CN102045020B - Method for detecting position of rotor of permanent magnet motor - Google Patents

Method for detecting position of rotor of permanent magnet motor Download PDF

Info

Publication number
CN102045020B
CN102045020B CN2011100246328A CN201110024632A CN102045020B CN 102045020 B CN102045020 B CN 102045020B CN 2011100246328 A CN2011100246328 A CN 2011100246328A CN 201110024632 A CN201110024632 A CN 201110024632A CN 102045020 B CN102045020 B CN 102045020B
Authority
CN
China
Prior art keywords
back emf
axis
rotor
frequency
filter
Prior art date
Application number
CN2011100246328A
Other languages
Chinese (zh)
Other versions
CN102045020A (en
Inventor
叶林华
邹积浩
Original Assignee
东元总合科技(杭州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东元总合科技(杭州)有限公司 filed Critical 东元总合科技(杭州)有限公司
Priority to CN2011100246328A priority Critical patent/CN102045020B/en
Publication of CN102045020A publication Critical patent/CN102045020A/en
Application granted granted Critical
Publication of CN102045020B publication Critical patent/CN102045020B/en

Links

Abstract

本发明为了解决现有转子位置检测方法复杂、且依赖电机参数的不足,提供一种基于永磁电机反电势检测转子位置的方法。 In order to solve the conventional rotor position detection method is complicated, and depends on the motor parameters insufficient, there is provided a permanent magnet motor based on the rotor position detection method BEMF. 该方法,对永磁电机坐标系下的轴反电势和轴反电势进行滤波后,计算相移后的转子位置,再根据预定的滤波频率和预定的滤波次数对转子相位的影响,获得转子的实际位置。 The method, after the shaft in a permanent magnet motor coordinates back EMF and the shaft back EMF filtering calculates the rotor position phase shift, and then under the influence predetermined filter frequency and a predetermined number of filtering of the rotor phase obtained rotor The actual location. 本发明可有效地滤除去反电势计算结果中的各种杂信,以保留真实信号,使得估计到的转子位置更加准确和稳定,在电机重要参数发生较大变化或者电机参数只能大致确定范围的情况下,估计到的转子位置无需额外校验和修正,大大提高观测器的鲁棒性,方便工程应用与实现。 The present invention can be effectively removed by filtration BEMF calculate various results heteroaryl letter, to retain the true signal, the estimated rotor position such that the more accurate and stable, large changes in the motor or motor parameters only important parameter in determining the scope substantially under the circumstances, it is estimated rotor position without additional verification and correction, greatly improve the robustness of the observer, application and implementation of engineering convenience.

Description

永磁电机转子位置检测方法 The permanent magnet rotor position detection method

技术领域 FIELD

[0001] 本发明涉及电机控制技术领域,更具体地说,涉及一种永磁电机转子位置检测方法。 [0001] The present invention relates to motor control technology, and more particularly, to a method for detecting a rotor position of a permanent magnet motor.

背景技术 Background technique

[0002] 永磁电机在运行时需要检测转子的位置来实现绕组的换向,这是对永磁电机进行控制的基础,对永磁电机转子位置检测的准确性直接影响永磁电机的控制效果。 [0002] The permanent magnet motor to be detected during operation of the rotor position to achieve the commutating winding, which is the basis for controlling the permanent magnet motor, the permanent magnet rotor position detection accuracy of the motor directly affects the control performance permanent magnet motor . 由于转子位置传感器故障率较高,会降低整个系统的可靠性,永磁电机转子位置的检测已经从传感器检测过渡到无传感器估计的阶段。 Since the rotor position sensor high failure rate, reduces the reliability of the entire system, detecting the position of the rotor of the transition has been detected from the sensor sensorless estimation stage.

[0003] 现有技术中,无位置传感器永磁电机的控制方法中,已提出许多方法来估计电机转子的位置和速度,例如: [0003] In the prior art method of controlling the permanent magnet motor without position sensor have been proposed many methods for estimating the position and speed of the rotor of the motor, for example:

[0004] I、采用基于电机的精确模型法,该方法虽计算简单,动态响应快,但速度计算严重依赖于电机参数,没有误差校正环节,因而难以保证调速系统抗干扰性,甚至可能出现不稳定的情况;· [0004] I, accurate model of the motor based method, although the calculation method is simple, fast dynamic response, but is heavily dependent on the motor speed calculation parameters, no error correction part, it is difficult to ensure the anti-interference control system, and may even occur unstable; ·

[0005] 2、采用凸极跟踪法,该方法可应用于较宽的速度范围甚至在低速也可取得较好的效果,但是速度的估计比较依赖电机的凸极效应; [0005] 2, the tracking method using the salient poles, the method may be applied to a wide range of speeds even better results can be obtained at a low speed, but the speed is estimated more dependent effect pole motor convex;

[0006] 3、卡尔曼滤波器法,算法复杂,参数调节困难; [0006] 3, the Kalman filter method, algorithm complexity, difficult to adjust the parameters;

[0007] 4、神经网络法;估算方法相对比较复杂,使得结构的调节和参数的设计都比较困难。 [0007] 4, neural network method; estimation method is relatively complex, and adjusting the design parameters of such a configuration are more difficult.

[0008] 总之,上述方法要么严重依赖电机参数,一旦电机参数发生较大的变化(例如空调压缩机等)将对转子位置估计产生较大误差;要么算法复杂,参数调节比较繁锁而困难,上述方法都极易受外界条件影响,适应性较差。 [0008] In summary, the method described above or heavily dependent motor parameters, the rotor position will change once the larger (e.g., air conditioning compressor, etc.) have a greater motor parameters estimation error occurs; or algorithm complexity, parameter adjustment cumbersome and difficult comparison, the above methods are highly vulnerable to external conditions, poor adaptability.

发明内容 SUMMARY

[0009] 本发明的目的是为了解决现有技术中存在的缺陷,提供一种基于永磁电机反电势检测转子位置的方法,该方法通过简单的算法即可准确的检测转子的位置,在电机参数发生较大变化或者电机参数只能大致确定范围的情况下,也不影响转子位置的检测,从而保证整个系统的稳定运行。 [0009] The object of the present invention is to solve the drawbacks present in the prior art, there is provided a method of detecting permanent magnet motor back EMF based on the rotor position, the method can accurately detect the position of the rotor by a simple algorithm, the motor case of large changes in the parameter or parameters of the motor can only roughly determine the range, it does not affect the detection of the rotor position, so as to ensure the stable operation of the entire system.

[0010] 本发明所解决的技术问题可以采用以下技术方案来实现: [0010] The problem addressed by the present invention technical problem is achieved by the following technical solution:

[0011] —种永磁电机转子位置检测方法,其特征在于:对永磁电机fl岁坐标系下的α轴反电势和斧轴反电势分别进行相同预定滤波次数,对应次采用相同预定滤波频率的一阶滤波,根据滤波后的《轴反电势和於轴反电势计算相移后的转子位置,再根据预定的滤波频率和预定的滤波次数对转子相位的影响,获得转子的实际位置。 [0011] - species rotor of the position detecting method, comprising: BEMF of α axis in the permanent magnet motor fl years coordinate system and the ax axis BEMF same predetermined frequency and filtering, respectively, the corresponding times using the same predetermined filter frequency the first-order filter, calculates a rotor position of the phase shift from the "axis BEMF filtered and the shaft back EMF, then under the influence predetermined filter frequency and a predetermined number of filter rotor phase, to obtain the actual position of the rotor.

