CN102025456A - Feedback parameter selection device and feedback parameter selection method - Google Patents

Feedback parameter selection device and feedback parameter selection method Download PDF

Info

Publication number
CN102025456A
CN102025456A CN2009101719020A CN200910171902A CN102025456A CN 102025456 A CN102025456 A CN 102025456A CN 2009101719020 A CN2009101719020 A CN 2009101719020A CN 200910171902 A CN200910171902 A CN 200910171902A CN 102025456 A CN102025456 A CN 102025456A
Authority
CN
China
Prior art keywords
noise power
interference
effective carrier
power ratio
parameter selection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2009101719020A
Other languages
Chinese (zh)
Inventor
严闳中
王昕�
渡边真弘
近藤泰二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to CN2009101719020A priority Critical patent/CN102025456A/en
Publication of CN102025456A publication Critical patent/CN102025456A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention relates to a feedback parameter selection device and a feedback parameter selection method. The feedback parameter selection device is used for a receiver and comprises: an effective carrier to interference and noise power ratio calculation unit for calculating a plurality of effective carrier to interference and noise power ratios respectively corresponding to each combination of a precoding matrix, a modulation coding scheme, and a frequency band that can be selected by the receiver; the screening unit is used for screening the effective carrier interference noise power ratios according to the effective carrier interference noise power ratio threshold values corresponding to the modulation coding schemes; and a feedback parameter selection unit which obtains the largest effective carrier interference noise power ratio in the screened effective carrier interference noise power ratios, and determines the combination of the precoding matrix, the modulation coding scheme and the frequency band corresponding to the largest effective carrier interference noise power ratio as the combination of the precoding matrix, the modulation coding scheme and the frequency band to be fed back.

Description

反馈参数选择装置和反馈参数选择方法 Feedback parameter selection device and feedback parameter selection method

技术领域technical field

本发明和无线通信相关,尤其涉及使用闭环多输入多输出(MIMO,Multiple Input Multiple Output)技术的无线接收机。The present invention is related to wireless communication, in particular to a wireless receiver using closed-loop Multiple Input Multiple Output (MIMO, Multiple Input Multiple Output) technology.

背景技术Background technique

在无线通信系统中,发送端和接收端安装多根天线,被称为多输入多输出技术。采用不同的方式,MIMO技术可以有效地提高无线通信的可靠性和容量。正交频分复用(OFDM,Orthogonal Frequency Division Multiplex)通过将频率选择性衰落信道分割成独立的平坦衰落信道,可以有效地和MIMO技术结合起来,形成MIMO-OFDM系统,MIMO-OFDM系统被广泛地用于超3G和4G无线通信系统中。In a wireless communication system, multiple antennas are installed at the transmitting end and the receiving end, which is called multiple-input multiple-output technology. In different ways, MIMO technology can effectively improve the reliability and capacity of wireless communication. Orthogonal Frequency Division Multiplexing (OFDM, Orthogonal Frequency Division Multiplex) can be effectively combined with MIMO technology to form a MIMO-OFDM system by dividing the frequency selective fading channel into independent flat fading channels, and the MIMO-OFDM system is widely used It is used in super 3G and 4G wireless communication systems.

在发送端已知信道的情况下,通过进行一些预处理可以提升系统性能。在MIMO技术中,根据信道状况对发送数据乘以特定矩阵,可以提高链路质量和传输速率,这种技术被称为预编码技术。一般情况下,信道状态信息需要接收端估计并反馈给发送端。但是无论是直接反馈信道状态还是反馈计算出的预编码矩阵,对于OFDM多载波以及MIMO多天线系统而言,其反馈量都十分巨大,系统无法承受。因此,实用系统中会采用基于码本的反馈方式。这种方式在发送端和接收端都存储同样的预编码矩阵集合,这个集合称为码本。然后在接收端估计出信道信息,并根据信道信息按照一定的准则在码本中搜索出最佳的矩阵作为预编码矩阵,只需反馈选出的预编码矩阵索引(PMI,Precoding Matrix Index)就可以使发送端完成预编码以有效的降低预编码反馈信息比特。When the channel is known at the sender, system performance can be improved by performing some preprocessing. In MIMO technology, the transmission data is multiplied by a specific matrix according to channel conditions, which can improve link quality and transmission rate. This technology is called precoding technology. Generally, the channel state information needs to be estimated by the receiving end and fed back to the sending end. However, whether it is directly feeding back the channel state or feeding back the calculated precoding matrix, for OFDM multi-carrier and MIMO multi-antenna systems, the amount of feedback is very large and the system cannot bear it. Therefore, a codebook-based feedback method will be used in a practical system. In this way, both the sending end and the receiving end store the same set of precoding matrices, and this set is called a codebook. Then the channel information is estimated at the receiving end, and the best matrix is searched in the codebook according to certain criteria according to the channel information as the precoding matrix, and only the selected precoding matrix index (PMI, Precoding Matrix Index) is fed back. The sending end can be made to complete precoding to effectively reduce the bits of the precoding feedback information.

