CN102037165B - 在金属氧化物基底上制造纳米结构的方法和薄膜器件 - Google Patents

在金属氧化物基底上制造纳米结构的方法和薄膜器件 Download PDF

Info

Publication number
CN102037165B
CN102037165B CN2009801181726A CN200980118172A CN102037165B CN 102037165 B CN102037165 B CN 102037165B CN 2009801181726 A CN2009801181726 A CN 2009801181726A CN 200980118172 A CN200980118172 A CN 200980118172A CN 102037165 B CN102037165 B CN 102037165B
Authority
CN
China
Prior art keywords
metal oxide
oxide substrate
metal
nanostructure
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2009801181726A
Other languages
English (en)
Other versions
CN102037165A (zh
Inventor
P-J·阿莱
P·罗卡伊卡巴罗卡斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Ecole Polytechnique
US Atomic Energy Commission (AEC)
Original Assignee
Centre National de la Recherche Scientifique CNRS
Ecole Polytechnique
US Atomic Energy Commission (AEC)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Ecole Polytechnique, US Atomic Energy Commission (AEC) filed Critical Centre National de la Recherche Scientifique CNRS
Publication of CN102037165A publication Critical patent/CN102037165A/zh
Application granted granted Critical
Publication of CN102037165B publication Critical patent/CN102037165B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00031Regular or irregular arrays of nanoscale structures, e.g. etch mask layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • C01B21/0682Preparation by direct nitridation of silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/029Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition of monosilane
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0209Pretreatment of the material to be coated by heating
    • C23C16/0218Pretreatment of the material to be coated by heating in a reactive atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/04Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method adding crystallising materials or reactants forming it in situ to the melt
    • C30B11/08Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method adding crystallising materials or reactants forming it in situ to the melt every component of the crystal composition being added during the crystallisation
    • C30B11/12Vaporous components, e.g. vapour-liquid-solid-growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/08Germanium
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/52Alloys
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/605Products containing multiple oriented crystallites, e.g. columnar crystallites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02603Nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • H01L21/02645Seed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02653Vapour-liquid-solid growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0676Nanowires or nanotubes oriented perpendicular or at an angle to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66439Unipolar field-effect transistors with a one- or zero-dimensional channel, e.g. quantum wire FET, in-plane gate transistor [IPG], single electron transistor [SET], striped channel transistor, Coulomb blockade transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0361Tips, pillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/775Field effect transistors with one dimensional charge carrier gas channel, e.g. quantum wire FET

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Computer Hardware Design (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Electromagnetism (AREA)
  • Ceramic Engineering (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明涉及在金属氧化物基底(2)上制造纳米结构(1)的方法,包括下述步骤:a)在金属氧化物基底(2)上形成金属聚集体(3);和b)在覆盖有金属聚集体的金属氧化物基底(2)上使纳米结构(1)气相生长,在一种或多种前体气体存在下加热该基底,且纳米结构(1)的气相生长被金属聚集体(3)催化。根据本发明,金属聚集体形成阶段a)包括通过还原性等离子体处理将所述金属氧化物基底的表面还原的操作,致使在基底(2)上形成金属聚集体(3)的微滴,金属聚集体形成阶段a)和纳米结构生长阶段b)在单个共用等离子体反应室(4)中接续进行,纳米结构生长直接在金属聚集体(3)的微滴上进行。