[0012] 本发明中,转子相关的¥坐标系下的反电势通过相同预定滤波次数,对应次采用相同预定滤波频率的一阶滤波,幅值为原幅值的1/3至2/3。 [0012] In the present invention, the associated back EMF at the rotor coordinates ¥ predetermined number of times by the same filter, the filter corresponding to a predetermined time using the same frequency first-order filter, the amplitude is 1/3 to 2/3 of the original amplitude. [0013] 本发明中,相移后转子位置的角度,为滤波后的於轴反电势与α轴反电势比值的反正切值。 [0013] In the present invention, the angular position of the rotor phase shift, a ratio of the back EMF to the axis of the counter electromotive potential and filtered arctangent axis α.

[0014] 本发明中,在整个控制过程中,当a轴反电势和P轴反电势频率发生变化时,每次一阶滤波所采用的预定滤波频率与α轴反电势和彦轴反电势频率进行等比例变化。 [0014] In the invention, the entire control process, when the a-axis counter electromotive back EMF frequency potential and a P-axis is changed, every time an order predetermined filter frequency α axis filtering employed EMF Kazuhiko axis BEMF frequency proportional change.

[0015] 本发明中,所述滤波频率为—坐标系下反电势的截止频率,当所述滤波频率为句?坐标系下反电势的截止频率时,所述预定滤波次数为2次或3次。 [0015] In the present invention, the frequency of the filter - the cutoff frequency of the back EMF coordinate system, when the filter frequency is a period when the cutoff frequency of the coordinate system back EMF, the predetermined number of times filter was 2 times or 3? times.

[0016] —种永磁电机转子位置检测方法,其特征在于:将永磁电机坐标系下的O:轴反电势和於轴反电势进行离散化后,再对α轴反电势和於轴反电势进行相同预定滤波次数,对应次采用相同预定滤波系数的一阶滤波,根据滤波后的α轴反电势和於轴反电势计算相移后的转子位置,再根据预定的滤波系数和预定的滤波次数对转子相位的影响,获得每一离散时刻的转子位置。 [0016] - species rotor of the position detecting method, wherein: the O under permanent magnet motor coordinates: axis BEMF and a rear shaft BEMF is discretized, and then the α-axis back EMF and the shaft trans the potential for the same predetermined filtering frequency corresponding to the secondary first order filter same predetermined filter coefficient, the back EMF the α axis filtered and the shaft back EMF calculates the rotor position phase shift, and then in accordance with predetermined filter coefficients and a predetermined filter Effect on the frequency and phase of the rotor, the rotor position is obtained for each discrete time.

[0017] 本发明中,转子相关的句?坐标系下的反电势通过相同预定滤波次数,对应次采用相同预定滤波系数的一阶滤波后,幅值为原幅值的1/3至2/3。 After the [0017] present invention, the rotor associated sentence? BEMF coordinate system at a predetermined number of times by the same filter, using a first-order filter corresponding to the same time a predetermined filter coefficient, the magnitude of the amplitude of the original 1/3 to 2 / 3.

[0018] 本发明中,相移后转子位置的角度,为滤波后的岁轴反电势与α轴反电势比值的反正切值。 [0018] In the present invention, the phase angle of the rotor after the position of shift shaft aged anti electrical potential and the filtered back-EMF α-axis arctangent of the ratio.

[0019] 本发明中,在整个控制过程中,当α轴反电势和於轴反电势频率发生变化时,每次一阶滤波所采用的预定滤波系数与α轴反电势和於轴反电势频率进行等比例变化。 [0019] In the present invention, the entire control process, when the α-axis back EMF and the shaft back EMF frequency is changed, every time an order predetermined filter coefficients α shaft filter employed back EMF and the shaft BEMF frequency an equal proportion changes.

[0020]本发明中,所述滤波系数为2求/(/_ + 23ΐΟ,其中,尤为α轴反电势和彦轴反电 [0020] In the present invention, the filter coefficients are seeking 2 / (/ _ + 23ΐΟ, wherein the back EMF is particularly α-axis counter electromotive shaft Kazuhiko

势截止频率,fm为控制算法频率,当所述滤波系数为23C/C/ft+2^)时,所述预定滤波次数为2次或3次。 Potential cutoff frequency, FM frequency control algorithm, when the filter coefficients of 23C / C / ft + 2 ^), filtering the predetermined number of times is 2 or 3 times.

[0021] 本发明通过对反电势进行预定滤波次数和预定滤波频率的一阶滤波,可有效地滤除去反电势计算结果中的各种杂信,以保留真实信号,使得估计到的转子位置更加准确和稳定。 [0021] The present invention, by a first-order filtering BEMF predetermined frequency filter and the predetermined filter frequency, can be effectively removed by filtration BEMF is calculated miscellaneous letter results to preserve the true signal, such that the estimated rotor position more accurate and stable.

[0022] 同时,本发明的方法对电机重要参数(电阻R、电感L)并不敏感,在电机重要参数发生较大变化或者电机参数只能大致确定范围的情况下,估计到的转子位置无需额外校验和修正,即能完全满足电机控制的需求,大大提高观测器的鲁棒性。 [0022] Meanwhile, the method of the present invention the important parameters of the motor (resistance R, inductance L) is not sensitive to the case where large variation occurs in the motor or motor parameters substantially only important parameter in determining the scope of the estimated rotor position without additional verification and correction, which can fully meet the needs of motor control, greatly improving the robustness of the observer.

[0023] 正基于此,本发明尤其适用在工况当恶劣的场所(如空调等)中应用,尤其当预定 [0023] based on this, the present invention is particularly useful in harsh working conditions when the properties (e.g., air conditioning, etc.) applications, especially when a predetermined

的滤波频率采用反电势截止频率时,每次滤波转子相位角度滞后f ,简化了计算过程,大大 When using the frequency filter cutoff frequency back EMF, the phase angle of each rotor lag filter F, to simplify the calculation process, greatly

4 4

方便工程应用与实现。 Easy application and implementation of the project.

附图说明 BRIEF DESCRIPTION

[0024] 图I为本发明方法下α轴反电势波形、滤波后α轴反电势波形、计算的相移的转子位置角波形以及修正后的转子实际位置角波形的示意图。 [0024] Figure I a schematic α-axis back-EMF α-axis waveform of the back EMF waveform, filtering, phase shift waveform and the actual rotor position angle of the rotor position after correction waveform calculation method under the present invention.

[0025] 图2为计算的相移的转子位置角波形以及修正后的转子实际位置角波形的放大示意图。 [0025] FIG. 2 is an enlarged schematic view of the rotor position angle and the actual waveform of the waveform of the rotor position angle after correction calculated phase shift.

[0026] 图3为先计算转子位置角再对转子位置角进行滤波,α轴反电势波形、计算的转子位置角波形、对转子位置角波形进行低频滤波和高频滤波后再修正的转子位置角波形的示意图。 [0026] FIG. 3 is first calculated rotor position angle of the rotor position angle and then filtered, [alpha] axis back EMF waveform, the waveform is calculated rotor position angle, the position angle of the rotor after waveform correction low frequency filtering and high-frequency filtering of the rotor position angle schematic waveform.

