CN102030104A - 空气动力转子平台及空气动力产生的方法 - Google Patents

空气动力转子平台及空气动力产生的方法 Download PDF

Info

Publication number
CN102030104A
CN102030104A CN2010105699160A CN201010569916A CN102030104A CN 102030104 A CN102030104 A CN 102030104A CN 2010105699160 A CN2010105699160 A CN 2010105699160A CN 201010569916 A CN201010569916 A CN 201010569916A CN 102030104 A CN102030104 A CN 102030104A
Authority
CN
China
Prior art keywords
rotor
aerodynamic
aerodynamic force
force
platform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010105699160A
Other languages
English (en)
Inventor
维亚切斯拉夫·斯捷潘诺维奇·克利莫夫
奥列格·维亚切斯拉沃维奇·克利莫夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN102030104A publication Critical patent/CN102030104A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/005Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  the axis being vertical
    • F03D3/007Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  the axis being vertical using the Magnus effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/02Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having a plurality of rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/04Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • F03D3/0409Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels surrounding the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2200/00Mathematical features
    • F05B2200/20Special functions
    • F05B2200/23Logarithm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/201Rotors using the Magnus-effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/40Use of a multiplicity of similar components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及一种空气动力转子平台及空气动力产生的方法。空气动力转子平台是为了在水平位置产生气动升力和在垂直位置产生气动横向力,具有的进一步实际应用是作为运输车辆工具的强劲动力装置。该平台的工作原理是基于公知的马格努斯(magnus)效应-作用在环境气流中旋转的对象上产生横向力。结构的基础是几个共面转子单元,其中转子旋转由气流作用力引起并且转子提供产生的空气动力的叠加值。

Description

空气动力转子平台及空气动力产生的方法
技术领域
一种空气动力转子平台和空气动力产生的方法,涉及风力发电工程且为了产生升力和横向的空气动力。
背景技术
现已知空气动力是由于物理物体与周围气流的相互作用产生的(1,484页)。
飞机机翼是最简单公知的物理对象之一,它在环境气流产生升力形式的空气动力(2,505页)。
机翼升力的产生归因于它的非对称形状,当气流围绕其流动,穿过其弯曲的上部表面的速度大于气流通过其平坦底部的速度。由于速度上的差异,根据伯努利方程,升力产生,它的值由下面给出的库塔-茹科夫斯基原理得到:
Y = ρVΓL = C y ρV 2 2 S (3,141-142页)
Γ-速度环量;
ρ-空气密度;
V-气流速度;
S-从飞机看去的机翼表面面积;
L-机翼长度;
Cy-无量纲系数,取决于空气的物理性质,机翼本身和机翼对气流的方向。升力Y的符号表达式如上述的或如下面的:
A=ρΓVL,
按照(4,121页)也被称为横向的且它的值与流动速度的平方及系数Cy的值成正比。
“Cy的值起着很大的重要性,它越大,飞机起飞和降落的速度就越小”,即最小的空气流动速度产生指定的升力直接依赖于Cy的值。在机翼的特别优选实施例中,Cy的值不能超过1,2(3,141-142页)。
已知的圆柱体绕其纵向轴旋转,“...在相同条件下产生的力为机翼达到的力的10倍大,(5,55-57页),即系数Cy获得了比飞机机翼的系数Cy的值大n阶的值。
提交的发明的目的是利用通过圆柱体在气流中旋转产生的空气动力的潜能和以此制造能产生适合实践应用的强大升力和横向力的简单有效的技术设备。
发明内容
图1呈现出空气动力转子平台的结构示意图。结构的基础是同一的对称共面的中心转子装置和具有对数螺旋线轮廓的承载元件的侧部转子,其原型是海洋旋转风能推进器-BY No.8234。
中心转子2的旋转纵向轴1被固定在平台框架3中,但是侧部转子4的纵向轴通过横梁元件5被刚性约束,横梁元件的中心通过轴承装置与中心转子的固定旋转轴耦合,这使得稳固地跨接侧部转子反复地保持在一个按照中心转子对称的平面上的位置。
已知的还有气流围绕流过旋转体引起绕其轮廓的气流环量,当他们是平行流时其速度是流动速度的总和(4,100-105页),这赋予流动附加的动能。
本发明的精髓在于利用具有附加速度的流动去作用连续的转子。
通过转子平台产生气动力的方法,空气动力是每个平台转子产生的空气动力的和,如图2所示。
带有初始速度V1的气流落在第一转子且使其以速度V1R旋转。旋转速度和流动速度的和导致流动速度大大超过它的初始值
V1S=V1+V1R
流动进一步以速度V1S落在后接转子上,使其以速度V2r旋转,速度的和导致速度V2S,这使其对随后的转子产生影响,据此完全安重复上一个周期。
因此,依据库塔-茹科夫斯基原理,通过转子平台产生的空气动力的值表达如下:
ΣY = C y ρ ( V 1 2 2 + V 1 S 2 2 + V 2 S 2 2 ) S .
参考文献
1.大苏联百科全书,第3版,第2卷。
2.大苏联百科全书,第3版,第13卷。
3.大苏联百科全书,第3版,第20卷。
4.Prandtle L.,流体力学,M.,1951。
5.Merkoulov V.I.Hydrostatics,已知与未知,M.,1989。
6.专利BY No.8234。