Description

在金属氧化物基底上制造纳米结构的方法和薄膜器件
本发明涉及在金属氧化物基底上制造纳米结构的方法、在这种基底上生长薄膜层的方法和薄膜器件。
准一维纳米结构,例如碳纳米管或半导体纳米线,由于它们的新颖性质(光学、电子、热、机械)和它们的大比表面积而特别用于电子领域(例如薄膜晶体管)、光电子领域(例如太阳能电池、电致发光二极管)和用作传感器。
这些纳米结构通过在基底上生长或沉积来获得,该基底在光电子领域中优选既透明又导电。可通过在玻璃、聚合物材料或其它材料的基底上施用金属氧化物,例如氧化锡(SnO2)或锡掺杂的氧化铟(ITO,“氧化铟锡”)的薄膜层,来获得此类基底。下文将此类基底称作“金属氧化物基底”。
现有技术中提到的在此类金属氧化物基底上直接生长的大多数纳米结构由金属氧化物形成。
至于由其它半导体(硅、锗、砷化镓)或碳制成的纳米结构,在大多数情况下,它们在单晶硅基底上生长并任选然后被转移到另一基底上。
制造纳米结构的现有技术方法传统上包括在基底上形成金属聚集体的第一步骤,所述聚集体用于催化纳米结构生长。
已知数种方法用于设置催化剂粒子(或金属聚集体)的位置,例如平版印刷法、使用多孔膜、沉积金属胶体、以及薄膜金属层的蒸发和退火。
在基底上制造纳米结构的大多数这样的方法需要重型设备,且不能用于大表面。除蒸发金属层的方法(另一方面,其需要复杂装置)外,它们也不能原位进行。
在基底上形成金属聚集体或催化剂之后,将该基底转移到反应器中以进行第二步骤,这是生长纳米结构的步骤。这种转移造成与空气接触的催化剂的污染或氧化,以及时间损失(装载/卸载、泵送等操作)。
在这种第二步骤的过程中,根据从Wagner,R.S.&Ellis,W.C.″Vapor-liquid-solid mechanism of single crystal growth″,Applied PhysicsLetters,1964,4,89-90中获知的气-液-固(VLS)机制或从Arbiol,J.;Kalache,B.;Roca i Cabarrocas,P.;Ramon Morante,J.&Fontcuberta iMorral,A.,″Influence of Cu as a catalyst on the properties of siliconnanowires synthesized by the vapour-solid-solid mechanism″,Nanotechnology,2007,18,305606中获知的气-固-固(VSS)机制,在气相中进行纳米结构生长。纳米结构生长通常由气态前体通过化学气相沉积(CVD)法进行。纳米结构生长受金属聚集体催化。
大多数已知方法使用单晶基底(通常硅),以获得外延生长。
还从现有技术中获知通过CVD沉积法在金属氧化物上生长碳纳米管的方法(Miller,A.J.;Hatton,R.A.;Chen,G.Y.&Silva,S.R.P.,″Carbonnanotubes grown on In2O3:Sn glass as large area electrodes for organicphotovoltaics″,Applied Physics Letters,AIP,2007,90,023105)。
关于半导体纳米线,如文献FR 2,873,492中所公开,用于生长此类纳米线的大多数已知催化剂是金,其中温度通常高于500℃。使用金作为催化剂在硅中造成电子缺陷。
还试验了其它金属,各自具有缺点,例如铜,其中用于生长纳米线的温度范围为600至650℃,铝非常快地氧化并因此要求超真空转移样品,镍从600℃开始可能生长碳纳米管,但在700℃以下非常慢。
没有能够使化学元素(例如硅)的纳米结构直接在金属氧化物基底上生长的已知方法。
因此,本发明的目的之一是提出在金属氧化物基底上制造纳米结构的方法,该方法在不使用附加催化剂的情况下使此类纳米结构直接在金属氧化物基底上生长。
为此,本发明涉及在金属氧化物基底上制造纳米结构的方法,包括下述步骤:
a)在所述金属氧化物基底上形成金属聚集体,
b)在覆盖有金属聚集体的金属氧化物基底上使纳米结构气相生长,在一种或多种前体气体存在下加热所述基底,且纳米结构的气相生长被金属聚集体催化。
根据本发明:
-形成金属聚集体的步骤a)包括通过还原性等离子体处理将金属氧化物基底的表面还原的操作,致使在所述金属氧化物基底的表面上形成金属聚集体微滴,
-所述步骤a)形成金属聚集体和b)生长纳米结构在单个相同的等离子体反应室中接续进行,纳米结构生长直接在所述金属聚集体微滴上进行。
本发明的这种方法能够消除在基底上生长纳米结构中的一个步骤,即在金属氧化物基底上沉积金属催化剂聚集体和为其设置位置的步骤。该金属聚集体直接由基底的金属氧化物获得。这具有下述优势:可避免在基底从放置聚集体所用的装置转移到生长纳米结构所用的反应器中的过程中该聚集体被空气污染和氧化。
因此,整个生长过程更短,更好控制(不存在污染)且需要的设备减少(例如,不使用蒸发器)。
此外,借助这种方法,可以在金属氧化物基底上获得性质不同于该金属氧化物基底的纳米结构。
构成所述纳米结构的元素来自前体气体。
在各种可能的实施方案中,本发明还涉及下述特征,它们可以单独考虑或以任何技术上可行的组合方式考虑,并各自提供特定优点:
-所述金属氧化物基底由熔点低于或等于300℃的金属的氧化物构成,
