本发明的较佳实施例,凡依本发明权利要求所做的均等变化与修饰,皆应属本发明的涵盖范围。The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the claims of the present invention shall fall within the scope of the present invention.

Claims (9)

1.一种取样频率转换装置,应用于一音频模拟数字转换器,用来将一模拟音频信号转换为一目标频率的数字音频信号,其特征在于,所述取样频率转换装置包含:1. A sampling frequency conversion device, applied to an audio analog-to-digital converter, is used to convert an analog audio signal into a digital audio signal of a target frequency, wherein the sampling frequency conversion device comprises: 一三角积分调变器,用来根据一工作频率对所述模拟音频信号进行取样,以产生一第一频率的数字音频信号;A delta-sigma modulator, used to sample the analog audio signal according to an operating frequency to generate a digital audio signal of a first frequency; 一第一降频滤波模块,电性连接于所述三角积分调变器,用来接收所述第一频率的数字音频信号,并对所述第一频率的数字音频信号进行升频、滤波以及降频,以产生一第二频率的数字音频信号;A first down-frequency filtering module, electrically connected to the delta-sigma modulator, used to receive the digital audio signal of the first frequency, and perform up-conversion, filtering and Down-converting to generate a digital audio signal of a second frequency; 一升降频模块,电性连接于所述第一降频滤波模块,用来对所述第二频率的数字音频信号进行升频以及降频,以产生一第三频率的数字音频信号,当所述第三频率为预设频率的2n倍时,输出所述第三频率的数字音频信号;当所述第三频率不为所述预设频率的2n倍时,对所述第三频率的数字音频信号进行滤波以及降频,其中n为一整数;以及A frequency reduction module, electrically connected to the first frequency reduction filter module, used for frequency up and frequency reduction of the digital audio signal of the second frequency to generate a digital audio signal of a third frequency, when the When the third frequency is 2n times the preset frequency, output the digital audio signal of the third frequency; when the third frequency is not 2n times the preset frequency, the third frequency The digital audio signal is filtered and down-converted, wherein n is an integer; and 一第三降频滤波模块,电性连接于所述升降频模块,用来对所述升降频模块所输出的数字音频信号进行补偿、滤波、降频、再滤波及再降频,以输出所述目标频率的数字音频信号。A third down-frequency filter module, electrically connected to the up-down frequency module, used for compensating, filtering, down-frequency, re-filtering, and re-down-frequency of the digital audio signal output by the up-down frequency module, so as to output the digital audio signal at the frequency of interest. 2.如权利要求1所述的取样频率转换装置,其特征在于,所述第一降频滤波模块包含:2. The sampling frequency conversion device according to claim 1, wherein the first down-frequency filtering module comprises: 一第一升频器,电性连接于所述三角积分调变器,用来对所述数字音频信号进行升频;a first up-converter, electrically connected to the delta-sigma modulator, and used to up-convert the digital audio signal; 一第一滤波器,用来接收升频后的所述数字音频信号,并对所述数字音频信号进行滤波;以及a first filter for receiving the up-converted digital audio signal and filtering the digital audio signal; and 一第一降频器,电性连接于所述第一滤波器,用来对升频后的所述数字音频信号进行降频,以产生一第二频率的数字音频信号。A first down-converter, electrically connected to the first filter, is used for down-converting the up-converted digital audio signal to generate a second-frequency digital audio signal. 3.如权利要求2所述的取样频率转换装置,其特征在于,所述第一滤波器为梳型、有限脉冲响应或无限脉冲响应滤波器。3. The sampling frequency conversion device according to claim 2, wherein the first filter is a comb filter, a finite impulse response filter or an infinite impulse response filter. 4.如权利要求1所述的取样频率转换装置,其特征在于,所述升降频模块包含:4. The sampling frequency conversion device according to claim 1, wherein the frequency-decreasing module comprises: 一第二升频器,电性连接于所述第一降频滤波模块,用来对所述第二频率的数字音频信号进行升频;A second frequency up-converter, electrically connected to the first down-frequency filter module, for up-converting the digital audio signal of the second frequency; 一第二降频器,电性连接于所述第二升频器,用来对所述数字音频信号进行降频,以产生所述第三频率的数字音频信号;以及a second down-converter, electrically connected to the second up-converter, for down-converting the digital audio signal to generate a digital audio signal of the third frequency; and 一第二降频滤波模块,电性连接于所述第二降频器,接收第三频率的数字音频信号并判别所述第三频率的数字音频信号是否为一预设频率的2n倍,其中当所述第三频率为所述预设频率的2n倍时,直接输出所述第三频率的数字音频信号至所述第三降频滤波模块;当所述第三频率不为所述预设频率的2n倍时,对所述第三频率的数字音频信号进行滤波以及降频,以产生一第四频率的数字音频信号输出至所述第三降频滤波模块,其中n为一整数。A second down-frequency filtering module, electrically connected to the second down-converter, receiving a digital audio signal of a third frequency and judging whether the digital audio signal of the third frequency is 2 n times a preset frequency, Wherein when the third frequency is 2n times of the preset frequency, directly output the digital audio signal of the third frequency to the third down-frequency filtering module; when the third frequency is not the When the preset frequency is 2 n times, the digital audio signal of the third frequency is filtered and down-frequency to generate a digital audio signal of a fourth frequency and output to the third down-frequency filtering module, wherein n is a integer. 