[0027] 图4为计算的转子位置角波形、对转子位置角波形进行低频滤波和高频滤波后再修正的转子位置角波形的放大示意图。 [0027] FIG. 4 is a waveform calculated rotor position angle, an enlarged view of the waveform of the rotor position angle and a high frequency filter for filtering the low-frequency rotor position angle after correction waveform.

具体实施方式 Detailed ways

[0028] 为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体图示,进一步阐述本发明。 [0028] In order to achieve the technical means of the present invention, the creation of features, to achieve the purpose and effect readily apparent appreciated that specifically illustrated below with reference to further illustrate the invention.

[0029] 本发明的主旨在于解决现有技术中采用无传感器控制永磁电机,永磁电机转子位置检测方法繁琐,对电机参数(电阻R、电感L)特别敏感的问题,提供一种基于反电势的永磁电机转子位置检测方法。 [0029] The gist of the present invention is to solve the prior art sensorless control of permanent magnet motors, permanent magnet motor rotor position detection method cumbersome, motor parameters (resistance R, inductance L) particularly sensitive, there is provided a counter-based rotor position detection method of electrical potential permanent magnet motor.

[0030] 如背景技术所述,检测永磁电机转子位置的方法有很多,它们有各自的优点也存在相应的缺点,除了背景技术中提及的方法,检测永磁电机转子位置还可以通过检测电机的反电势而间接获取,比如通过检测永磁电机某一相反电势的过零点,再延迟一定时常进行换向。 [0030] As described in the background, there are many ways of detecting rotor position of the permanent, they have their own respective advantages and disadvantages exist, in addition to the method mentioned in the background art, the permanent magnet rotor is detected by detecting the position may also be motor back EMF is indirectly acquired, such as a permanent magnet motor by detecting a zero crossing of an opposite potential, and then must often be delayed commutation. 这样,一方面无法实时检测转子的位置,控制精度较低,另一方面电机运行一段时间后会出现比较大的误差,需要进行校验和修正。 Thus, one can not immediately detect the position of the rotor, the control accuracy is low, on the other hand there will be a relatively large error in the motor is running for some time, the checksum needs to be corrected.

[0031] 本发明则考虑在进行坐标变换后,在永磁电机■^坐标系及dq坐标系下,α轴反电势和於轴反电势与其他参数的关系,对α轴反电势和於轴反电势进行计算,间接获得α轴反电势和及轴反电势后再检测永磁电机的转子位置。 After [0031] The present invention is considered performing coordinate transformation, in the permanent magnet motor ■ ^ coordinate system and the dq coordinate system, [alpha] axis back EMF and the shaft inverse relationship with other parameters of the potential, the back EMF of the [alpha] axis and the shaft BEMF calculated indirectly α-axis and the shaft and the back EMF is detected after the back EMF of the permanent magnet motor rotor position. 对于本领域的技术人员,永磁电机的ABC坐标系、G於坐标系以及dq坐标系的定义,各坐标系下每个参数的含义,任意两个坐标系之间的变换方法都是熟知的,此处不对上述内容进行累述。 For ABC coordinates skilled in the art, the permanent magnet motor, G of the coordinate system and the dq coordinate system is defined, the meaning of each parameter in each coordinate system, transform between any two coordinate systems are well known , where the above-mentioned contents are not tired.

[0032] 根据电机方程和坐标变换规则,有以下关系: [0032] The motor equations and the coordinate transformation rules, has the following relationship:

[0033] [0033]

κ=κ -ίκL- κ = κ -ίκL-

[0034] [0034]

EpWL -ίκ +p^y*^ EpWL -ίκ + p ^ y * ^

[0035]其中,为ff轴电压,%为於轴电压,4为α轴电流,冬为於轴电流,"fiL«为α轴 [0035] wherein, by ff-axis voltage, voltage per cent of the shaft, α is a 4-axis current, as in winter-axis current, "fiL« axis as α

反电势,为於轴反电势,J3为永磁电机内阻,^«为^轴电感,4为轴电感,P为微分算子,II为转子电角速度。 BEMF, the shaft is back EMF, J3 is a permanent magnet motor resistance, ^ «^ is the axis inductance, the inductance axis 4, P is a differential operator, II of the rotor electrical angular velocity. 通过上述可检测量,可间接的计算坐标系下的α轴反电势和 By the above-described detectable amount, α axis in the coordinate system can be calculated indirectly BEMF and

卩轴反电势,而任意时刻转子的位置角度。 Jie shaft back EMF and the position angle of the rotor at any time.

P K P K

[0036] 但在实际的工程应用中,€1轴反电势和於轴反电势的计算结果存在很多杂信,如硬件电路杂信,取样电路干扰,计算误差,数值精度等问题,使得α轴反电势I和芦轴反电势士的计算结果不准确,同时,在一些工况恶劣的场所(例如空调等),电机参数(电阻R、电感L)会随着温度或者工作环境的改变而发生变化,或者电机参数本来就只能大致确定范围,使得计算的α轴反电势和於轴反电势会产生严重的局部振荡(图I对α轴反电势进行了示意),上述的问题必然会影响了转子位置的检测。 [0036] However, in practical engineering applications, €. 1 axis back EMF and the calculation result to the axis of the back EMF is present in many hybrid channel, such as a hardware circuit heteroaryl channel, a sampling circuit interference, calculation error, the numerical accuracy problems, such α-axis the results BEMF I and reed shaft back EMF persons inaccurate, while in harsh some conditions places (e.g. air conditioning, etc.), the motor parameters (resistance R, inductance L) will change with temperature or working environment occurs change, or motor parameters already can only roughly determine the range so that the calculated α-axis back EMF and the shaft back EMF will have serious local oscillation (FIG I to α-axis back EMF is schematically) above is bound to impact detecting the rotor position.

[0037] 本发明要解决的问题是提供一种永磁电机转子位置的检测方法,第一,解决反电势计算结果不准确,造成转子位置检测不准确的问题;第二,在保证转子位置检测准确的同时,该检测方法要对电机参数的变化不敏感,增强该方法的适用范围。 [0037] The problem to be solved of the present invention is to provide a method for detecting the position of the rotor of the first to addressing the potential calculation inaccurate, resulting in detecting rotor position is not accurate; secondly, to ensure that the rotor position detection the exact same time, the detection method is insensitive to changes in motor parameters, to enhance the scope of application of the method.

[0038] 针对前述的问题,本发明首先对根据其他参数计算的轴反电势和於轴反电势进行相同预定次数的一阶滤波。 [0038] For the above-described problems, the present invention first back-emf and first-order filter in the same predetermined number of times the back EMF of the axis of the shaft calculated based on other parameters. 参见图1,由于於轴反电势与α轴反电势的波形相似,因此图I中仅对《C轴反电势进行了示意,由图I可知一阶滤波的目的是去除《C轴反电势(於轴反电势)计算结果中的杂信,使得滤波后的α轴反电势(岁轴反电势)平滑,这样可以首先消除滤波前的α轴反电势(於轴反电势)因局部振荡导致的自身计算不准确。 Referring to Figure 1, since the shaft counter electromotive similar BEMF waveform potential and α-axis, thus in FIG. I, only the "C-axis BEMF is schematically, FIG. I found that the purpose of the first-order filter is to remove the" C-axis back EMF ( the shaft back EMF) is calculated heteroaryl letter results, so that the α-axis filtered back EMF (years axis back EMF) smooth, which can first remove the α-axis back EMF (shaft back EMF) before filtering by local oscillation caused by itself does not accurately calculate.