-在步骤a)形成金属聚集体和b)生长纳米结构的过程中,将金属氧化物基底加热至高于或等于构成该基底的金属氧化物的金属的熔点的温度,
-所述金属氧化物选自例如SnO2、ZnO、ITO或In2O3
-所述金属氧化物基底由覆盖有金属氧化物层的基底形成,所述金属氧化物层是不连续的,并包含金属氧化物图案,
-所述纳米结构选自Si、Ge、SiGe、SiC、C或SiN,
-所述等离子体反应器是等离子体增强的化学气相沉积(PECVD)反应器,将所述用于使纳米结构气相生长的步骤b)中的前体气体在稀释气体中稀释,所述稀释气体有利于在金属聚集体上生长完全结晶的纳米结构,并通过蚀刻来限制金属聚集体外的非晶元素沉积,
-该稀释气体是氢(H2),
-所述还原性等离子体是氢等离子体,其中该氢等离子体处理法包括下述步骤:
·在等离子体反应器的室中注入气态氢(H2),和
·在该等离子体反应器的室中在持续时间t过程中生成等离子体,该金属聚集体微滴的直径尤其取决于所述持续时间t,
-该等离子体反应器是射频等离子体增强的化学气相沉积(PECVD-RF)反应器,其中在氢等离子体处理操作过程中:
·等离子体反应器的室中的氢压为180mTorr至1000mTorr,优选等于1000mTorr,对应于大约3分钟的在等离子体反应器的室中的等离子体生成持续时间t,
·用于生成等离子体的射频功率密度为10至1000mW/cm2
本发明还涉及在金属氧化物基底上沉积薄膜层的方法。
根据本发明,该方法包括:
-上述在金属氧化物基底上制造纳米结构的方法的步骤a)和b),其中将前体气体注入等离子体反应器,以获得覆盖有结晶元素纳米线的金属氧化物基底,
-沉积非晶或多晶元素薄膜层的步骤,在此过程中,金属氧化物基底的温度控制在大约200℃,其中将相同前体气体注入所述等离子体反应器,以使结晶元素纳米线被非晶或多晶元素薄膜层覆盖。
在各种可能的实施方案中,本发明还涉及下述特征,它们可以单独或结合考虑:
-在金属氧化物基底上沉积薄膜层的方法包括,在沉积非晶或多晶元素薄膜层的步骤后,沉积非晶或多晶元素薄膜层或半导体有机薄膜层的步骤。
本发明还涉及薄膜器件。
根据本发明,该器件通过上述方法获得,并包含:
-覆盖有结晶元素纳米线的金属氧化物基底,和
-覆盖所述结晶元素纳米线的非晶或多晶元素薄膜层。
在各种可能的实施方案中,本发明还涉及下述特征,它们可以单独或结合考虑:
-所述薄膜器件包含覆盖所述非晶或多晶元素薄膜层的非晶或多晶元素薄膜层或半导体有机薄膜层。
通过利用等离子体(作用于前体气体分子的离解)和来自该金属氧化物的低熔点金属,本发明方法可显著降低处理过程中的温度(低于300℃,与此相比,现有技术方法中使用金作为催化剂时高于450℃)。这扩大了可能可用的基底的范围(可以在许多类型的载体上以薄膜层形式沉积金属氧化物),并使制造成本降低。
温度降低也能降低本发明的方法实施过程中的动力消耗,这是比现有技术的方法更经济的方法。
用这种方法获得的纳米结构也具有最佳品质。这种方法能够实现纳米结构和金属氧化物基底之间的完美粘着(因为它们直接从后者上生长)。该金属氧化物基底本身具有可用在薄膜器件中的电性质和光学性质。
由于等离子体处理可用于大样品(有能够在5平方米基底上沉积非晶硅的反应器),这种方法能够在大表面积上快速获得纳米结构垫。
参照附图更详细描述本发明,其中:
-图1显示了等离子体反应器,在该反应器中进行根据本发明一个实施方案的在金属氧化物基底上形成金属聚集体的步骤;
-图2显示了根据本发明相同实施方案在前体气体(例如硅烷)存在下加热金属氧化物基底时的相同的等离子体反应器;
-图3显示了根据本发明相同实施方案用金属聚集体催化纳米结构的气相生长时的相同的等离子体反应器;
-图4显示了根据本发明的一个实施方案的薄膜器件;
-图5显示了在氢等离子体处理后的ITO基底的吸收光谱;
-图6显示了通过扫描电子显微术得到的金属氧化物基底上的结晶硅纳米线的图像;
-图7显示了通过扫描电子显微术得到的图像,显示含结晶硅纳米线的区域和含非晶硅的区域之间的界限;
-图8显示了分别对应于含结晶硅纳米线的区域和含非晶硅的区域的两个拉曼光谱。
图1显示了等离子体反应器,在该反应器中进行根据本发明一个实施方案的在金属氧化物基底上形成金属聚集体的第一步骤。
在此实施例中,这种等离子体反应器是射频等离子体增强的化学气相沉积(PECVD-RF)反应器。也可以使用其它类型的等离子体反应器(例如,VHF、微波等)和其它操作条件。
金属氧化物基底2由玻璃或聚合物基底或其它材料构成,覆盖有薄膜金属氧化物层。
可以通过不同沉积技术,例如热解、溅射、化学气相沉积(CVD)等,获得金属氧化物层的沉积。
该金属氧化物层可以是光学透明或不透明的,并具有光学性质和导电性质。
在金属氧化物基底2的常规清洁(溶剂浴)后,将其引入等离子体反应器4的室中。将其置于基底支座8上。
然后将等离子体反应器4的室抽吸在第二真空(通常5×10-6毫巴)下。该等离子体反应器包含与泵(未显示)连接的抽吸管9。
根据本发明,形成金属聚集体的步骤a)包括通过还原性等离子体处理将金属氧化物基底表面还原的操作,以致在金属氧化物基底2的表面上形成金属聚集体微滴3。本文所用的“还原性等离子体”是指包含还原性元素的等离子体,例如氢(H2)或氨(NH3)。
还原性等离子体处理造成金属氧化物基底2的表面还原。金属氧化物基底2可能完全还原或不这样。氧化物层的完全还原始终可能;这种选择取决于希望保持还是不保持金属氧化物层的功能。
