CN102054292A - TIN coupling-based overground/underground seamless integrated three-dimensional space modeling method - Google Patents

TIN coupling-based overground/underground seamless integrated three-dimensional space modeling method Download PDF

Info

Publication number
CN102054292A
CN102054292A CN2009102101877A CN200910210187A CN102054292A CN 102054292 A CN102054292 A CN 102054292A CN 2009102101877 A CN2009102101877 A CN 2009102101877A CN 200910210187 A CN200910210187 A CN 200910210187A CN 102054292 A CN102054292 A CN 102054292A
Authority
CN
China
Prior art keywords
model
terrain
data
ground
tin
Prior art date
Application number
CN2009102101877A
Other languages
Chinese (zh)
Inventor
吴立新
张元生
Original Assignee
吴立新
张元生
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吴立新, 张元生 filed Critical 吴立新
Priority to CN2009102101877A priority Critical patent/CN102054292A/en
Publication of CN102054292A publication Critical patent/CN102054292A/en

Links

Abstract

The invention discloses an overground/underground seamless integrated modeling method, which comprises the following steps of: respectively modeling terrain, overground buildings and underground stratum; integrating every two models through a common geometrical model, namely a constrained Delaunay triangulation network (CD-TIN); respectively establishing geometrical seamless integrated space data models between the overground buildings and the terrain and between the underground stratum and the terrain; and taking the terrain CD-TIN as a common plane, and geometrically and seamlessly integrating the two integrated models between the overground buildings and the terrain and between the underground stratum and the terrain to form topological triangle sets (TTS) containing an overground/underground integrated topological relationship so as to realize overground/underground geometrical seamless integrated modeling. The method fills a gap of an overground, surface and underground three-layer space seamless integrated modeling method, and lays a foundation for developing a new-generation three-dimensional (3D) geographic information system (GIS).

Description

基于TIN耦合的地上下无缝集成三维空间建模方法技术领域: Seamless integration of the upper and lower three-dimensional space modeling TECHNICAL FIELD The ground-based coupling TIN:

[0001] 本发明涉及三维地理信息系统,尤其涉及一种地上下集成的三维空间建模通用方法。 [0001] The present invention relates to a three-dimensional geographic information system, particularly to a vertically integrated 3D space modeling the general procedure. 背景技术: Background technique:

[0002] 自上世纪70年代以来,以地理信息系统(Geographic Information System, GIS) 为代表的地球空间信息技术在地理、海洋、地质、矿山、岩土、城市等许多领域中的应用不断扩展,GIS所涉及的范围已经向上进入大气层(包括地表建筑物),向下进入地球内部(如地下矿井与地下工程)。 [0002] Since the 1970s, the application of geographic information system (Geographic Information System, GIS) as the representative of geospatial information technology in many areas of geography, oceanography, geology, mining, geotechnical, etc. in the city continues to expand, GIS range into the atmosphere has involved (including surface buildings) upwardly, downwardly into the interior of the earth (e.g. underground mines and underground engineering). 地球表层尤其是地下是一个复杂系统,地学实体形态复杂、边界不确定,人类活动与工程建设过程对该系统造成多种复杂影响,并可能引发多种地质灾害或变形损害,危及人类的资源、生存、生产与发展安全。 Earth surface, especially underground is a complex system, geo physical form complex, uncertain borders, human activities and the construction process caused by a variety of complex effect on the system and may cause a variety of damage or deformation of geological disasters, endangering human resources, survival, development and production safety. 因此,城市、矿山及岩土工程领域期望利用多种空间数据对区域地形、地上建筑物、地下岩土层及其地下工程体进行真3D集成建模与可视化分析。 Therefore, urban, mining and geotechnical engineering expectations of regional topography, ground buildings and underground rock layers and underground engineering body true 3D integrated modeling and visualization analysis using a variety of spatial data.

[0003] 现有3D GIS主要研究的是地球空间中地表及地表附着的空间信息。 [0003] The main conventional 3D GIS is the spatial information of the surface and surface geospatial attached. 随着计算机科学技术与空间信息技术的发展,人类探知活动在地上、地表、地下三层空间中不断拓展, 以地上下为一体的大范围的综合信息系统的研究成为地学领域关注的热点。 With the development of computer science and information technology space, Discovery of human activities on the ground, surface, underground three space continue to expand, research integrated information system to be up and down as one of the wide range of geosciences has become a hot area of ​​concern. 采用3D集成空间数据模型来统一表达地上和地下3D空间对象,成为当今GIS研究热点和现代3DGIS的核心内容之一。 Integration with 3D spatial data model to express a unified 3D spatial objects above and below ground, became one of the core research focus of today's GIS and the modern 3DGIS.

[0004] 近二十年,国内外学者围绕3D地理空间构模、3D地质空间构模以及3D地理与地质空间集成构模,研究提出了20余种3D空间数据模型。 [0004] nearly two decades, scholars around the geospatial 3D Modeling, 3D Modeling and 3D geological space Geography and geospatial integration Modeling study and put forward more than 20 kinds of 3D spatial data model. 地上与地下简单目标的独立3D建模、地形与地上景观的多分辨率表达等已较成熟,而地上下3D复杂目标几何无缝集成建模仍是国际上本领域的科技难题。 Independent 3D modeling of ground and underground simple objective, multi-resolution expression of terrain and landscape of the earth, have been more mature, and up and down the target complex 3D geometry seamlessly integrated modeling technology is still a problem in the art internationally.