Claims (2)

1.一种空气动力转子平台,包括相同的具有对数螺旋线轮廓承载元件的中心转子和侧部转子,其特征在于中心转子的旋转纵向轴被固定在平台框架中,而侧部转子的旋转纵向轴通过横梁元件被刚性约束,其中后者的中心通过轴承单元与中心转子的固定纵向轴相连。
2.一种通过如权利要求1所述的转子平台产生空气动力的方法,其特征在于,给出的空气动力表现为距转子最近的气流由于流动具有自然速度而产生的力的总和,而在所述流动的影响下每个后接转子都具有由于旋转速度和流动速度的叠加而在每个前接转子上产生的叠加速度,数学表达如下:
ΣY = C y ρ ( V 1 2 2 + V 1 S 2 2 + V 2 S 2 2 ) S .
CN2010105699160A 2009-10-02 2010-10-08 空气动力转子平台及空气动力产生的方法 Pending CN102030104A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BY20091405 2009-10-02
BYA20091405 2009-10-02

Publications (1)

Publication Number Publication Date
CN102030104A true CN102030104A (zh) 2011-04-27

Family

ID=43402065

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010105699160A Pending CN102030104A (zh) 2009-10-02 2010-10-08 空气动力转子平台及空气动力产生的方法

Country Status (8)

Country Link
US (1) US20110236207A1 (zh)
EP (1) EP2306000A1 (zh)
JP (1) JP2011148481A (zh)
KR (1) KR20110036681A (zh)
CN (1) CN102030104A (zh)
AU (1) AU2010226909A1 (zh)
CA (1) CA2715952A1 (zh)
EA (1) EA201001783A3 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104955725A (zh) * 2012-10-31 2015-09-30 约恩·保罗·温克勒 包括具有靠近旋筒布置的翼片的旋筒的船舶
CN110494650A (zh) * 2017-03-30 2019-11-22 斯拜帝克能源有限公司 一种风力涡轮机系统
CN112594110A (zh) * 2020-12-01 2021-04-02 西北工业大学 一种基于马格努斯效应的垂直轴海流能发电装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITGE20120002A1 (it) * 2012-01-12 2013-07-13 Bozano Enrico Ing " torre eolica "
US10118696B1 (en) 2016-03-31 2018-11-06 Steven M. Hoffberg Steerable rotating projectile
US11712637B1 (en) 2018-03-23 2023-08-01 Steven M. Hoffberg Steerable disk or ball