金属氧化物基底2由熔点或共熔点低于或等于300℃的金属的氧化物构成,例如二氧化锡(SnO2)、锡掺杂的氧化铟(ITO,“氧化铟锡”)或三氧化二铟(In2O3)。该金属氧化物可被掺杂或不掺杂。此类基底的使用能够显著降低处理过程中气体和基底的温度。
金属氧化物基底2也可以由熔点或共熔点低于或等于300℃的金属的氧化物构成。
关于在ITO基金属氧化物基底2上制造硅纳米线的方法,给出了图1至3的实施例。
在a)形成金属聚集体和b)生长纳米结构的步骤过程中,将金属氧化物基底2加热至高于或等于构成该基底的金属氧化物的金属的熔点的温度。
该等离子体反应器包含射频电极10,其被加热至200℃的典型温度。因此气体的温度低于300℃。
将气态氢(H2)以大约100sccm(“标准立方厘米/分钟”)的流速引入该等离子体反应器4的室。调节泵送速度,以使等离子体反应器4的室内的压力保持在180mTorr至1000mTorr的固定值。
通过对射频电极10施加可变电位,在等离子体反应器4的室中生成等离子体(注射功率为大约5W),并在可变持续时间t的过程中得以保持,该时间随等离子体反应器4的室内的压力而变。该射频等离子体的频率为13.56MHz。注射功率取决于反应器尺寸。用于生成等离子体的射频功率密度为10至1000mW/cm2
例如,等离子体反应器4的室中1000mTorr的氢压对应于3分钟的还原性等离子体处理的推荐时间。最佳处理持续时间取决于氧化物对氢的反应性。使用ITO时比使用SnO2时短。
由于气态氢(H2)离解,形成了H+离子和氢原子,并加速到金属氧化物基底2上,在金属氧化物基底2的表面处引发化学还原。
通过金属氧化物基底2的表面上存在的至少一部分金属氧化物的还原,在金属氧化物基底2的表面上形成了金属聚集体微滴3。
通过改变处理时间或条件,可以改变还原金属的量,因此改变微滴尺寸和密度。金属聚集体微滴3的直径(其可以为大约1纳米至数纳米)取决于生成等离子体的持续时间t。其它参数,例如功率、温度、压力、金属氧化物对氢的反应性,影响着微滴尺寸和密度。
在部分还原的情况下,还原性等离子体处理很少改变金属氧化物基底2的光学性质和电性质。
图5显示了在180mTorr压力下氢等离子体处理5分钟后在玻璃基底上的ITO吸收光谱11。
该吸收光谱11表明,在氢等离子体处理后,该ITO基底仍在可见光范围(大约400纳米至700纳米的波长)内保持基本透明。ITO基底的吸光度水平为大约0.15至0.18。
在金属氧化物基底2上制造纳米结构1的方法还包括使纳米结构1在带有金属微滴的金属氧化物基底2上气相生长的步骤b),如图2和3中所示。
在一种或数种前体气体存在下加热金属氧化物基底2,且纳米结构1的气相生长受金属聚集体3催化。在图2和3的实施例中,仅使用一种前体气体硅烷(SiH4),以获得结晶硅纳米线5的沉积。也可以使用其它前体气体,例如二硅烷或四氟硅烷(SiF4),制造结晶硅纳米线5。
通常根据气-液-固(VLS)机制实施基底上的半导体纳米线和纳米管生长,其中金属聚集体3发挥决定性作用。也可以使用气-固-固(VSS)机制。
根据VLS机制,位于金属氧化物基底2表面的金属聚集体3首先催化前体气体的离解。
当生长温度高于硅/金属混合物的共熔点时,前体原子扩散到聚集体中,该聚集体变成液体。
当由此形成的前体/金属混合物微滴中的浓度达到饱和值时,前体原子沉淀出来。
由于该前体/金属混合物微滴的小尺寸和表面能的重要性,沉淀优选发生在界面处,通常发生在金属氧化物基底2和前体/金属混合物微滴之间的界面处。
然后形成固相,其造成该前体/金属混合物微滴下方的柱状生长。金属聚集体3的尺寸和密度因此控制着所得纳米结构1的尺寸和密度。
此外,纳米结构1的生长温度受到所述前体/金属混合物的共熔点限制。
现在,通过还原金属氧化物,该方法可以使用低熔点(特别地,例如前体/金属混合物的共熔点)的金属(例如,铟156.6℃,锡231.9℃)。由此可以在降低的温度下进行纳米结构1的生长。
下面阐述在ITO基底上制造硅纳米线的方法的实施例。也已经在SnO2基底上成功测试了该方法。
如图2中所示,停止氢进料并引入前体气体SiH4。可以向前体气体中添加掺杂气体,例如膦(PH3)或三甲基硼(B(CH3)3)。不需要装卸金属氧化物基底2、打开反应器等离子体或额外泵送。
等离子体反应器4的室内的前体气体SiH4压力保持在大约60mTorr。引发等离子体(注射功率2W),并根据结晶硅纳米线5的所需长度在可变持续时间过程中保持。
在这些条件中以15分钟生长时间获得的未掺杂结晶硅纳米线5显示在图6中。图6显示了通过扫描电子显微术得到的结晶硅纳米线5的图像。样品相对于扫描电子显微镜的电子束倾斜45°。
结晶硅纳米线5的典型长度为300纳米,它们的基部直径为50至200纳米。可以在结晶硅纳米线5末端以清晰灰色看见金属聚集体微滴3。
金属氧化物基底2如上所述由玻璃基底或其它形成,并覆盖有金属氧化物层。
根据本发明的一个具体实施方案,该金属氧化物层是不连续的并包含金属氧化物图案或块。实际上,可以例如通过已知平版印刷法在玻璃基底上制造金属氧化物图案。通过平版印刷术可以划定在基底上规则间隔开的小尺寸金属氧化物图案(数纳米至数微米)。
在本发明的步骤a)形成金属聚集体和b)生长纳米结构之后,所得薄膜器件包含一个或数个含结晶硅纳米线的区域12和一个或数个含非晶硅的区域13,例如如图7的实施例中所示。图7显示了通过扫描电子显微术得到的含结晶硅纳米线的区域12和含非晶硅的区域13之间的界限的图像。