[0005] 在不区分准3D和真3D的前提下,可根据空间模型是对地学空间目标进行表面描述(surface representation)还是进行空间咅丨J分(space partitioning),而按单一3D 构模(single 3D modeling)、、混合3D 构模(compound 3D modeling)禾口集成3D 构模(integral3D modeling) 3种模式进行分类,如表1所示。 [0005] made without distinction between quasi-3D and true 3D can is geospatial target surface is described (surface representation) The spatial model or the spatial Poushu J min (space partitioning), and as a single 3D Modeling ( single 3D modeling) ,, mixed 3D Modeling (compound 3D modeling) Wo port integrated 3D Modeling (integral3D modeling) 3 modes are classified, as shown in table 1.

[0006] 表13D空间数据模型分类 [0006] Spatial data model classification table 13D

[0007]3 [0007] 3

Figure CN102054292AD00041

注:斜体部分为栅格模型;多层DEMs当采用TIN构模时为矢量模型,若采用Grid构模,则为栅格模型; 其它为矢量模型或矢栅混合、矢栅集成模型。 NOTE: italics raster model; DEMs multilayer configuration mode when a vector, TIN model, the use of a mold Grid configuration, compared with the grid model; other hybrid vector is a vector model or the gate, the gate vector integration model.

[0008] 单一构模是指采用单一的面元模型(Facial Model)或体元模型(Volumetric Model)实现对空间对象进行几何描述和空间构模。 [0008] The single mode configuration refers to a single surface element model (Facial Model) or a voxel model (Volumetric Model) object to achieve spatial geometry and spatial configuration of the mold described.

[0009] 其中,面元模型采用面元对空间对象的表面进行连续或非连续几何描述和特征刻划,不研究空间对象的内部特征。 [0009] wherein, bin bin model uses space on the surface of the object to be continuous or discontinuous geometric description and the characterization, not Internal object feature space. 通过表面表示形成空间目标轮廓,其优点是便于显示和数据更新;不足之处在于:由于缺少3D几何描述和内部属性记录,而难以进行3D空间查询与空间分析,更无法进行地下开采与开挖设计。 Indicates a space formed by a surface contour of an object, which is the advantage for display and update data; disadvantages in that: the lack of 3D geometric description and the internal attribute record, it is difficult to perform 3D spatial query and spatial analysis, but can not be underground mining and excavation design.

[0010] 体元模型采用体元对空间对象的内部空间进行无缝完整的空间剖分,不仅描述空间对象的表面几何,还研究空间对象的内部特征。 [0010] voxel model uses an internal space of the voxel space object seamlessly complete spatial subdivision, describes not only the surface geometry object space, wherein the interior space is also an object of study. 体元模型基于3D空间的体元分割和真3D 实体表达,体元的属性可以独立描述和存储,因而可以进行3D空间操作。 3D voxel model based on the volume and true spatial element division 3D expression of entities, attributes voxel may be described independently and storage, it is possible to perform 3D space operation. 各种体元模型因其自身特点分别适用于不同的领域。 Voxel model by its own various characteristics are applied to different areas.

[0011] 混合构模则是采用两种或两种以上的表面模型或体元模型同时对同一空间对象进行几何描述和构模,达到模型之间取长补短、分别满足不同应用需求的目的。 [0011] Modeling is the use of mixing two or more voxel surface model or a model space object while the same configuration and die geometry description, to achieve complementarity between the model, respectively purposes meet different application requirements. 典型的混合构模方式有DEM中的TIN-Grid模型、地质模型中的kction-TIN、岩土工程中的WireFrame-Block,城市建筑的BR印-CSG、地质矿产的Octree-TEN等。 Typical mixed Modeling methods are TIN-Grid DEM model of geological model kction-TIN, WireFrame-Block geotechnical engineering, BR printing -CSG city buildings, geologic mineral Octree-TEN like. 其中, WireFrame-Block混合构模实用起来有效率不高的问题,即每一次开挖边界的变化都要进一步分割块体,即修改一次模型;Octree-TEN混合构模虽然可以解决地质体中断层或结构面等复杂情况的建模问题,但空间实体间的空间关系不易建立。 Wherein, WireFrame-Block Modeling mixed up utility efficiency is not high, i.e., changes in the boundary must be further divided every excavation block, i.e., a modified model; although Octree-TEN mixed mode configuration can solve the geological fault modeling complex situations or surface structure, etc., but the spatial relationships between spatial entities is not easy to establish.

[0012] 集成构模则是采用两种或两种以上的不同模型分别对系统中不同部分或不同的空间对象进行几何描述和3D构模,分别建立的3D模型集成起来即形成对系统的完整3D表示。 [0012] Integrated Modeling is the use of two or more different models or in different parts of the system separately or in different geometric description of spatial objects and 3D Modeling, 3D models were built to integrate a complete system i.e. 3D representation. 典型的集成构模有TIN-CSG模型、TIN-Octree模型、CSG-TIN-GTP模型等。 Modeling with a typical integrated TIN-CSG model, TIN-Octree model, CSG-TIN-GTP models. 其中TIN-CSG 混合构模是当前城市3D GIS和3D城市模型(3D CM)构模的主要方式,即地表和建筑物分别用TIN和CSG进行表示,然后通过其公共边界来连接两者,因此其操作与显示都是分开进行;TIN-Octree混合构模(Hybrid构模)的缺点是Octree模型数据必须随TIN数据的改变而改变,否则会引起指针混乱,导致数据维护困难。 Wherein TIN-CSG mixed mode configuration mode is the current major cities of GIS 3D and 3D city models (the CM 3D) configuration of the mold, i.e. the surface structures, respectively, and represented by the CSG and TIN, and both are connected by their common boundary, the display operation thereof are performed separately; Octree mixed disadvantage TIN-configuration mold (hybrid Modeling) is Octree model data must TIN varies with the data, otherwise it would cause confusion pointer, resulting in difficulty of data maintenance.