在MIMO-OFDM无线通信系统中,信道在空间、频率、时间三维都是变化,使通信过程存在大量的不确定性。一方面,为了提高系统吞吐量,采用传输速率较高的高阶调制和少冗余纠错码进行通信,这样在无线衰落信道信噪比较理想时系统吞吐量确实得到了很大的提高,但当信道处于深衰落时则无法保障通信可靠稳定地进行。另一方面,为了保障通信的可靠性,采用传输速率较低的低阶调制和大冗余纠错码进行通信,即便在无线信道处于深衰落时能够保障通信的可靠性,然而当信道信噪比较高时,由于传输速率较低,制约了系统的吞吐量的提高,从而造成了资源浪费。因此综合考虑系统的吞吐量和可靠性,在此基础上引入了自适应调制编码(AMC,Adaptive Modulation Coding)技术,其基本原理是保持发射端的发射功率不变,根据信道的状态信息自适应地改变调制和编码方式,从而在不同的信道状态下获得最大的吞吐量。在实用系统中,一般是在接收端估计出信道信息,然后按照一定的错误概率要求选择出适合的编码调制方式(MCS,Modulation and Coding Scheme),并将指示相应MCS的信息反馈到发送端来实现AMC技术。In the MIMO-OFDM wireless communication system, the channel changes in space, frequency and time, which causes a lot of uncertainty in the communication process. On the one hand, in order to improve the system throughput, high-order modulation with high transmission rate and less redundant error correction codes are used for communication. In this way, the system throughput is indeed greatly improved when the signal-to-noise ratio of the wireless fading channel is ideal. However, when the channel is in deep fading, it cannot guarantee reliable and stable communication. On the other hand, in order to ensure the reliability of communication, low-order modulation with low transmission rate and large redundant error correction codes are used for communication, even when the wireless channel is in deep fading, the reliability of communication can be guaranteed. However, when the channel signal noise When it is relatively high, due to the low transmission rate, the improvement of the throughput of the system is restricted, resulting in waste of resources. Therefore, considering the throughput and reliability of the system comprehensively, the Adaptive Modulation Coding (AMC, Adaptive Modulation Coding) technology is introduced on this basis. Change the modulation and coding methods to obtain the maximum throughput under different channel conditions. In a practical system, the channel information is generally estimated at the receiving end, and then a suitable coding and modulation scheme (MCS, Modulation and Coding Scheme) is selected according to a certain error probability requirement, and the information indicating the corresponding MCS is fed back to the sending end. Implement AMC technology.

MIMO-OFDM的特点之一是频率选择性的存在。在多用户场景中,用户所处环境的不同就会使某些用户在一些频段上信道状况比较好,而另一些用户在同样的频段上却比较差。如果利用不同用户的不同的频率选择性来进行资源调度,给用户分配最适合的频率资源进行传输,则可以有效地提高系统容量。在实际采用频率选择性调度的MIMO-OFDM系统中,一般可以将整个频率资源划分为若干个频带(BAND),然后分别测量用户在各个频带上的信道状况,选择信道状况最好的频带分配给用户,从而实现频率选择性调度。类似于PMI和MCS,一般也是在接收端估计出信道信息并对待选频带进行测量,然后选择出最好的频带,并将指示该频带的信息(如序号)反馈到发送端。One of the characteristics of MIMO-OFDM is the existence of frequency selectivity. In a multi-user scenario, the different environments of users will make some users have better channel conditions on some frequency bands, while other users have poorer channel conditions on the same frequency band. If different frequency selectivity of different users is used for resource scheduling, and the most suitable frequency resources are allocated to users for transmission, the system capacity can be effectively improved. In the MIMO-OFDM system that actually uses frequency selective scheduling, the entire frequency resource can generally be divided into several frequency bands (BAND), and then the channel conditions of users in each frequency band are measured respectively, and the frequency band with the best channel condition is selected to be allocated to users, thereby realizing frequency selective scheduling. Similar to PMI and MCS, the channel information is generally estimated at the receiving end and the frequency band to be selected is measured, and then the best frequency band is selected, and the information indicating the frequency band (such as the serial number) is fed back to the sending end.