含结晶硅纳米线的区域12对应于最初被ITO覆盖的玻璃基底区域。该区域12非常分散。至于含非晶硅的区域13,其对应于未被ITO覆盖的玻璃基底区域。该区域13比含结晶硅纳米线的区域12更透明。通过使用表面积为大约1平方微米的金属氧化物块,用本发明的方法可以控制单个纳米结构的生长,并因此控制之后制造的电子部件的生长。对于在电子领域中的应用而言,可以界定电子部件所处的区域。
图8显示了图7中所示的样品的两个区域12、13上的硅沉积物的两个拉曼光谱14、16。
横轴18代表拉曼位移,单位为cm-1。纵轴19代表标称化的强度。
含非晶硅的区域13的拉曼光谱14具有以大约480cm-1为中心的宽峰15。含结晶硅纳米线的区域12的拉曼光谱16具有以大约510cm-1为中心的窄峰17,对应于结晶硅。
上述实施例显示了能够获得硅纳米线的实施方案。
本发明的在金属氧化物基底上制造纳米结构的方法能够在金属氧化物基底2上生长性质(或组成)不同于该属氧化物基底2的纳米结构1。
由于金属聚集体微滴3(金属制成)由金属氧化物基底2形成,因此它们的性质也不同于纳米结构1。
构成纳米结构1的元素来自在生长纳米结构的步骤b)过程中注入的前体气体。构成纳米结构1的元素是非金属元素。
可以在金属氧化物基底2上获得锗、硅、镓或碳基纳米结构1。
本发明的在金属氧化物基底上制造纳米结构的方法能够在金属氧化物基底2上获得由锗(Ge)、硅化锗(SiGe)、碳化硅(SiC)、氮化硅(SiN)、砷化镓(AsGa)或其它化合物制成的二元半导体纳米线。
本发明的在金属氧化物基底上制造纳米结构的方法也可用于在金属氧化物基底2上沉积碳纳米管。这时,所用前体气体是甲烷。
在金属氧化物基底上的纳米结构1的气相生长优选通过如上所述的PECVD法进行,但也可通过化学气相沉积(CVD)法进行。
本发明还涉及在金属氧化物基底2上沉积薄膜层的方法,包括上文定义的在金属氧化物基底2上制造纳米结构1的方法的步骤a)和b),其能够获得覆盖有结晶硅纳米线5的金属氧化物基底2。
可以然后改变所存在的气体、沉积条件、温度、压力和注入等离子体的功率,以在纳米结构1上沉积其它薄膜材料层,不必将它们取出到空气中。
例如,通过降低金属氧化物基底2的温度,可以沉积符合如图4中所示的纳米结构1的形态的非晶或多晶元素薄膜层6。
将前体气体注入等离子体反应器4,该前体气体与在金属氧化物基底2上气相生长纳米结构1的步骤b)中所用的前体气体相同,以使结晶硅纳米线5被非晶或多晶元素薄膜层6覆盖,该非晶或多晶元素薄膜层6由与结晶硅纳米线5相同的化学元素(例如硅)制成。
当化学元素是硅时,金属氧化物基底2的温度可以控制至约200℃。
在另一可能的实施方案中,可以将在气相生长纳米结构1的步骤b)中所用的气态前体注入等离子体反应器4,在引起蚀刻反应的气体中稀释。这种稀释气体可以是例如氢。然后生成等离子体。由于非晶元素比结晶元素更容易被蚀刻,这种方法能够降低在纳米结构1生长过程中沉积在结晶硅纳米线5周围的非晶元素层的厚度。限制了通过PECVD法在金属聚集体3外的非晶元素沉积。与附随的非晶元素沉积相比,在蚀刻气体中的这种稀释更有利于促进金属聚集体3上的结晶硅纳米线5生长。
在金属氧化物基底2上沉积薄膜层的方法还可包括,在沉积非晶或多晶元素薄膜层6的步骤后,沉积多晶或非晶元素薄膜层7或半导体有机薄膜层的步骤。
多晶元素薄膜层7可以是由与结晶硅纳米线5和非晶或多晶元素薄膜层6相同的化学元素制成的无机薄膜层。可以形成例如由薄膜硅层制成的光伏电池。
结晶硅纳米线5可充当多晶硅生长的根源。
多晶元素薄膜层7也可以是由不同化学元素或由相同的掺杂化学元素制成的无机薄膜层。
通过使用半导体有机薄膜层,可以形成复合(hybrid)光伏电池。
由硅纳米线形成的非常分散的层能够提高入射光的光程长度,并因此在相同的给定厚度下改进射线吸收。
获得了如图4中所示的薄膜器件,其包含覆盖有结晶硅纳米线5的金属氧化物基底2、覆盖结晶硅纳米线5的一个非晶或多晶元素薄膜层6、和覆盖该非晶或多晶元素薄膜层6的另一多晶或非晶元素薄膜层7或一个半导体有机薄膜层。
这样,制造纳米结构1的方法的步骤a)和b)后获得的样品可以在相同的等离子体反应器4中原位通过其它薄膜层完成,以形成半导体器件,例如p-i-n或n-i-p光伏电池。
这种薄膜器件还包含与金属氧化物基底2连接的触点20。该纳米结构1也可用作电极的结构。
上文描述的不同步骤在相同等离子体反应器4中接续进行。
在金属氧化物基底2上制造纳米结构1的上述方法使用射频(RF)等离子体,但该方法不限于这种单一类型的等离子体。
由于等离子体处理可用于大样品(有能够在5平方米基底上沉积非晶硅的反应器),这种方法能够在大表面积上快速获得纳米结构1的垫。
本发明的方法能够消除在基底上生长纳米结构1中的一个步骤,即沉积金属催化剂聚集体和设置其位置的步骤。因此,整个生长过程更短,更好控制(不存在污染)且需要的设备减少(例如,不使用蒸发器)。
通过利用等离子体(作用于前体气体分子的离解)和来自金属氧化物的低熔点金属,本发明方法能够显著降低处理过程中的温度(低于300℃,与此相比,现有技术方法中使用金作为催化剂时高于450℃)。这扩大了可能可用的基底的范围(可以在许多类型的载体上以薄膜层形式沉积金属氧化物),并使制造成本降低。
这种方法能够实现纳米结构1和金属氧化物基底2之间的完美粘着(因为它们直接从后者上生长)。该金属氧化物基底2本身具有可用在薄膜器件中的电性质和光学性质。