[0013] CSG+TIN+GTP模型则是一种新型的3D空间集成模型,主要解决地上下无缝集成建模的问题,是本发明的核心内容。 [0013] CSG + TIN + GTP model is a new integration model in 3D space, mainly solves the problem to seamlessly integrated modeling of the vertical, is the core of the present invention. 本发明旨在提供一种可行、高效的地上下空间无缝集成建模方法,推动新一代3DGIS的研究与开发,形成一种通用的3D空间集成建模的软件平台,进而促进3DGIS与3DGMS的理论与技术发展,并推动数字城市、数字矿山、数字岩土工程等技术进步。 The present invention aims to provide a practical, efficient and seamless integration of the modeling space vertically, promoting research and development of a new generation of 3DGIS, form a common integrated 3D modeling software platform space, thus contributing to the 3DGIS and 3DGMS theory and technology development, and promote technological advances in digital city, digital mine and digital geotechnical engineering.

[0014] 相关文献: [0014] Related Literature:

[0015] [1]AK Turner,1991.Three Dimension GIS. Geobyte,5(1) :31-32. . [0015] [1] AK Turner, 1991.Three Dimension GIS Geobyte, 5 (1): 31-32.

[0016] [2]Simon W H. 1994. 3D Geoscience Modeling :Computer Techniques for GeologicalCharacterization[M]. Springer-Verlag. [0016] [2] Simon W H. 1994. 3D Geoscience Modeling: Computer Techniques for GeologicalCharacterization [M] Springer-Verlag..

[0017] [3]陈述彭.地球科学的复杂性与系统性.地理科学.1991. [0017] [3] CHEN Shu-peng Earth Sciences complexity and systemic. Geographical Sciences. 1991.

[0018] [4]陈述彭.地理信息系统的应用基础研究,地球信息.1997,10 (4) :29-35. . [0018] [4] CHEN Shu-peng basic research GIS, geographic information .1997,10 (4): 29-35.

[0019] [5]马蔼乃.论地理科学的发展.北京大学学报(自然科学版).1996,32(1). [0019] [5] Ma Ainai. On the geographical science. Peking University (Natural Science) .1996,32 (1).

[0020] [6]吴立新,史文中.地理信息系统原理与算法.科学出版社.2003. [0020] [6] Wu Lixin, the history of the text. Geographic information systems principles and algorithms. Science Press .2003.

[0021] [7]李红旮.基于特征的时空三域数据模型及其在环境变迁中的应用.1999. [0021] [7] Li ga based on temporal characteristics of three-domain data model and its application in environmental changes of .1999.

[0022] [8]吴立新,史文中,Christopher Gold. 3D GIS与3D GMS中的空间构模技术.地理与地理信息科学· 2003. 1,19(1) :5-11. . [0022] [8] Wu Lixin, Sven, the spatial modeling technique Christopher Gold 3D GIS and 3D GMS in Geography, Science 2003., 19 (1): 5-11.

[0023] [9]杨建思,陈永喜.城市三维信息系统的实现方法.武汉大学学报(工学版)· 2001,34(6) :67-70.发明内容: .. [0023] [9] Yangjian Si, Chen Yongxi implementation of urban three-dimensional information system of Wuhan University (Engineering Science) · 2001,34 (6): 67-70 SUMMARY:

[0024](一)要解决的技术问题 [0024] (a) To solve technical problems

[0025] 地上下空间目标的集成有两个层次:一是地上下空间目标分别建模然后集成显示,得到地上下一体化的可视化效果;二是地上下空间目标集成建模、集成显示,并进行整体查询和分析。 [0025] The vertically-integrated object space two levels: first, the upper and lower spaces, respectively, the target model is then integrated display, to give vertically integrated visualization; second target space vertically integrated modeling, integrated display, and overall query and analysis. 前者实质上是一种有缝建模,即地形、地上、地下空间目标分别采用某种模型进行独立建模,两者的几何边界是各自独立的,在实体公共界面必然存在数据精度差异、 空间位置不匹配等问题。 The former is essentially a slit model, i.e. the terrain, the ground, underground space using some certain model were modeled independently, both are independent geometric boundaries, inevitably differences in the accuracy of the data interface entity public space position does not match the other issues. 这不仅影响可视化效果,还将影响数字模型的真实性与可靠性, 模型只能观赏、不能利用。 This not only affects visual effects, will also affect the authenticity and reliability of the digital model, the model can only watch, can not be used. 后者则是一种无缝建模,即地形、地上、地下空间目标虽然独立建模,但通过某种联接纽带使得彼此间的界面完全缝合,使得公共边、公共面不再出现裂缝, 弥补前者的不足,模型不仅能观赏、还能综合利用。 The latter model is a seamless, i.e. the terrain, the ground, underground space modeling target, although independent, but by some link coupled to each other such that the interface between the completely sewn, so that the common edge, no cracks common plane, make up the former deficiencies, the model can not only watch, but also utilization.