也就是说,在带反馈的MIMO-OFDM无线通信系统中,PMI、MCS、BAND都需要在接收端选择出来并反馈给发送端。That is to say, in the MIMO-OFDM wireless communication system with feedback, PMI, MCS, and BAND all need to be selected at the receiving end and fed back to the sending end.

下面以图1所示的典型的带反馈的MIMO-OFDM系统来说明这个问题。The following uses the typical MIMO-OFDM system with feedback shown in FIG. 1 to illustrate this problem.

如图1所示,对于一个发送天线数为Nt接收天线数为Nr的MIMO-OFDM系统,在子载波K,单层或多层的源数据首先经编码调制单元101利用从接收机反馈的MCS进行编码调制,然后进入空时编码单元102,由空时编码单元102利用接收机反馈回的频带信息形成s个数据流。在预编码单元103经过与预编码矩阵Wi相乘后形成发送符号。然后在子载波分配映射单元104将用户的数据流调度到相应的子信道并按照一定的方式在物理子载波上映射。所形成的频域多载波信号在IFFT单元105处经IFFT处理及增加循环前缀处理后,经由射频前端(RF)106由天线发送。As shown in Figure 1, for a MIMO-OFDM system with the number of transmitting antennas Nt and the number of receiving antennas Nr, in the subcarrier K, the single-layer or multi-layer source data is first encoded and modulated by the modulation unit 101 using the MCS fed back from the receiver Perform coding and modulation, and then enter the space-time coding unit 102, and the space-time coding unit 102 uses the frequency band information fed back by the receiver to form s data streams. After being multiplied by the precoding matrix W i in the precoding unit 103, the transmitted symbols are formed. Then, the subcarrier allocation and mapping unit 104 schedules the user's data flow to the corresponding subchannel and maps it on the physical subcarrier in a certain way. The formed multi-carrier signal in the frequency domain is processed by IFFT and adding a cyclic prefix at the IFFT unit 105 , and then sent by an antenna via a radio frequency front-end (RF) 106 .

在接收机,FFT单元108对射频前端107通过天线接收来的信号进行FFT,并由解子载波分配映射单元109对经FFT的信号解映射。In the receiver, the FFT unit 108 performs FFT on the signal received by the radio frequency front end 107 through the antenna, and the desubcarrier allocation and mapping unit 109 demaps the FFT signal.

在信道估计单元110处进行信道估计。在反馈参数选择单元111中,根据信道估计单元110处进行的信道估计的信道估计结果,完成预编码矩阵、频带以及MCS的选择。选定的指示预编码矩阵、MCS、频带的信息由接收机反馈到发送机。空时检测单元112根据所估计出的真实信道以及发送机所采用的PMI等进行数据流分离和均衡;解调制编码单元113进行解调制和信道译码以恢复发送数据。Channel estimation is performed at the channel estimation unit 110 . In the feedback parameter selection unit 111 , according to the channel estimation result of the channel estimation performed by the channel estimation unit 110 , the selection of the precoding matrix, the frequency band and the MCS is completed. The selected information indicating the precoding matrix, MCS, frequency band is fed back to the transmitter by the receiver. The space-time detection unit 112 performs data stream separation and equalization according to the estimated real channel and the PMI adopted by the transmitter; the demodulation and encoding unit 113 performs demodulation and channel decoding to restore the transmitted data.

因此,在带反馈的MIMO-OFDM系统中,系统的性能决定于接收机端对预编码矩阵、频带以及MCS的选择是否和信道状况相对应。在研究本发明的过程中,发明人发现,传统的做法中将预编码矩阵、频带以及MCS按照一定的顺序分别选择出来,对这三者的选择是相互独立的,但是实际这三者互相关联的,因而现有技术中选出的预编码矩阵、BAND以及MCS三者并不是最优化的。Therefore, in the MIMO-OFDM system with feedback, the performance of the system depends on whether the selection of the precoding matrix, frequency band and MCS at the receiver corresponds to the channel conditions. In the process of studying the present invention, the inventor found that in the traditional method, the precoding matrix, frequency band and MCS are selected in a certain order, and the selection of these three is independent of each other, but actually these three are related to each other Therefore, the precoding matrix, BAND and MCS selected in the prior art are not optimal.