Claims (13)

1.在金属氧化物基底(2)上制造纳米结构(1)的方法,包括下述步骤:
a)在所述金属氧化物基底(2)上形成金属聚集体(3),
b)在覆盖有金属聚集体(3)的所述金属氧化物基底(2)上使纳米结构(1)气相生长,在一种或多种前体气体存在下加热所述基底,且纳米结构(1)的气相生长被金属聚集体(3)催化,
其特征在于:
-在金属氧化物基底(2)由覆盖有薄膜金属氧化物层的玻璃或聚合物基底构成,所述金属氧化物层由熔点低于或者等于300℃的金属的氧化物构成,
-形成金属聚集体的步骤a)包括通过还原性等离子体处理将所述金属氧化物基底的表面还原的操作,致使在所述金属氧化物基底(2)的表面上形成金属聚集体微滴(3),
-所述步骤a)形成金属聚集体和b)使纳米结构生长在单个相同的等离子体反应器(4)的室中接续进行,纳米结构的生长是通过CVD或PECVD直接在金属聚集体微滴(3)上进行的。
2.根据权利要求1的在金属氧化物基底(2)上制造纳米结构(1)的方法,其特征在于,在所述步骤a)形成金属聚集体和b)生长纳米结构的过程中,将金属氧化物基底(2)加热至高于或等于构成该金属氧化物的金属的熔点的温度。
3.根据权利要求1的在金属氧化物基底(2)上制造纳米结构(1)的方法,其特征在于所述金属氧化物选自SnO2、ZnO、ITO或In2O3
4.根据权利要求1的在金属氧化物基底(2)上制造纳米结构(1)的方法,其特征在于所述金属氧化物层是不连续的并包含金属氧化物图案。
5.根据权利要求1的在金属氧化物基底(2)上制造纳米结构(1)的方法,其特征在于纳米结构(1)选自Si、Ge、SiGe、SiC、C或SiN。
6.根据权利要求1的在金属氧化物基底(2)上制造纳米结构(1)的方法,其特征在于等离子体反应器(4)是等离子体增强的化学气相沉积(PECVD)反应器,将用于所述使纳米结构(1)气相生长的步骤b)中的前体气体在稀释气体中稀释,所述稀释气体通过蚀刻来限制金属聚集体(3)外的非晶元素沉积。
7.根据权利要求6的在金属氧化物基底(2)上制造纳米结构(1)的方法,其特征在于所述稀释气体是氢(H2)。
8.根据权利要求1的在金属氧化物基底(2)上制造纳米结构(1)的方法,其特征在于所述还原性等离子体是氢等离子体,其中该氢等离子体处理法包括下述步骤:
-在等离子体反应器(4)的室中注入气态氢(H2),和
-在等离子体反应器(4)的室中在持续时间t过程中生成等离子体,金属聚集体微滴(3)的直径取决于所述持续时间t。
9.根据权利要求1的在金属氧化物基底(2)上制造纳米结构(1)的方法,其特征在于等离子体反应器(4)是射频等离子体增强的化学气相沉积(PECVD-RF)反应器,其中在氢等离子体处理操作过程中:
-该等离子体反应器(4)的室中的氢压为180mTorr至1000mTorr,对应于大约3分钟的在等离子体反应器(4)的室中的等离子体生成持续时间t,
-用于生成等离子体的射频功率密度为10至1000mW/cm2
10.在金属氧化物基底(2)上沉积薄膜层的方法,其特征在于包括:
-如根据权利要求1至10任一项所述的在金属氧化物基底(2)上制造纳米结构(1)的方法的步骤a)和b),其中在步骤b)中将前体气体注入等离子体反应器(4)的室中,以获得覆盖有纳米结构(1)的金属氧化物基底(2),所述纳米结构(1)为结晶元素纳米线(5),
-沉积非晶或多晶元素薄膜层的步骤,在此过程中,金属氧化物基底(2)的温度被控制在大约200℃,其中将相同前体气体注入所述等离子体反应器(4)的室中,以使结晶元素纳米线(5)被非晶或多晶元素薄膜层(6)覆盖。
11.根据权利要求10的在金属氧化物基底(2)上沉积薄膜层的方法,其特征在于包括,在沉积非晶或多晶元素薄膜层(6)的步骤后,沉积非晶或多晶元素薄膜层(7)或半导体有机薄膜层的另一步骤。
12.薄膜器件,其特征在于其包含通过如根据权利要求10或11任一项所述的方法获得的沉积有薄膜层的金属氧化物基底,所述薄膜器件包含:
-覆盖有结晶元素纳米线(5)的金属氧化物基底(2),和
-覆盖所述结晶元素纳米线(5)的非晶或多晶元素薄膜层(6)。
13.根据权利要求12的薄膜器件,其特征在于其包含覆盖所述非晶或多晶元素薄膜层(6)的非晶或多晶元素薄膜层(7)或半导体有机薄膜层。
CN2009801181726A 2008-03-20 2009-03-19 在金属氧化物基底上制造纳米结构的方法和薄膜器件 Expired - Fee Related CN102037165B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0851817 2008-03-20
FR0851817A FR2928939B1 (fr) 2008-03-20 2008-03-20 Procede de production de nanostructures sur un substrat d'oxyde metallique, procede de depot de couches minces sur un tel substrat, et un dispositf forme de couches minces
PCT/FR2009/050470 WO2009122113A2 (fr) 2008-03-20 2009-03-19 Procede de production de nanostructures sur un substrat d'oxyde metallique, procede de depot de couches minces sur un tel substrat, et dispositif forme de couches minces