[0039] 根据一阶滤波环节的数学模型,幅频特性 [0039] The frequency characteristic of first-order filter part mathematical model, the web

Figure CN102045020BD00061

,相频特性我 Phase frequency characteristics I

Figure CN102045020BD00062

[0040] 设经过η次一阶滤波,滤波频率依次为為、……為,则幅频特性依次为_、、......、,相频特性依次为、ί<®2>、......、。 [0040] provided through a secondary η order filter, the filter frequency is followed, ......, for the order of the amplitude-frequency characteristic _ ,, ...... ,, followed by phase-frequency characteristics, ί <®2>, .......

[0041]总幅频特性 Sum{ 、Z(®2)、......、£(0 },即幅值共衰减了Sum{ L(P1)、 [0041] The total amplitude frequency characteristic Sum {, Z (®2), ......, £ (0}, i.e., a total attenuation of the amplitude Sum {L (P1),

£0¾)、...... A® J } O £ 0¾), ...... A® J} O

[0042] 总相频特性 [0042] The total phase frequency characteristics

Figure CN102045020BD00063

即相位共滞后了Sum{ #¢(5¾)、办2)、............K I.e., total phase lag Sum {# ¢ (5¾), run 2), ............ K

[0043] 一阶滤波所采用的滤波频率越高,滤波厂Ci轴反电势和岁轴反电势幅值衰减越 [0043] The higher-order filter a frequency of the filter used, filtering plant Ci-axis shaft years back EMF and the amplitude attenuation of the back EMF

大,滤波后ff轴反电势和於轴反电势波形越平滑,这对于消除α轴反电势和岁轴反电势局 Large, the smoother the filtered back EMF ff shaft and the shaft back EMF waveform for eliminating this potential anti-α-axis and the axis BEMF years Board

部振荡是有益的,但幅值衰减过大,会造成滤波后α轴反电势和於轴反电势幅值过小,又会 Oscillation portion is beneficial, but the amplitude attenuation is too large, it will cause the back EMF α-axis and the shaft is too small BEMF amplitude after filtering, will

降低转子位置(相移后的转子位置)的计算精度。 Reducing the rotor position (rotor position phase shift) accuracy. 因此,从α轴反电势和於轴反电势滤波后 Therefore, the back EMF from the α-axis and the shaft filtered BEMF

平滑度以及计算精度的综合考虑下,滤波后α轴反电势和於轴反电势幅值衰减到原幅值的1/3 至2/3。 Considering the accuracy and smoothness of the filtered back EMF α-axis and the axis BEMF amplitude attenuated to the original magnitude 1/3 to 2/3.

[0044] 同时,对β轴反电势和芦轴反电势进行一阶滤波后,α轴反电势和於轴反电势的相位将发生滞后,当α轴反电势和於轴反电势每次滤波均采用相同的滤波频率进行滤波 After [0044] Meanwhile, the β-axis counter electromotive back EMF potential and Lo shaft first-order filter, [alpha] axis back EMF and the shaft BEMF phase delay will occur, when the [alpha] axis back EMF and the shaft back EMF each filter average using the same filter frequency filter

时,根据滤波后的轴反电势罾和滤波后的^轴反电势jj·,通过公式 When, according to the axis of filtered back EMF seine shaft and filtered BEMF ^ jj ·, by the equation

Figure CN102045020BD00064

计算的相移后的转子位置角&,相对转子实际位置角滞后的相位才能与α轴反电势和岁 The rotor position angle of the phase-shift calculation & actual angular position of the rotor relative to the phase delay axis of the back-EMF α years and

轴反电势本身滞后的相位相同。 BEMF same shaft itself lag phase. 根据相移后转子的位置角&和α轴反电势(於轴反电势)的相位滞后即可获得转子的实际位置。 The phase shift of the rotor position angle and α & shaft back EMF (BEMF shaft) to obtain the phase delay of the actual position of the rotor.

[0045] 对于稳态运行(匀速转动)的永磁电机,转子一个转动周期内的转子位置角的波形应当为具有一定斜率的直线段,因此检测到的转子位置角的波形越接近直线段,转子位置检测的精度也相对较高。 [0045] For steady state operation (constant speed rotation) of the permanent magnet motor, a rotor position angle of the rotational waveform of the rotor within the cycle should be linear segment having a slope, and therefore the waveform of the detected rotor position is closer to a straight line segment, accuracy of the rotor position detection is relatively high.

[0046] 再参见图I和图2,通过对α轴反电势和岁轴反电势先行进行滤波,当滤波后轴反电势和戶轴反电势足够平滑时,转子一个转动周期计算的相移后的转子位置角波形将非常接近具有一定斜率的直线,再根据α轴反电势(於轴反电势)的相位滞后,修正后的转子实际位置角波形由于仅仅是对相移后的转子位置角波形进行相移后获得的,也将非常接近具有一定斜率的直线。 [0046] Referring again to Figures I and 2, is filtered first by the back EMF of the back EMF and the age of the axis α-axis, when the filter rear axle counter electromotive BEMF sufficiently smooth potential and households shaft, a rotor rotational period calculated phase shift after straight rotor position angle waveform very close to having a certain slope, and then (the shaft back EMF) of the phase delay in accordance with α-axis BEMF, the actual position of the triangular waveform of the rotor after correction since only rotor position angle of the waveform after the phase shift after phase shifting is obtained, but also very close to a straight line having a certain slope.

[0047] 再参见图3、图4,如果直接用计算的α轴反电势和於轴反电势计算转子的位置, 由于α轴反电势和於轴反电势存在的局部振荡,计算得到的转子位置角的波形尽管整体上呈现具有一定斜率的直线状,但转子位置角同样存在局部振荡,转子位置的检测精度不高。 [0047] Referring again to FIG. 3, FIG. 4, if the α-axis directly calculated BEMF and the shaft back EMF calculated position of the rotor, due to the α-axis back EMF and the shaft anti-local oscillation presence of potential, calculate a rotor position obtained Although the angle of the waveform exhibits a linear slope as a whole has a certain, but there are also the rotor position angle local oscillator, the detection accuracy of the rotor position is not high. 此时,如果考虑对转子位置角波形进行一阶滤波,再根据转子位置角相移修正后获得转子位置角波形(图3、图4中已修正),低频滤波保证转子位置角波形尽可能不失真的情况下(实际上转子位置角波形也已经未通过定义的转子位置零角度,转子位置角波形已经失真了),无法消除转子位置角存在的局部振荡;高频滤波尽管可以使转子位置角波形平滑,但转子位置角波形已经严重失真,在很多时刻无法反映的转子位置。 In this case, in consideration of the waveform of the rotor position angle of first-order filter, then the rotor position angle obtained in accordance with the waveform after the phase shift correction rotor position (FIG. 3, FIG. 4 has been fixed), to ensure that the rotor position angle low frequency filtered waveform is not possible a case where distortion (waveform actually rotor position has not defined the zero angle position of the rotor by the rotor position angle of the waveform has been distorted) and can not eliminate the presence of the local oscillation angle of the rotor position; Although high frequency filtering of the rotor position angle smooth waveform, but the waveform rotor position has been severely distorted in many time does not reflect the position of the rotor.