[0026] 而如何解决各类模型的数据耦合是集成空间数据模型选择的关键。 [0026] The coupling how to solve all kinds of data model is the key integrated spatial data model selected. 由于地形、地上、地下空间目标在独立建模时采用的空间数据模型不同,因而造成集成建模后模型数据的表达不统一,给后续的应用分析带来诸多不便,严重影响了模型的使用范围。 Depending on the terrain, the ground, the underground space of the target spatial data model used in the independent model, resulting in the expression of the integrated modeling model data is not uniform, to the subsequent application analysis inconvenience, seriously affecting the use of the model . 因此,必须对建模后的结果数据进行集成。 Therefore, the results must be integrated data modeling.

[0027] 本发明目的主要是提出一种地上下无缝集成建模(及相应的数据集成)方法,以填补地上、地表及地下三层空间无缝集成建模方法的空白,为研发新一代3DGIS奠定基础。 [0027] The main object of the present invention is to provide seamless integration of an earth model and down (and corresponding data integration) method, to fill gaps seamlessly integrated modeling ground surface and subsurface three spaces for the development of a new generation of 3DGIS foundation.

[0028] ( 二)技术方案: [0028] (b) technical solution:

[0029] 为达到地上下无缝集成建模的目的,本发明提供了一种基于TIN耦合的地上下无缝集成建模方法,并采用一种带有拓扑结构的三角形集合(TTS)来实现模型数据的统一表达。 [0029] For the purpose of modeling vertically seamless integration, the present invention provides an integrated modeling seamless vertically TIN based coupling methods, and for a collection of triangular topology with (TTS) is achieved uniform expression model data.

[0030] 发挥不同面模型和体模型的优势,分别对地形、地上建筑和地下地层进行建模;然后通过其公共几何模型——约束Delaimay三角网(⑶-TIN)将上述模型两两集成起来;5进而分别建立地上建筑与地形、地下地层与地形的几何缝集成空间数据模型;再以地形CD-TIN为公共面,将地上建筑与地形、地下地层与地形的两种集成模型进行几何无缝集成, 形成一种含地上下集成拓扑关系的三角形集合(Topological Triangle Sets, TTS),实现对地上下的几何无缝集成建模。 [0030] The advantage of different surface models and the models thereof, respectively terrain, buildings and ground modeling subterranean formation; followed by its common geometric model - constraint Delaimay triangulation (⑶-TIN) to integrate the above model twenty-two ; 5 and further were established building and the ground terrain, terrain subterranean formation and seamless integration of spatial geometric model data; then topographic CD-TIN is a common plane, with the ground floor, two ensemble terrain, and topography of the subterranean formation without geometrically seamless integration, a seamless integrated vertically integrated modeling containing the set of triangles topological relations (topological triangle Sets, TTS), to achieve the geometrical vertically.

[0031] 含拓扑关系的三角形集合具体指:不同的空间数据模型均由最基本的几何构模元素点、线、三角形组成。 [0031] Collection of topology-containing triangles specifically refers to: a different space by the basic data model geometry mold element points, lines, triangles. 无论采用何种模型进行建模,最终均要落脚到点要素上;而要表达一个面,其“最小逻辑元”为三角形;上升到体,其最小逻辑单元为四面体。 Regardless of the model using the model, ultimately have to be settled on a feature point; and a face to express that "the smallest logical element" triangular; body rises to its minimum logical unit tetrahedron. 因此,若想表达体结构,可以抽象为四面体、六面体或GTP的集合,也可抽象为B-Rep模型及其他模型,但都是以三角形为其基本的面元要素。 Therefore, to expression of the structure can be abstracted as set tetrahedron, hexahedron or GTP also be abstracted as B-Rep model and other models, but they are substantially triangular plane as its cell element. 因此,从“面”这一层出发选择三角形作为集成模型的“最小逻辑元”,配以合理的数据结构来表达拓扑关系,实现不同体模型的统一表达,从而解决不同模型间的关联和转换问题。 Thus, the "plane" as this layer as triangles departure "smallest logical element" integrated model, a data structure with a reasonable expression topology, unified body express different models, so as to solve the associated conversion between different models and problem. 如=CD-TIN即为一种典型的含有拓扑关系的三角形集合模型,其模型可由TTS表达。 = CD-TIN is, as a typical model containing a set of triangular topology relationship, the model may be expressed TTS.

[0032] 地上建筑与地形无缝集成方法具体指:以地上建筑的底面轮廓多边形为约束,参与构建地形CD-TIN,地上建筑的几何位置信息与地形几何信息相融合,构建出两者统一的地形几何界面TTS,从而实现地面实体与地形的无缝集成。 [0032] The ground floor and specifically refers to seamlessly integrate Terrain: ground floor to the bottom surface of polygonal contour as constraints involved in building terrain CD-TIN, the geometrical position information of topographic geometrical information integration ground floor, constructed of both a unified terrain geometry interface TTS, enabling seamless integration entity with ground terrain.