Publications (2)

Publication Number Publication Date
CN102037165A CN102037165A (zh) 2011-04-27
CN102037165B true CN102037165B (zh) 2013-01-30

Family

ID=39968096

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009801181726A Expired - Fee Related CN102037165B (zh) 2008-03-20 2009-03-19 在金属氧化物基底上制造纳米结构的方法和薄膜器件

Country Status (6)

Country Link
US (1) US8461027B2 (zh)
EP (1) EP2255029B1 (zh)
JP (1) JP5632359B2 (zh)
CN (1) CN102037165B (zh)
FR (1) FR2928939B1 (zh)
WO (1) WO2009122113A2 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2937055B1 (fr) * 2008-10-09 2011-04-22 Ecole Polytech Procede de fabrication a basse temperature de nanofils semiconducteurs a croissance laterale et transistors a base de nanofils, obtenus par ce procede
KR101706353B1 (ko) * 2010-04-02 2017-02-14 삼성전자주식회사 고밀도 금속 나노클러스터 함유 실리콘 나노와이어 및 그의 제조방법
US8698122B2 (en) * 2010-04-02 2014-04-15 Samsung Electronics Co., Ltd. Silicon nanowire comprising high density metal nanoclusters and method of preparing the same
US8207013B2 (en) * 2010-09-17 2012-06-26 Atomic Energy Council Institute Of Nuclear Energy Research Method of fabricating silicon nanowire solar cell device having upgraded metallurgical grade silicon substrate
FR2985368B1 (fr) 2012-01-04 2015-05-22 Total Sa Procede de production a basse temperature de nanostructures semi-conductrices a jonction radiale, dispositif a jonction radiale et cellule solaire comprenant des nanostructures a jonction radiale
CN102842662B (zh) * 2012-09-10 2015-07-01 圆融光电科技有限公司 一种纳米柱阵列化合物半导体器件的自组装制备方法
CN102963124B (zh) * 2012-11-29 2015-06-03 中国科学院苏州纳米技术与纳米仿生研究所 气体喷印装置及喷印方法
US11133390B2 (en) * 2013-03-15 2021-09-28 The Boeing Company Low temperature, thin film crystallization method and products prepared therefrom
US9484199B2 (en) * 2013-09-06 2016-11-01 Applied Materials, Inc. PECVD microcrystalline silicon germanium (SiGe)
NL2014588B1 (en) * 2015-04-07 2017-01-19 Stichting Energieonderzoek Centrum Nederland Rechargeable battery and method for manufacturing the same.
KR102006533B1 (ko) * 2017-04-10 2019-08-02 포항공과대학교 산학협력단 플라즈마를 이용한 나노 로드의 제조 방법
FR3078345A1 (fr) * 2018-02-27 2019-08-30 Centre National De La Recherche Scientifique Nanofilaments d'alliage de gesn, preparation et applications
FR3104173B1 (fr) * 2019-12-06 2023-07-21 Centre Nat Rech Scient : Procédé de production de nanoclusters de silicium et/ou germanium présentant un moment dipolaire électrique et/ou magnétique permanent
CN111349974A (zh) * 2020-03-12 2020-06-30 重庆大学 一种经等离子处理的纳米纤维氢气传感材料的制备方法
WO2023217803A1 (en) 2022-05-09 2023-11-16 University Of Limerick A method for high yield nanowire synthesis