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4398895A (en) * 1981-05-14 1983-08-16 Asker Gunnar C F Wind propulsion devices
US4602584A (en) * 1984-06-12 1986-07-29 Henry North Propulsion device for a ship
DE3501807A1 (de) * 1985-01-21 1986-07-24 Heribert 7921 Hermaringen Schneider Stroemungsmaschine zur energiegewinnung
US7494315B2 (en) * 2006-05-05 2009-02-24 Hart James R Helical taper induced vortical flow turbine
EP2075460A3 (en) * 2007-12-26 2010-11-17 Vyacheslav Stepanovich Klimov Coaxial rotor windmill and method of increasing kinetic eneergy of the flow
EP2075459A3 (en) * 2007-12-29 2010-11-24 Vyacheslav Stepanovich Klimov Multiple rotor windmill and method of operation thereof
DE202008002376U1 (de) * 2008-02-20 2008-04-17 Dechant, Erich Windenergieanlage
AU2010219297A1 (en) * 2009-09-08 2011-03-24 Oleg Vyacheslavovich Klimov Rotor-type super windmill and method of increasing kinetic energy of air flow

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104955725A (zh) * 2012-10-31 2015-09-30 约恩·保罗·温克勒 包括具有靠近旋筒布置的翼片的旋筒的船舶
US9540087B2 (en) 2012-10-31 2017-01-10 Jørn Paul WINKLER Vessel comprising a rotor having a flap arranged near the rotor
CN110494650A (zh) * 2017-03-30 2019-11-22 斯拜帝克能源有限公司 一种风力涡轮机系统
CN110494650B (zh) * 2017-03-30 2021-09-10 斯拜帝克能源有限公司 一种风力涡轮机系统
CN112594110A (zh) * 2020-12-01 2021-04-02 西北工业大学 一种基于马格努斯效应的垂直轴海流能发电装置

Also Published As

Publication number Publication date
AU2010226909A1 (en) 2011-04-21
US20110236207A1 (en) 2011-09-29
EP2306000A1 (en) 2011-04-06
EA201001783A3 (ru) 2011-12-30
CA2715952A1 (en) 2011-04-02
JP2011148481A (ja) 2011-08-04
KR20110036681A (ko) 2011-04-08
EA201001783A2 (ru) 2011-10-31

Similar Documents

Publication Publication Date Title
Watson et al. Future emerging technologies in the wind power sector: A European perspective
Schaffarczyk Introduction to wind turbine aerodynamics
Cherubini et al. Airborne Wind Energy Systems: A review of the technologies
CN102030104A (zh) 空气动力转子平台及空气动力产生的方法
Abkar et al. Self-similarity and flow characteristics of vertical-axis wind turbine wakes: an LES study
Allaei et al. INVELOX: Description of a new concept in wind power and its performance evaluation
CN103884485B (zh) 一种基于多尾流模型的风机尾流分析方法
Karbasian et al. Simulation of power extraction from tidal currents by flapping foil hydrokinetic turbines in tandem formation
Shirasawa et al. Experimental verification of a floating ocean-current turbine with a single rotor for use in Kuroshio currents
JP6655027B2 (ja) 流体流から電力を抽出するための装置
Bremseth et al. Computational analysis of vertical axis wind turbine arrays
Benedict et al. Fundamental understanding of the physics of a small-scale vertical axis wind turbine with dynamic blade pitching: An experimental and computational approach
Oltmann et al. Load reduction of wind turbines using trailing edge flaps
DE602004012128T2 (de) Windturbine mit senkrechter Drehachse mit einem Steuersystem für Drachen
CN104061125A (zh) 气球气艇与升力风筝空中发电装置
Kirke Tests on two small variable pitch cross flow hydrokinetic turbines
Nam et al. High Altitude Airborne Wind Energy
Roberts Quad-rotorcraft to harness high-altitude wind energy
Hu et al. An experimental investigation on the effects of turbine rotation directions on the wake interference of wind turbines
EP3715623A1 (en) Power device for increasing low flow rate
Yang et al. Wind turbine wake interactions at field scale: An LES study of the SWiFT facility
Gulabani et al. Review on Unconventional Wind Energy.
White et al. A novel approach to airborne wind energy: Design and modeling
Fukudome et al. Separation control of high angle of attack airfoil for vertical axis wind turbines
Shuwa et al. Development and performance test of a micro horizontal axis wind turbine blade

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20110427