[0033] 地形与地层无缝集成具体指:基于钻孔数据以GTP构建地下空间实体模型,将钻孔孔口数据作为约束参与构建地形CD-TIN,地下地层的几何位置信息与地形几何信息相融合,构建出两者统一的地形几何界面TTS,实现地下地层与地形的无缝集成。 [0033] DETAILED topographic seamless integration with the formation means: data based drilling underground space GTP construct solid model, the constraints involved in drilling an aperture constructed topographic data as a CD-TIN, topographic geometrical position information of the subterranean formation with geometric information constructed by fusing the two unified terrain geometry interface TTS, seamless integration of subsurface formations and terrain.

[0034] 三层空间无缝集成具体指:地形是三层空间集成的纽带,地上建筑的底面轮廓多边形和地层钻孔孔口均作为几何约束共同参与构建地形⑶-TIN,构建出三者统一的地形几何界面TTS,进而实现了三层空间的⑶-TIN无缝集成。 [0034] DETAILED three spatial seamless integration means: an integrated space terrain is three-link, the ground floor and the bottom surface of polygonal contour formation drilling apertures are constructed as a topographic geometrical constraints participate ⑶-TIN, construct the three unified the terrain geometry interface TTS, so as to realize the space of three ⑶-TIN seamless integration.

[0035] 附图及其简要说明: [0035] The drawings and a brief description:

[0036] 图1为本发明空间数据模型的概念结构; [0036] FIG space conceptual data model of the present invention;

[0037] 图2为本发明空间数据模型的典型逻辑关系; [0037] FIG. 2 logic typical spatial data model of the present invention;

[0038] 图3为基于TTS的地上下空间数据集成原理; [0038] FIG. 3 is a vertical spatial integration based on the principles of TTS transactions;

[0039] 图4为基于TTS的空间模型数据集成框架; [0039] FIG. 4 is a space-based TTS integration framework model data;

[0040] 图5为地形与地下空间几何边界融合方法。 [0040] FIG. 5 is a topographic underground space geometry boundary fusion.

[0041] 图6为地下空间与地形的无缝集成实例图。 [0041] FIG. 6 is a seamless integration with the example of FIG underground space terrain.

[0042] 图7为地面实体边界与地形无缝集成前后对比图。 [0042] FIG. 7 is a longitudinal boundary surface topographic entity seamless integration comparison chart.

[0043] 图8为地上下三层空间无缝集成实例图。 [0043] FIG 8 is a three-space vertically seamless integration example of FIG. 具体实施方式: Detailed ways:

[0044] 为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。 [0044] To make the objectives, technical solutions, and advantages of the present invention will become more apparent hereinafter in conjunction with specific embodiments, and with reference to the accompanying drawings, the present invention is described in further detail.

[0045] 图1、图2为该方法的空间数据模型的概念结构和逻辑关系,该方法的典型空间数据模型为:地上采用CSG-BR印-Pixel混合模型,地形采用Grid-TIN-Pixel混合模型,地下采用MDEM-TEN-GTP-BItep-Voxel混合模型,其核心为集成模型CSG+CD-TIN+GTP。 [0045] FIG. 1, the concept of spatial structure and logical relationship data model for the method of FIG. 2, a typical spatial data model of the process are: use of the ground plate -Pixel CSG-BR hybrid model, terrain using Grid-TIN-Pixel mixed model, underground using MDEM-TEN-GTP-BItep-Voxel hybrid model, the core of an integrated model CSG + CD-TIN + GTP.

[0046] 该方法具体建模步骤包括: [0046] The particular method of modeling step comprises:

[0047] 1、进行数据预处理:包括地上、地形及地下数据的采集、校验、几何边界缝隙的检6测,以及初始的集成与融合处理。 [0047] 1, data preprocessing include: collecting the ground, and the ground terrain data, verification, measuring geometric boundaries detection slit 6, and the initial integration and fusion.

[0048] 2、进行无缝集成建模:首先,读取地面采样点数据及钻孔孔口数据进行地形与地层的集成建模,构建起地形与地质体的无缝集成模型;然后,进行地上目标与地形的集成建模,先建立起地上目标的三维模型,再将地上目标底边轮廓点作为约束更新地形模型。 [0048] 2, seamlessly integrated modeling: First, the dot data is read and drilling ground sample aperture integrate the data with the formation terrain modeling, build seamless integration topographic and geological body model; Then, ground targets and integrated modeling terrain, to build three-dimensional model of the target on the ground, then the ground target bottom contour point as an update terrain model constraints. 从而建立起地上目标、地形及地质体的无缝集成模型。 Seamless integration model in order to establish the ground target, topography and geological body.

[0049] 3、基于三者统一的TTS,将建模结果数据进行集成,构建起标准化的模型数据库, 原理如图3、图4。 [0049] 3, based on the TTS three unified, integrated data to the modeling results, build a standardized model database, the principle of FIG. 3, FIG.

[0050] 4、基于属性数据及模型数据,进行相关专业计算与应用分析。 [0050] 4, based on the attribute data and model data, related to professional computing and application analysis.

[0051] 实施例: [0051] Example:

[0052] 以某市某学院迁址新建工程为例。 [0052] relocation to a city in a new College of Engineering. 区域内共布77个勘探孔,其中控制性勘探孔M 个、一般性勘探孔53个。 The total cloth area of ​​exploration holes 77, wherein controlling the M exploration holes, 53 holes general exploration. 采集的数据包括钻孔、剖面数据及地形、地面建筑图等数据。 Data collected includes data bore, and a cross-sectional topography data, etc. FIG ground construction.