[0048] 这说明,通过本发明的方法通过简单的处理方式,检测到的转子位置即可非常接近转子的实际位置,这将对电机控制提供良好的保证。 [0048] This shows that, by the process of the present invention, by a simple approach, the detected rotor position is very close to the actual position of the rotor, the motor control which will provide a good guarantee. 但实际上,任何方法和观测器所检测的转子位置与真实的转子位置均存在误差,在工程控制中只要误差控制在一定范围内就不会影响电机的控制,一般来说,在工程控制中认为检测的转子位置与真实的转子位置误差在3(Γ40度(电角度)便不会影响电机的控制,当然,误差越小对精密的电机控制越有利,也是工程控制所追求的方向。 But in fact, any method of rotor position observer and the detected real rotor position errors are present, as long as the error control engineering controls in a certain range does not affect the motor control, in general, in the control engineering think of the rotor position detection of the rotor position and the actual error will not affect the control of the motor 3 (Γ40 degrees (electrical angle), of course, the smaller the error more advantageous for precise motor control, but also works to control the direction pursued.

[0049] 影响转子位置检测精度的因素很多,其中电机参数(电阻R、电感L)是重要因素,尽管很多方法,例如基于电机的精确模型法,在电机参数准确时能非常精确的检测转子位置。 [0049] Many factors affect the rotor position detection precision, wherein the motor parameters (resistance R, inductance L) is an important factor, although many methods, for example, based on the precise model method of the motor, can be very accurate detection of the rotor position when the motor parameters accurately . 但电机参数在电机在运行过程中,很可能会因为温度或者工作环境的改变而发生变化,这时很多方法检测的转子位置将产生很大的误差,此时需要对检测到的转子位置就行校验或者修正,严重时甚至无法继续检测转子位置,再有甚者,电机的参数本来就只能大致确定范围,这将给转子位置检测带来很大的困难。 However, the motor parameters during operation, most likely because of a change in temperature or the working environment and changes in the motor, when the number of rotor position detection method will produce large errors, then the need for rotor position detection to the line correction inspection or correction, even when serious can no longer detect the rotor position, then there is worse, the motor parameters already can roughly determine the range, which will bring great difficulties rotor position detection. 过分依赖电机参数的转子位置检测方法,都有其局限性,在工程控制中的适用范围都很有限。 Over-reliance on motor parameters rotor position detection method has its limitations, the scope of application of control engineering are limited.

[0050]本发明采用计算α轴反电势和於轴反电势检测转子位置的方式,对电机参数的依赖较小,电机参数发生变化时,检测到的转子位置与真实的转子位置偏差也不大,大大增强了该方法的适用范围。 [0050] The present invention is by way of potential and the shaft BEMF detecting the rotor position calculated α-axis counter electromotive small dependence on the motor parameters, motor parameters change, the detected rotor position and the actual rotor position deviation is not large , greatly enhancing the scope of application of the method. 相关理由分析如下: Related reasons as follows:

[0051] 对于普通电机,(Af-Zff)非常接近于零,该项对α轴反电势和芦轴反电势的计算结果的影响基本可以忽略,前述计算β轴反电势和於轴反电势的方程可简化为: [0051] For ordinary motor, (Af-Zff) very close to zero, the impact of the calculation result α-axis counter electromotive back EMF potential and Lo shaft can be ignored, the calculated β axis BEMF and the shaft BEMF equation reduces to:

Figure CN102045020BD00081

[0054]由于α轴反电势足和斧轴反电势.的公式相同,二者又是相关的,因此从^轴 [0054] Since the α-axis and a sufficient back EMF back EMF axis AX. The formula is the same, but the two are related, so the shaft ^

反电势毛入手,分析在本发明的采用的方法下,电机参数对转子位置的影响: BEMF hair, analyzes employed in the method of the present invention, the influence parameters on the motor rotor position:

[0055] [0055]

Figure CN102045020BD00082

[0057] 其中β力转子位置角度, [0057] wherein the force of the rotor position angle β,

Figure CN102045020BD00083

为机械频率,J?为电机极对数,Afl为电机 Mechanical frequency, J? Is the number of pole pairs, Afl motor

运行中I与4的角度差。 I and 4 operation of the angular difference.

[0058] 由于《轴反电势属《的相位与转子位置角的相位差是固定的,因此我们以α轴反电势毛过零点处进行分析: [0058] As the "metal shaft back EMF" phase retardation rotor position angle is fixed, we back EMF to α-axis gross zero crossing analysis:

[0059] 令足=0,则 [0059] make enough = 0,

[0060] [0060]

[0061] [0061]

Figure CN102045020BD00084

[0062] 代入得 [0062] is substituted to give

[0063] [0063]

Figure CN102045020BD00085

[0065] 在电机=D控制下,i„与^的角度差Atf接近于零,因此: [0065] In the motor control = D, i "and the angular difference Atf ^ is close to zero, therefore:

[0066] [0066]

Figure CN102045020BD00086

[0070] [0070]

Figure CN102045020BD00091

[0071 ]再整理后得到 [0071] After further finishing to give

Figure CN102045020BD00092

[0072] 对于永磁电机,ViI 一般是馬的十倍以上,因此,Ms的微小变化,对相位的影响十 [0072] For permanent magnet motors, ViI generally ten times more than the horse, therefore, Ms small changes, the impact on the phase of ten

分有限,上式可表示为: Finite, it can be expressed as the formula:

[0073] [0073]

Figure CN102045020BD00093

[0074] [0074]

[0075] 坏表示在电机参数准确的情况下,α轴反电势足过零点处,转子的位置角。 [0075] indicates the bad motor parameters are accurate, sufficient [alpha] axis back EMF zero crossing, the rotor position angle. 上式说明,采用本发明的方法,永磁电机的其他参数对转子位置检测的结果影响很小,转子位置主要受永磁电机的rf轴电感4影响。 The type described, the method of the present invention, other parameters of the permanent magnet motor rotor position detection result has little effect, the position of the rotor 4 mainly by the influence of the rf-axis inductance of the permanent magnet motor.

[0076] 永磁电机的电机参数(电感、内阻)一般不会发生50%以上的变化,或者在任何情况下,对电机参数的估计不太可能有50%以上的误差,因此我们以电机参数正负50%误差为例,分析电机参数不准确时,对转子位置检测的影响。 Motor parameters [0076] The permanent magnet motor (inductance, resistance) is generally not more than 50% change, or, in any case, unlikely to be more than 50% of the estimated error on the motor parameters to the motor we parameter error of plus or minus 50% for example, the analysis parameters of the motor is not accurate, the impact of the rotor position detection.

[0077] 电机参数为准确参数1/2时: [0077] Motor parameters are accurate parameters 1/2:

[0078] [0078]

[0079] [0079]

Figure CN102045020BD00094

[0080] 释表示电机参数为准确参数1/2时,α轴反电势·®««过零点处,转子的位置角。 [0080] The release parameters accurately represents the motor parameter 1/2, [alpha] axis back EMF · ® «« zero crossing, the rotor position angle.