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GRAHAM U. M.等.Nanoweb Formation: 2D Self-Assembly of Semiconductor Gallium Oxide Nanowires/Nanotubes.《ADVANCED FUNCTIONAL MATERIALS》.2003,第13卷(第6期), *
SUNKARA M. K.等.Bulk synthesis of silicon nanowires using a low-temperature vapor-liquid-solid method.《APPLIED PHYSICS LETTERS》.2001,第79卷(第10期), *
WANG Y. H.等.Macroscopic field emission properties of aligned carbon nanotubes array and randomly oriented carbon nanotubes layer.《THIN SOLID FILMS》.2002,第405卷(第1-2期), *

Also Published As

Publication number Publication date
FR2928939B1 (fr) 2010-04-30
US20110042642A1 (en) 2011-02-24
WO2009122113A3 (fr) 2009-11-26
EP2255029A2 (fr) 2010-12-01
JP2011519314A (ja) 2011-07-07
WO2009122113A2 (fr) 2009-10-08
CN102037165A (zh) 2011-04-27
FR2928939A1 (fr) 2009-09-25
JP5632359B2 (ja) 2014-11-26
US8461027B2 (en) 2013-06-11
EP2255029B1 (fr) 2014-04-02

Similar Documents

Publication Publication Date Title
CN102037165B (zh) 在金属氧化物基底上制造纳米结构的方法和薄膜器件
Puglisi et al. Chemical vapor deposition growth of silicon nanowires with diameter smaller than 5 nm
US8513641B2 (en) Core-shell nanowire comprising silicon rich oxide core and silica shell
US5677236A (en) Process for forming a thin microcrystalline silicon semiconductor film
US7354871B2 (en) Nanowires comprising metal nanodots and method for producing the same
JP4167718B2 (ja) ナノワイヤ及びナノワイヤを備える装置並びにそれらの製造方法
Choi et al. Formation and suppression of hydrogen blisters in tunnelling oxide passivating contact for crystalline silicon solar cells
US20080078441A1 (en) Semiconductor devices and methods from group iv nanoparticle materials
JP2003298077A (ja) 太陽電池
Cheng et al. Effective control of nanostructured phases in rapid, room-temperature synthesis of nanocrystalline Si in high-density plasmas
Ahmed et al. Development of silicon nanowires with optimized characteristics and fabrication of radial junction solar cells with< 100 nm amorphous silicon absorber layer
CN111334780A (zh) 一种黑磷薄膜、其制备方法和应用
CN104894640B (zh) 一种石墨烯衬底上ZnO分级纳米阵列及其制备方法及应用
Dey et al. Optimal H2-dilution playing key role in accomplishing significant nanocrystallinity with both Si and Ge moieties in SiGe nanocomposite thin film network
KR101538742B1 (ko) 나노와이어의 합성 방법
US4839312A (en) Fluorinated precursors from which to fabricate amorphous semiconductor material
Singh et al. Defect study of phosphorous doped a-Si: H thin films using cathodoluminescence, IR and Raman spectroscopy
CN109037392A (zh) 一种石墨烯/硅结构太阳能电池的生产工艺
AU2013207143A1 (en) Method for the low-temperature production of radial-junction semiconductor nanostructures, radial junction device, and solar cell including radial-junction nanostructures
WO2012102574A2 (ko) 그라펜의 제조 방법, 이를 포함하는 투명 전극, 활성층, 이를 구비한 표시소자, 전자소자, 광전소자, 배터리, 태양전지 및 염료감응 태양전지
Lai et al. Formation mechanism of SiGe nanorod arrays by combining nanosphere lithography and Au-assisted chemical etching
Zheng Growth and characterization of silicon nanowires for biomedical applications
Ding et al. Effects of phosphorus-doping on the microstructures, optical and electric properties in n-type Si: H thin films
Pethuraja et al. Silicon nanowire development for solar cell devices
CN1349004A (zh) 一种纳米硅薄膜的制备工艺和产品

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130130

Termination date: 20200319