[0053] 首先,对原始数据按相应规则进行融合,其流程如图5所示。 [0053] First, fusion of the raw data according to the corresponding rule, the process shown in FIG. 5.

[0054] 其次,在基于本发明所开发的软件GeoMo311 (V2.0)系统中进行地上下无缝集成建模。 [0054] Next, the seamless integration of the model up and down (V2.0) system based on software developed GeoMo311 present invention. 地面实体与地形无缝集成建模结果如图6 ;地形与地下实体无缝集成建模结果如图7 ; 地上下三层空间的无缝集成建模结果如图8。 Seamless integration with ground entities topographic modeling results of FIG. 6; seamless integration with the subsurface entity topographic modeling results shown in Figure 7; seamless integration results of the modeling space three vertically in FIG. 8.

Claims (7)

1. 一种基于TIN耦合的地上下无缝集成三维空间建模方法。 A seamless integration TIN three-dimensional modeling method based on coupling up and down. 其特征在于,该方法包括:分别对地形、地上建筑和地下地层进行建模;然后通过其公共几何模型——约束Delaimay三角网(⑶-TIN)将上述模型两两集成起来;进而分别建立地上建筑与地形、地下地层与地形的几何缝集成空间数据模型;再以地形CD-TIN为公共面,将地上建筑与地形、 地下地层与地形的两种集成模型进行几何无缝集成,形成一种含地上下集成拓扑关系的三角形集合(Topological Triangle kts,TTS),实现对地上下的几何无缝集成建模。 Wherein, the method comprising: each of the terrain, buildings and ground modeling subterranean formation; followed by its common geometric model - constraint Delaimay triangulation (⑶-TIN) to integrate the above model twenty-two; further ground are established building and the terrain, the terrain of the subterranean formation and seamless integration of spatial geometric model data; then topographic CD-TIN is a common plane, the ground floor geometric seamlessly with two ensemble terrain, and topography of the subterranean formation to form a vertically integrated collection of triangles containing topological relations (topological triangle kts, TTS), seamless integration of the modeling of the geometry of the up and down.
2.根据权利要求1所述的地上下无缝集成三维空间建模方法,特征在于其核心空间数据模型CSG+CD-TIN+GTP。 The seamless integration of three-dimensional modeling method according to a vertical, characterized in that the core Claim Data Model CSG + CD-TIN + GTP.
3.根据权利要求1所述的带有拓扑结构的三角形集合(TTS),其特征在于:不同的空间数据模型均由最基本的几何构模元素点、线、三角形组成。 The triangle with the topology of claim 1 set (the TTS), characterized in that: different spatial data models by the basic geometry of the mold element points, lines, triangles. 无论采用何种模型进行建模,最终均要落脚到点要素上;而要表达一个面,其“最小逻辑元”为三角形;上升到体,其最小逻辑单元为四面体。 Regardless of the model using the model, ultimately have to be settled on a feature point; and a face to express that "the smallest logical element" triangular; body rises to its minimum logical unit tetrahedron. 因此,若想表达体结构,可以抽象为四面体、六面体或GTP的集合,也可抽象为B-Rep模型及其他模型,但都是以三角形为其基本的面元要素。 Therefore, to expression of the structure can be abstracted as set tetrahedron, hexahedron or GTP also be abstracted as B-Rep model and other models, but they are substantially triangular plane as its cell element. 因此,从“面”这一层出发选择三角形作为集成模型的“最小逻辑元”,配以合理的数据结构来表达拓扑关系,实现不同体模型的统一表达,从而解决不同模型间的关联和转换问题。 Thus, the "plane" as this layer as triangles departure "smallest logical element" integrated model, a data structure with a reasonable expression topology, unified body express different models, so as to solve the associated conversion between different models and problem. 如: ⑶-TIN即为一种典型的含有拓扑关系的三角形集合模型,其模型可由TTS表达。 Such as: ⑶-TIN triangle that is a typical set of models containing the topology, the model may be expressed TTS.
4.根据权利要求1所述的地上建筑与地形集成,其特征在于:以地上建筑的底面轮廓多边形为约束,参与构建地形CD-TIN,地上建筑的几何位置信息与地形几何信息相融合,构建出两者统一的地形几何界面TTS,从而实现地面实体与地形的无缝集成。 The floor construction according to claim 1 integrated with the terrain, characterized in that: the bottom surface of polygonal contour ground floor constraints involved in building terrain CD-TIN, the geometrical position information of the terrain geometry ground floor fusion construct both the unity of terrain geometry interface TTS, enabling seamless integration entity with ground terrain.
5.根据权利要求1所述的地形与地层集成,其特征在于:基于钻孔数据以GTP构建地下空间实体模型,将钻孔孔口数据作为约束参与构建地形CD-TIN,地下地层的几何位置信息与地形几何信息相融合,构建出两者统一的地形几何界面TTS,实现地下地层与地形的无缝集成。 The topography of the formation of the integrated according to claim 1, wherein: based on the drilling data to construct underground space GTP solid model, the constraints involved in drilling an aperture constructed topographic data as a CD-TIN, the geometric position of the subterranean formation topographical information and geometry information integration, constructed of both the TTS uniform topographic geometrical interface, seamless integration of the subterranean formation and topography.
6.根据权利要求1所述的三层空间无缝集成,其特征在于:地形是三层空间集成的纽带,地上建筑的底面轮廓多边形和地层钻孔孔口均作为几何约束共同参与构建地形⑶-TIN,构建出三者统一的地形几何界面TTS,进而实现了三层空间的⑶-TIN无缝集成。 6. The three-space according to claim 1 seamlessly integrated, characterized in that: the terrain is three-space integration link, the ground floor and the bottom surface of polygonal contour formation drilling apertures are constructed as a topographic geometrical constraints participate ⑶ -TIN, constructed terrain geometry of the three unified interface TTS, so as to realize the space of three ⑶-TIN seamless integration.
7.根据权利要求1所述的地上下无缝集成三维空间建模方法,其特征在于建模步骤包括:(1)数据预处理:包括地上、地形及地下数据的采集、校验、几何边界缝隙的检测,以及初始的集成与融合处理。 1 according to the seamless integration of vertical three-dimensional modeling method as claimed in claim, characterized in that modeling step comprises: (1) pre-processing data: including the ground, and the ground terrain data collection, validation, geometric boundaries detection slits, and the initial integration and fusion. (2)无缝集成建模:首先,读取地面采样点数据及钻孔孔口数据进行地形与地层的集成建模,构建起地形与地质体的无缝集成模型;然后,进行地上目标与地形的集成建模,先建立起地上目标的三维模型,再将地上目标底边轮廓点作为约束更新地形模型。 (2) Seamless integration model: First, the dot data is read and drilling ground sample aperture integrate the data with the formation terrain modeling, build seamless integration topographic and geological body model; Then, the ground and the target integrated modeling terrain, to build three-dimensional model of the target on the ground, and then update the terrain model ground target bottom contour point as a constraint. 从而建立起地上目标、地形及地质体的无缝集成模型。 Seamless integration model in order to establish the ground target, topography and geological body. (3)基于三者统一的TTS,将建模结果数据进行集成,构建起标准化的模型数据库。 (3) based on the organic unity of the TTS, the modeling results data integration and build model database normalization. (4)基于属性数据及模型数据,进行相关专业计算与应用分析。 (4) based on the attribute data and model data, related to professional computing and application analysis.
CN2009102101877A 2009-10-30 2009-10-30 TIN coupling-based overground/underground seamless integrated three-dimensional space modeling method CN102054292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009102101877A CN102054292A (en) 2009-10-30 2009-10-30 TIN coupling-based overground/underground seamless integrated three-dimensional space modeling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009102101877A CN102054292A (en) 2009-10-30 2009-10-30 TIN coupling-based overground/underground seamless integrated three-dimensional space modeling method