[0081] 电机参数为准确参数3/2时: [0081] Motor parameters are accurate parameters 3/2:

[0082] [0082]

Figure CN102045020BD00095

[0083] [0083]

[0084] 咚表示电机参数为准确参数3/2时α轴反电势毛过零点处,转子的位置角。 [0084] boom represents the motor parameters are accurate parameters α-axis when a potential anti-hair 3/2 zero crossing, the rotor position angle.

[0085] 分析坏-乌以及蚝-咚,判断电机参数有正负50%偏差时,检测到的转子位置与转子真实位置的偏差。 [0085] Analysis bad - and Wu Ho - boom, it is determined that the motor parameter variation of plus or minus 50%, the detected rotor position deviation of the real position of the rotor.

[0086] 引入某个压缩机的电机参数,进行分析: [0086] introduction of a compressor motor parameters were analyzed:

[0087] [0087]

Figure CN102045020BD00096

[0088] [0088]

[0089] [0089]

[0090] [0090]

Figure CN102045020BD00101

[0095] 这说明表示在电机参数正负50%的误差的情况下,采用本发明的方法,检测的转子位置与转子真实的位置的误差尚在10度以内,因此即使电机参数有更恶劣的变化,检测到的转子位置也能满足电机控制的需求。 [0095] This description shows the case where an error of plus or minus 50% of the motor parameters, the method of the present invention, still within 10 degrees of the rotor position detection error in actual position of the rotor, even if the motor parameters are worse changes, the detected rotor position can meet the needs of motor control. 而本法发明在电机参数准确的情况下,可精确的检测到转子位置,而在电机参数有较大误差的情况下,检测的转子位置也能满足电机控制的要求,对电机参数的依赖很小,在实际工程中,代入电机参数即可获得比较准确的转子位置,基本无需调试。 Act invention while at the motor parameters accurately, the accurate detection of the rotor position, the motor parameters and in the case where a large error in the detected position of the rotor can be controlled to meet the requirements of the motor, the motor parameters are dependent on small, in the actual project, on behalf of the motor parameters can obtain more accurate rotor position, the basic need to debug.

[0096] 当然,本发明除非只对α轴反电势和於轴反电势进行一次一阶滤波,如果对α轴反电势和於轴反电势采用多次一阶滤波,那么每次一阶滤波所采用的预定滤波频率既可以相同的,也可以是不同的。 [0096] Of course, the present invention unless the BEMF only the α-axis and to the axis of the back EMF for a first-order filter, if the back EMF of the α-axis and the shaft back EMF using multiple first-order filter, then each time a first-order filtering filtering predetermined frequencies employed may be either the same, or may be different.

[0097] 对于本发明,当电机处于非稳态运行(电机转速不恒定)时,由于电机转速的变化会引起ί!轴反电势和彦轴反电势的频率变化,如果在整个控制过程中,保持预定的滤波频率不变的话,不同时刻,计算获得的相移后的转子位置滞后转子实际位置的角度将是不同的,这将给修正获得转子的实际位置带来极大的不便。 [0097] For the present invention, when the motor is in a non-steady-state operation (motor speed is not constant), due to changes in motor speed causes ί! Frequency change counter electromotive back EMF potential Kazuhiko shaft axis, if the entire control process, kept a predetermined constant if the filtered frequency, at different times, the phase-shifted rotor position obtained by calculation of the actual angular position of the rotor lag will be different, which will bring great inconvenience to obtain the correction of the actual position of the rotor.

[0098] 因此,为了使得整个控制过程中计算获得的相移后的转子位置滞后转子实际位置的角度保持不变,每次一阶滤波所采用的预定滤波频率与α轴反电势和声轴反电势频率的比值应当保持不变,即当电机由于转速变化使得α轴反电势和彦轴反电势的频率发生变化时,每次一阶滤波所采用的预定滤波频率应当与α轴反电势和,轴反电势的频率进行等比例的变化。 [0098] Accordingly, in order to make the overall control of the rotor position angle obtained from the phase shift lags the actual position of the rotor remains unchanged during the calculation, and a predetermined filter frequency α axis each first-order filter used in acoustic axis EMF trans the ratio of the potential frequency should be kept constant, i.e. when the motor due to the rotation speed variation such that the α-axis when the back EMF frequency potential Kazuhiko shaft change counter electromotive, each first-order predetermined filter frequency of the filter used should back EMF to the α axis and the shaft Back emf frequency change ratio and the like. 如果对λ轴反电势和多轴反电势采用多次一阶滤波,每次一阶滤波采用的预定滤波频率又不相同时,应当对每次一阶滤波所采用的预定滤波频率进行修正。 If the back EMF and a multi-axis counter electromotive potentials using multiple axes of a λ-order filter, each filter a predetermined order of frequency filtering is not the same, it should be corrected every time a predetermined frequency filtering step of filtering employed.

[0099] 针对上述的内容和一阶滤波的特性,较佳的方式是采用《轴反电势和芦轴反电势的截止频率进行一阶滤波。 [0099] characteristics of the content and for the first-order filter, the preferred way is to use cut-off frequency "Anti-axis electric potential and the potential anti-axis Lo first-order filter. 这是因为,采用截止频率滤波,α轴反电势和岁轴反电势幅值衰减了3«*,相位滞后了sr/4,即新幅值是原幅值的1/占,新相位角滞后jt/4。 This is because the use of the cutoff frequency of the filter, and [alpha] years back EMF shaft axis BEMF amplitude attenuation of 3 «*, the phase lag sr / 4, i.e., the new amplitude of the original amplitude 1 / accounted for, the new phase lag angle jt / 4. 依次类推,若 And so, if

经过Il次同样的处理过程,那么α轴反电势和岁轴反电势新幅值是原幅值的新相位角滞后 After Il times the same process, then the α-axis counter electromotive potential new anti-magnitude potential and the age of the original phase angle axis is the magnitude of the new hysteresis

Figure CN102045020BD00102

[0100] 这样,计算相移后的转子位置后,可以很方便的修正到转子真实位置转子。 [0100] Thus, after calculating the phase-shifted rotor position, it can be easily corrected to the true position of the rotor of the rotor. 考虑到前述的α轴反电势和於轴反电势滤波后平滑度以及计算精度的问题,对β轴反电势和於轴反电势采用截止频率进行2或3次一阶滤波较好。 View of the foregoing α-axis back EMF and and issues accuracy smoothness of the back EMF filtering in the shaft, the back EMF of the β-axis and to the axis of the back EMF using for 2 or 3 times a first-order filter is preferably cut-off frequency. 实际上,对于永磁电机,电机的电频率即为α轴反电势和於轴反电势的截止频率,使得预定滤波频率的获取变得异常简便。 Indeed, for the permanent magnet motor, the electrical frequency of the motor back EMF is the α-axis and to the axis of the cutoff frequency of the back EMF, so obtaining a predetermined filter frequency become extremely easy.