5.如权利要求4所述的取样频率转换装置,其特征在于,所述第二降频滤波模块包括:一第一路径与一第二路径,其中所述第一路径具有一第二滤波器,用来接收所述第三频率的数字音频信号,以及一第三降频器,电性连接于所述第二滤波器,用来对所述数字音频信号进行降频以产生一第四频率的数字音频信号;其中所述第二路径则将第三频率的数字信号直接输出至所述第三降频滤波模块。5. The sampling frequency conversion device according to claim 4, wherein the second down-frequency filtering module comprises: a first path and a second path, wherein the first path has a second filter , for receiving the digital audio signal of the third frequency, and a third down-converter, electrically connected to the second filter, for down-converting the digital audio signal to generate a fourth frequency digital audio signal; wherein the second path directly outputs the digital signal of the third frequency to the third down-frequency filtering module. 6.如权利要求4所述的取样频率转换装置,其特征在于,所述第二降频滤波模块包含:6. The sampling frequency conversion device according to claim 4, wherein the second down-frequency filtering module comprises: 一第二滤波器,用来接收所述第三频率的数字音频信号,并依据一系数设定以对所述数字音频信号进行滤波;以及a second filter for receiving the digital audio signal of the third frequency and filtering the digital audio signal according to a coefficient setting; and 一第三降频器,电性连接于所述第二滤波器,依据一参数设定以对所述数字音频信号进行降频;A third down-converter, electrically connected to the second filter, for down-converting the digital audio signal according to a parameter setting; 其中当所述第三频率为所述预设频率的2n倍时,调整所述系数将所述第二滤波器设定为全通滤波器,并设定所述参数为1使所述第三降频器直接输出所述第三频率的数字音频信号至所述第三降频滤波模块;当所述第三频率不为所述预设频率的2n倍时,调整所述系数将所述第二滤波器设定为低通滤波器进行滤波,并设定所述参数使所述第三降频器对滤波过的所述第三频率的数字音频信号降频,以产生一第四频率的数字音频信号输出至所述第三降频滤波模块。Wherein when the third frequency is 2 n times of the preset frequency, adjust the coefficient to set the second filter as an all-pass filter, and set the parameter to 1 to make the first Three down-converters directly output the digital audio signal of the third frequency to the third down-frequency filtering module; when the third frequency is not 2 n times of the preset frequency, adjust the coefficient to be The second filter is set as a low-pass filter for filtering, and the parameters are set to make the third down-converter down-frequency the filtered digital audio signal of the third frequency to generate a fourth The frequency digital audio signal is output to the third down-frequency filtering module. 7.如权利要求4所述的取样频率转换装置,其特征在于,所述升降频模块另包含一低通滤波器,电性连接于所述第二升频器与所述第二降频器之间,用来在所述第二频率的数字音频信号进行升频之后对所述数字音频信号进行滤波。7. The sampling frequency converting device according to claim 4, wherein the frequency-up/down-frequency module further comprises a low-pass filter electrically connected to the second up-converter and the second down-converter Between, used for filtering the digital audio signal after the digital audio signal of the second frequency is up-converted. 8.如权利要求2所述的取样频率转换装置,其特征在于,所述第一升频器根据一第一参数来重复接收所述第一频率的数字音频信号,使所述第一频率的数字音频信号升频。8. The sampling frequency conversion device according to claim 2, wherein the first upconverter repeatedly receives the digital audio signal of the first frequency according to a first parameter, so that the digital audio signal of the first frequency Digital audio signals are up-converted. 9.如权利要求4所述的取样频率转换装置,其特征在于,所述第三降频滤波模块包含:9. The sampling frequency conversion device according to claim 4, wherein the third down-frequency filtering module comprises: 一衰减补偿滤波器,电性连接于所述第二降频滤波模块,用来补偿所述第一降频滤波模块以及所述升降频模块所输出的数字音频信号;An attenuation compensation filter, electrically connected to the second down-frequency filter module, for compensating the digital audio signals output by the first down-frequency filter module and the up-down frequency module; 一第一半频带滤波器,电性连接于所述衰减补偿滤波器,用来对所述数字音频信号进行滤波;A first half-band filter, electrically connected to the attenuation compensation filter, for filtering the digital audio signal; 一第四降频器,电性连接于所述第一半频带滤波器,用来对所述数字音频信号进行降频;A fourth down-converter, electrically connected to the first half-band filter, for down-converting the digital audio signal; 一第二半频带滤波器,电性连接于所述第四降频器,用来对所述数字音频输出信号进行滤波;以及a second half-band filter, electrically connected to the fourth down-converter, for filtering the digital audio output signal; and 一第五降频器,电性连接于所述第二半频带滤波器,用来对所述数字音频信号进行降频,以产生所述目标频率发数字音频信号。A fifth down-converter, electrically connected to the second half-band filter, for down-converting the digital audio signal to generate a digital audio signal at the target frequency.
CN 200910209422 2009-10-30 2009-10-30 Sampling frequency conversion device Expired - Fee Related CN102055480B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200910209422 CN102055480B (en) 2009-10-30 2009-10-30 Sampling frequency conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200910209422 CN102055480B (en) 2009-10-30 2009-10-30 Sampling frequency conversion device