Publications (1)

Publication Number Publication Date
CN102054292A true CN102054292A (en) 2011-05-11

Family

ID=43958576

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009102101877A CN102054292A (en) 2009-10-30 2009-10-30 TIN coupling-based overground/underground seamless integrated three-dimensional space modeling method

Country Status (1)

Country Link
CN (1) CN102054292A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103279988A (en) * 2013-06-06 2013-09-04 天津城市建设学院 Virtual city overground space and underground space integrated 3D modeling method
CN103473428A (en) * 2013-09-22 2013-12-25 中测新图(北京)遥感技术有限责任公司 Method and device for analyzing space of mine
CN103514631A (en) * 2013-10-21 2014-01-15 重庆市勘测院 Gridding type parallel construction method for three-dimensional geological model based on massive borehole data
CN103871101A (en) * 2013-12-19 2014-06-18 中冶沈勘工程技术有限公司 Foundation pit and geologic body model seamless integration method based on three-dimensional Boolean operation
CN103886032A (en) * 2014-02-27 2014-06-25 上海九运通用软件有限公司 Geographic information model and building information model integrated associated index component method
CN105022910A (en) * 2015-04-23 2015-11-04 北京建筑大学 Access method of topological element of three-dimensional CSG-BRep (Constructive Solid Geometry-Boundary Representation) model
CN105354345A (en) * 2014-06-18 2016-02-24 星际空间(天津)科技发展有限公司 Real-time browsing method for three-dimensional underground space full-element model
CN105761309A (en) * 2014-12-16 2016-07-13 高德软件有限公司 Method and device for processing seam of digital terrain model
CN105989198A (en) * 2015-01-29 2016-10-05 中交宇科(北京)空间信息技术有限公司 BIM-based (building information modeling based) road parametric auto-modeling method and system
CN106355640A (en) * 2016-08-26 2017-01-25 广州市城市规划勘测设计研究院 Ground-underground three-dimensional integrated space processing method and system
CN106780749A (en) * 2016-12-02 2017-05-31 中国科学院武汉岩土力学研究所 Surface model construction method based on constraint DelaunayTIN interpolation algorithms
CN106814392A (en) * 2015-11-27 2017-06-09 中国石油化工股份有限公司 The velocity modeling method in three-dimensional secondary closely plast fusion face
CN109472866A (en) * 2018-10-17 2019-03-15 四川省地质工程勘察院 A kind of modeling method of big geology Building Information Model