[0101] 考虑电机控制的精度和处理器的处理能力,本发明还可以对α轴反电势和於轴反 [0101] considering the accuracy and the processing capacity of the processor of the motor control, the present invention may also be of potential anti-α-axis and the shaft trans

电势离散化后再进行处理,离散化后: The potential for processing discrete and then, after discrete:

[0102] [0102]

Figure CN102045020BD00111

[0104] 其中,Jfc代表当前时刻值,H代表上一时刻值,对于本领域技术人员,离散化的理论和处理方法均是熟知的,此处不进行累述。 [0104] wherein, Jfc represents the current time value, the time value represents a H, skilled in the art, and the theory of discrete processing method are well-known, not tired here.

[0105] 对Λ轴反电势和於轴反电势离散化处理后,再对离散化后的Λ轴反电势^和离 [0105] After the reaction potential of the shaft and the shaft Λ BEMF discretized, and then the Λ axis discretized and from back EMF ^

散化后的岁轴反电势^进行相同预定次数的一阶滤波,对应次一阶滤波采用相同的滤波系数。 After years of shaft BCH ^ BEMF same predetermined number of first-order filter corresponding to a sub-order filter with the same filter coefficient.

[0106] 每一离散时刻相移后的转子位置角,其中为滤波后的轴 [0106] The rotor position angle after each discrete time phase shift, wherein the shaft is filtered

反电势,为为滤波后的及轴反电势,再根据ff轴反电势^和#轴反电势^相位滞后,即可获得每一离散时刻转子的位置。 BEMF, a potential of a trans filtered and the shaft, and then back EMF ^ # BEMF shaft axis ff ^ The phase delay, can obtain the position of each discrete moment of the rotor.

[0107] 对于离散的处理方式,同样可以对离散化后的α轴反电势足t和离散化后的於轴 [0107] For the treatment of discrete, equally possible to α axis discretized sufficient back EMF and the discrete t shaft

反电势£~进行多次一阶滤波,每次一阶滤波所采用滤波系数既可以相同,也可以不同。 ~ £ BEMF multiple first-order filter, the filter coefficients may be the same or different and each first-order filter used.

[0108] 与前述非离散处理时类似,为了使得整个控制过程中计算获得的相移后的转子位 [0108] Similar to when the non-discrete process, in order that the rotor position to control the entire phase shift is obtained by calculation process

置滞后转子实际位置的角度保持不变,当电机由于转速变化使得Λ轴反电势和於轴反电势 The actual angular position of the rotor of the hysteresis counter remains unchanged, so that when the motor speed changes due to the back EMF Λ shaft and the shaft BEMF

的频率发生变化时,每次一阶滤波所采用的预定滤波系数应当与《ff轴反电势和於轴反电势 When the frequency is changed, the filter coefficient each time a predetermined order filter used should back EMF and "ff axis of the shaft and the back-emf

的频率进行等比例的变化。 The frequency change ratio. 如果对α轴反电势和於轴反电势采用多次一阶滤波,每次一阶 If the back EMF of the α-axis and the back EMF to the shaft using a multiple order filter, each time a first-order

滤波采用的预定滤波系数又不相同时,应当对每次一阶滤波所采用的预定滤波系数进行修正。 A predetermined filter coefficient of filtering is not the same, it should be corrected to a predetermined order filtering each filter coefficients used.

[0109]最优的实施方式是采用 [0109] The optimum embodiment is the use of

Figure CN102045020BD00112

为滤波系数,其中^力<1轴反电势和於 Is the filter coefficient, wherein the force ^ <1 and the back EMF to the shaft

轴反电势截止频率,fm为控制算法频率。 BEMF shaft cutoff frequency, fm is the frequency of the control algorithm. 这样,与非离散化的处理方式相同,每经过一次 Thus, treatment with the non-discretized same manner, every time after

一阶滤波a轴反电势和於轴反电势衰减到原幅值的Ι/νΐ,新相位角滞后JT/4,当滤波系数 First-order filter and a potential anti-axis of the shaft to the original anti-decay potential amplitude Ι / νΐ, the new phase angle lag JT / 4, when the filter coefficients

为2甙/d+SiiO吋,采用2或3次一阶滤波。 Glycosides 2 / d + SiiO inches, using a 2 or 3-order filter. 同样,由于电机的电频率即为α轴反电势和 Also, since α is the electrical frequency of the motor shaft and the back-emf

,轴反电势的截止频率,在控制算法频率不变的情况下,预定的滤波系数也是很容易获取的。 , Back EMF shaft cutoff frequency, the control algorithm in the case of a constant frequency, a predetermined filter coefficient is easily obtained. [0110] 以上显示和描述了本发明的基本原理和主要特征和本发明的优点。 [0110] The above description and the basic principles and features of this invention and the main advantages of the invention. 本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。 The industry the art will appreciate, the present invention is not limited to the above embodiment, the above-described examples and embodiments described in the specification are only illustrative of the principles of the present invention, without departing from the spirit and scope of the present invention, the present invention will have various changes and improvements, changes and modifications which fall within the scope of the claimed invention. 本发明要求保护范围由所附的权利要求书及其等效物界定_。 The scope of the invention as claimed by the appended claims and their equivalents _. · ·

Claims (8)