Publications (2)

Publication Number Publication Date
CN102055480A CN102055480A (en) 2011-05-11
CN102055480B true CN102055480B (en) 2013-08-21

Family

ID=43959469

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200910209422 Expired - Fee Related CN102055480B (en) 2009-10-30 2009-10-30 Sampling frequency conversion device

Country Status (1)

Country Link
CN (1) CN102055480B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1402544A (en) * 2001-08-14 2003-03-12 瑞昱半导体股份有限公司 Device and method for sampling frequency conversion of digital images

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7702710B2 (en) * 2004-09-10 2010-04-20 Analog Devices, Inc. Digital signal processor optimized for interpolation and decimation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1402544A (en) * 2001-08-14 2003-03-12 瑞昱半导体股份有限公司 Device and method for sampling frequency conversion of digital images

Also Published As

Publication number Publication date
CN102055480A (en) 2011-05-11

Similar Documents

Publication Publication Date Title
CN100401640C (en) Decimation filtering device and method
JP5490925B2 (en) Oversampling continuous-time converter with improved noise rejection
US6218972B1 (en) Tunable bandpass sigma-delta digital receiver
KR100799406B1 (en) Digital Sample Rate Converter to Compensate Attenuation of In-band Signals
US8645445B2 (en) Filter block for compensating droop in a frequency response of a signal
JPS63503348A (en) Digital zero IF tuning partial circuit
US7259700B2 (en) Method and device for converting the sampling frequency of a digital signal
US10348326B2 (en) Digital silicon microphone with interpolation
JP6096904B2 (en) Digital to analog converter
US5838270A (en) Second order and cascaded 2-1 oversampled modulators with improved dynamic range
TWI648731B (en) Active noise cancellation system
EP3704796B1 (en) Low delay decimator and interpolator filters
JP4372184B2 (en) Sample rate converter
CN102055480B (en) Sampling frequency conversion device
Chan et al. Design of constrained causal stable IIR filters using a new second-order-cone-programming-based model-reduction technique
CN109327768B (en) Active Noise Cancellation System
Abeysekera et al. Design of optimal and narrow-band Laguerre filters for sigma-delta demodulators
CN112019191A (en) Low power lattice wave filter system and method
Mankani et al. Power and area optimization of decimation filter for application in Sigma Delta ADC
Liu A high speed digital decimation filter with parallel cascaded integrator-comb pre-filters
CN113078902A (en) Analog-to-digital conversion system and audio equipment
Yu et al. A programmable digital down-converter for SDR receivers
Hentschel et al. Sample Rate Conversion in Software Radio Terminals
KR100691357B1 (en) Sample rate conversion method, band rate conversion device, and transceiver having same in band limited communication system
CN101674067A (en) Frequency reducing device and sound signal processing system using same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130821