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103279988A (en) * 2013-06-06 2013-09-04 天津城市建设学院 Virtual city overground space and underground space integrated 3D modeling method
CN103473428A (en) * 2013-09-22 2013-12-25 中测新图(北京)遥感技术有限责任公司 Method and device for analyzing space of mine
CN103473428B (en) * 2013-09-22 2017-04-05 中测新图(北京)遥感技术有限责任公司 Method and a device for analyzing a space of a mine
CN103514631A (en) * 2013-10-21 2014-01-15 重庆市勘测院 Gridding type parallel construction method for three-dimensional geological model based on massive borehole data
CN103514631B (en) * 2013-10-21 2016-07-06 重庆市勘测院 Magnanimity three-dimensional geological model grid type parallel constructing method based on borehole data
CN103871101A (en) * 2013-12-19 2014-06-18 中冶沈勘工程技术有限公司 Foundation pit and geologic body model seamless integration method based on three-dimensional Boolean operation
CN103886032A (en) * 2014-02-27 2014-06-25 上海九运通用软件有限公司 Geographic information model and building information model integrated associated index component method
CN105354345A (en) * 2014-06-18 2016-02-24 星际空间(天津)科技发展有限公司 Real-time browsing method for three-dimensional underground space full-element model
CN105354345B (en) * 2014-06-18 2019-05-14 星际空间(天津)科技发展有限公司 A kind of three-dimensional underground space full feature model real-time browsing method
CN105761309B (en) * 2014-12-16 2019-02-05 高德软件有限公司 A kind of method and device handling digital terrain model seam
CN105761309A (en) * 2014-12-16 2016-07-13 高德软件有限公司 Method and device for processing seam of digital terrain model
CN105989198A (en) * 2015-01-29 2016-10-05 中交宇科(北京)空间信息技术有限公司 BIM-based (building information modeling based) road parametric auto-modeling method and system
CN105989198B (en) * 2015-01-29 2019-10-25 中交宇科(北京)空间信息技术有限公司 Highway parametrization method for automatic modeling and system based on BIM
CN105022910B (en) * 2015-04-23 2017-11-17 北京建筑大学 A kind of access method of the topology element of three-dimensional CSG BRep models
CN105022910A (en) * 2015-04-23 2015-11-04 北京建筑大学 Access method of topological element of three-dimensional CSG-BRep (Constructive Solid Geometry-Boundary Representation) model
CN106814392A (en) * 2015-11-27 2017-06-09 中国石油化工股份有限公司 The velocity modeling method in three-dimensional secondary closely plast fusion face
CN106814392B (en) * 2015-11-27 2018-10-30 中国石油化工股份有限公司 The velocity modeling method in three-dimensional secondary closely plast fusion face
CN106355640A (en) * 2016-08-26 2017-01-25 广州市城市规划勘测设计研究院 Ground-underground three-dimensional integrated space processing method and system
CN106780749A (en) * 2016-12-02 2017-05-31 中国科学院武汉岩土力学研究所 Surface model construction method based on constraint DelaunayTIN interpolation algorithms
CN109472866A (en) * 2018-10-17 2019-03-15 四川省地质工程勘察院 A kind of modeling method of big geology Building Information Model

Similar Documents

Publication Publication Date Title
Wu et al. An approach to computer modeling and visualization of geological faults in 3D
Biljecki et al. An improved LOD specification for 3D building models
Kaufmann et al. Reprint of “3D geological modelling from boreholes, cross-sections and geological maps, application over former natural gas storages in coal mines”[Comput. Geosci. 34 (2008) 278–290]
CN100501773C (en) Highway measuring and setting method based on three-dimensional airborne LIDAR
CN101630419B (en) Structuring method for three-dimensional visualizing system of urban synthesis pipeline network
EP2447916A1 (en) Block model constructing method for complex geological structures
de Kemp 3-D visualization of structural field data: examples from the Archean Caopatina Formation, Abitibi greenstone belt, Québec, Canada
Gong et al. Three-dimensional modeling and application in geological exploration engineering
CN100465998C (en) Method for finding mine with cubic forecast model based on three-dimensional modeling
CN101777189B (en) Method for measuring image and inspecting quantity under light detection and ranging (LiDAR) three-dimensional environment
CN101515372B (en) Visual analysis and forecasting method based on virtual geological model
CN101906965B (en) Technology for identifying and analyzing stratums in VR (Virtual Reality) geological environment
CN102156779A (en) Subsurface flow simulating and predictive analysis method
CN102609986B (en) Ore body modeling system in digital mine and modeling and detecting method of ore body modeling system
CN102750739A (en) Construction method of three-dimensional geologic model
Ming et al. GSIS: A 3D geological multi-body modeling system from netty cross-sections with topology
CN100478996C (en) Three dimension uniform model construction method of water conservancy hydropower engineering geological information
Zhu et al. Building 3D solid models of sedimentary stratigraphic systems from borehole data: An automatic method and case studies
CN101051076B (en) Mobile space data collection and processing and publishing method
CN101154313A (en) Three-dimensional simulation digital information navigation channel system and its implementing method
CN104766366A (en) Method for establishing three-dimensional virtual reality demonstration
CN102609782A (en) Optimization method of simultaneous harvest and reclamation opportunity based on mining subsidence simulation and second ploughing rate
Mallison et al. Unstructured cut-cell grids for modeling complex reservoirs
CN101882171B (en) Method for fast establishing interactive tunnel and wall rock body three-dimensional models
CN103500468B (en) Based on the space curved surface method for reconstructing of boundary constraint

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)