1.永磁电机转子位置检测方法,其特征在于:对永磁电机却坐标系下的Λ·轴反电势和f轴反电势分别进行相同预定滤波次数,对应次采用相同预定滤波频率的一阶滤波,根据滤波后的轴反电势与α轴反电势比值的反正切值计算相移后的转子位置,再根据预定的滤波频率和预定的滤波次数对转子相位的影响,获得转子的实际位置。 1. The permanent magnet motor rotor position detecting method, comprising: on the BEMF and the f-axis back EMF Λ · axis of the lower permanent magnet motor has the same coordinate system, respectively, a predetermined number of times filter, the filter corresponding to a predetermined time using the same frequency first order filtering, according shaft filtered back EMF and the α-axis back EMF ratio arctangent calculation of the rotor position phase shift, and then under the influence predetermined filter frequency and a predetermined number of filtering of the rotor phase obtained rotor actual position.
2.如权利要求I所述的永磁电机转子位置检测方法,其特征在于:转子相关的¥坐标系下的反电势通过相同预定滤波次数,对应次采用相同预定滤波频率的一阶滤波后,幅值为原幅值的1/3至2/3。 The rotor position detection method of the permanent magnet motor as claimed in claim I, wherein: a rotor back EMF related ¥ at the same coordinate system by filtering a predetermined frequency corresponding to times after the first-order filter using the same filtering a predetermined frequency, amplitude of 1/3 to 2/3 of the original amplitude.
3.如权利要求I或2所述的永磁电机转子位置检测方法,其特征在于:在整个控制过程中,当轴反电势和轴反电势频率发生变化时,每次一阶滤波所采用的预定滤波频率与α轴反电势和β轴反电势频率进行等比例变化。 3. The position detecting method of the permanent magnet rotor I or motor according to claim 2, wherein: the entire control process, when the shaft and the shaft back EMF back EMF frequency is changed, each first-order filter used filtering predetermined frequencies with variation α-axis and β-axis back EMF back EMF proportional frequency.
4.如权利要求I或2所述的永磁电机转子位置检测方法,其特征在于:所述滤波频率为_坐标系下反电势的截止频率,当所述滤波频率为坐标系下反电势的截止频率时,所述预定滤波次数为2次或3次。 4. The permanent magnet rotor position detection method I or motor according to claim 2, characterized in that: _ the filter frequency is lower cutoff frequency back EMF coordinate system, when the filter frequency is a coordinate system back EMF cutoff frequency, the predetermined frequency and filtering 2 or 3 times.
5.永磁电机转子位置检测方法,其特征在于:将永磁电机却坐标系下的-轴反电势和3轴反电势进行离散化后,再对ίτ轴反电势和4轴反电势进行相同预定滤波次数,对应次采用相同预定滤波系数的一阶滤波,根据滤波后的-轴反电势与Ci轴反电势比值的反正切值计算相移后的转子位置,再根据预定的滤波系数和预定的滤波次数对转子相位的影响,获得每一离散时刻的转子位置。 The rotor of the position detecting method, comprising: a permanent magnet motor has coordinate system - the shaft back EMF and the 3-axis back EMF for discretization, and then the ίτ axis back EMF and 4-axis BEMF same predetermined filtering frequency corresponding to the secondary first order filter same predetermined filter coefficient, in accordance with the filtered - axis counter electromotive back EMF potential and Ci-axis ratio of the arc of the rotor position after the cut value calculating phase shift, and then in accordance with predetermined filter coefficients and the predetermined Effect of the number of the rotor phase of the filter, the rotor position is obtained for each discrete time.
6.如权利要求5所述的永磁电机转子位置检测方法,其特征在于:转子相关的印?坐标系下的反电势通过相同预定滤波次数,对应次采用相同预定滤波系数的一阶滤波后,幅值为原幅值的1/3至2/3。 After the printing associated rotor back EMF at the same coordinate system by filtering a predetermined number of times, corresponding to the same time using a predetermined filtering order of the filter coefficients: 6. The position detecting method of the permanent magnet rotor motor according to claim 5, characterized in that? , the amplitude of the original amplitude of 1/3 to 2/3.
7.如权利要求5或6所述的永磁电机转子位置检测方法,其特征在于:在整个控制过程中,当u轴反电势和於轴反电势频率发生变化时,每次一阶滤波所采用的预定滤波系数与轴反电势和轴反电势频率进行等比例变化。 7. The permanent magnet rotor position detecting method of claim 5 or claim 6 motor, wherein: the entire control process, when the u-axis and the back EMF to the shaft back EMF frequency is changed, each of the first-order filter filter coefficients using a predetermined axis and the axis of the back EMF back EMF frequency changes proportionally.
8.如权利要求5或6所述的永磁电机转子位置检测方法,其特征在于:所述滤波系数为2祀/(/_ + 2私),其中,又为&轴反电势和彡轴反电势截止频率,/_为控制算法频率,当所述滤波系数为/CZifo+ 2私)时,所述预定滤波次数为2次或3次。 8. The permanent magnet rotor position detecting method of claim 5 or claim 6 motor, wherein: said filter coefficients are 2 Si / (/ _ 2 + private), wherein the back EMF and San and shaft & shaft BEMF cutoff frequency, / _ frequency control algorithm, when the filter coefficients are / CZifo + 2 private), filtering said predetermined number of times is 2 or 3 times.
CN2011100246328A 2011-01-24 2011-01-24 Method for detecting position of rotor of permanent magnet motor CN102045020B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011100246328A CN102045020B (en) 2011-01-24 2011-01-24 Method for detecting position of rotor of permanent magnet motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011100246328A CN102045020B (en) 2011-01-24 2011-01-24 Method for detecting position of rotor of permanent magnet motor

Publications (2)

Publication Number Publication Date
CN102045020A CN102045020A (en) 2011-05-04
CN102045020B true CN102045020B (en) 2013-01-23

Family

ID=43910882

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011100246328A CN102045020B (en) 2011-01-24 2011-01-24 Method for detecting position of rotor of permanent magnet motor

Country Status (1)

Country Link
CN (1) CN102045020B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105531917A (en) * 2013-02-20 2016-04-27 密克罗奇普技术公司 Method and system for determining the position of a synchronous motor's rotor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102324880B (en) * 2011-06-14 2013-04-17 合肥威师智能电子电器厂 Method for detecting stochastic resonance of weak back electromotive force signal of brushless direct-current motor
CN102684595B (en) * 2012-05-31 2015-05-13 万高(杭州)科技有限公司 Self-anti-interference starting method for permanent magnetic synchronous motor
CN104410336B (en) * 2014-12-19 2017-03-08 南车株洲电力机车研究所有限公司 The rotor field orientation deviation correction method and system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1424768B1 (en) * 2002-11-28 2009-08-19 SGS-THOMSON MICROELECTRONICS S.r.l. Method for detecting the angular position of a rotor in a brushless electric motor
JP4807165B2 (en) * 2006-07-04 2011-11-02 株式会社デンソー Rotor position detection circuit and the motor driving device
CN201307843Y (en) * 2008-09-27 2009-09-09 瑜 刘 Commutation point detection circuit of sensorless and brushless DC motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105531917A (en) * 2013-02-20 2016-04-27 密克罗奇普技术公司 Method and system for determining the position of a synchronous motor's rotor
CN105531917B (en) * 2013-02-20 2018-02-06 密克罗奇普技术公司 A method for determining the position of the rotor of the synchronous motor and the system

Also Published As

Publication number Publication date
CN102045020A (en) 2011-05-04

Similar Documents

Publication Publication Date Title
JP3979561B2 (en) AC motor drive system of
JP3529752B2 (en) Dc brushless motor rotor angle detector
JP3645509B2 (en) Sensorless vector control system and sensor-less vector control method for an induction motor
JP4253903B2 (en) Induction motor drive and method parameters evaluated
Ilas et al. Comparison of different schemes without shaft sensors for field oriented control drives
EP1653601B1 (en) Method for estimating the rotor speed and position of a permanent magnet synchronous machine
CN101714844B (en) Method for detecting initial position of magnetic pole of rotor of built-in permanent magnetic synchronous motor
JP2004120993A (en) Magnetic flux measuring device of synchronous reluctance motor and its sensorless control system
CN100459410C (en) Control system, observer and control method of induction motor without speed sensor
JP2003235286A (en) Controller for synchronous machine
KR101245931B1 (en) Alternating-current rotary machine controller
CN101087120B (en) Apparatus for controlling high speed operation of motor and method thereof
JP4191172B2 (en) Of the brushless DC motor Hall sensor alignment
JP3429010B2 (en) The magnetic flux feedback system
CN100583620C (en) Rotor position presuming method and apparatus, motor control method and compressor
CN101783646A (en) Induction motor stator resistance and temperature parameter identifying method
CN102771043A (en) Torque ripple suppression control apparatus and torque ripple suppression control method for rotating electrical machine
CN101582677B (en) Motor non-speed sensor control method for smoothly switching composite rotating speed identification
CN101507100A (en) AC motor vector control apparatus
JP2003348896A (en) Control unit for pm motor
JP3796261B1 (en) Load inertia estimation method of the motor
CN103117703A (en) Sensor-less control method and sensor-less control device for permanent-magnet synchronous motor
CN103248306A (en) Online decoupling identification method of multiple parameters of PMSM (permanent magnet synchronous motor)
CN102291079A (en) Speed ​​sensorless permanent magnet synchronous direct drive wind power control system algorithm
CN101330270B (en) Motor control device and compressor

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model