发明内容Contents of the invention

本发明的实施方式鉴于现有技术的上述问题作出,用于消除或缓解现有技术的一个或更多个问题,至少提供一种有益的选择。The embodiments of the present invention are made in view of the above-mentioned problems of the prior art, to eliminate or alleviate one or more problems of the prior art, and to provide at least one beneficial option.

为了实现本发明的目的,本发明提供了以下方面。In order to achieve the object of the present invention, the present invention provides the following aspects.

方面1、一种反馈参数选择装置,用于接收机,其中,所述反馈参数选择装置包括:Aspect 1. A feedback parameter selection device for a receiver, wherein the feedback parameter selection device includes:

有效载波干扰噪声功率比计算单元,用于计算分别与接收机可以选择的预编码矩阵、调制编码方案和频带的各组合相对应的多个有效载波干扰噪声功率比;An effective carrier-to-interference-to-noise power ratio calculation unit, configured to calculate a plurality of effective carrier-to-interference-to-noise power ratios corresponding to combinations of precoding matrices, modulation and coding schemes and frequency bands that can be selected by the receiver;

筛选单元,根据与各调制编码方案对应的有效载波干扰噪声功率比门限值,对所述多个有效载波干扰噪声功率比进行筛选;以及The screening unit is configured to screen the plurality of effective carrier-to-interference-to-noise power ratios according to the effective carrier-to-interference-to-noise power ratio threshold value corresponding to each modulation and coding scheme; and

反馈参数选择单元,取得经筛选的有效载波干扰噪声功率比中的最大的有效载波干扰噪声功率比,将该最大的有效载波干扰噪声功率比对应的预编码矩阵、调制编码方案和频带的组合确定为要反馈的预编码矩阵、调制编码方案和频带的组合。The feedback parameter selection unit obtains the largest effective carrier-to-interference-to-noise power ratio among the screened effective carrier-to-interference-to-noise power ratios, and determines the combination of the precoding matrix, modulation and coding scheme and frequency band corresponding to the largest effective carrier-to-interference-to-noise power ratio is the combination of precoding matrix, modulation and coding scheme and frequency band to be fed back.

方面2、根据方面1所述的反馈参数选择装置,其特征在于,所述反馈参数选择装置还包括调制编码方案门限单元,所述调制编码方案门限单元用于获得各调制编码方案对应的有效载波干扰噪声功率比门限值。Aspect 2. The feedback parameter selection device according to aspect 1, wherein the feedback parameter selection device further includes a modulation and coding scheme threshold unit, and the modulation and coding scheme threshold unit is used to obtain the effective carrier corresponding to each modulation and coding scheme Interference noise power ratio threshold.

方面3、根据方面1所述的反馈参数选择装置,其特征在于,所述有效载波干扰噪声功率比计算单元采用基于符号互信息的方法计算所述有效载波干扰噪声功率比。Aspect 3. The feedback parameter selection device according to aspect 1, wherein the effective carrier-to-interference-to-noise power ratio calculation unit calculates the effective carrier-to-interference-to-noise power ratio using a method based on symbol mutual information.

方面4、根据方面1所述的反馈参数选择装置,其特征在于,所述有效载波干扰噪声功率比计算单元采用指数合并的方法计算所述有效载波干扰噪声功率比。Aspect 4. The device for selecting feedback parameters according to aspect 1, wherein the effective carrier-to-interference-to-noise power ratio calculation unit calculates the effective carrier-to-interference-to-noise power ratio using an exponential combination method.

方面5、根据方面1所述的反馈参数选择装置,其特征在于,有效载波干扰噪声功率比计算单元将计算出的有效载波干扰噪声功率比与对应的预编码矩阵、调制编码方案和频带的组合相对应地存储在数据表中,所述筛选单元通过查找所述数据表对所述有效载波干扰噪声功率比进行筛选,所述反馈参数选择单元通过查找所述数据表来寻找最大的有效载波干扰噪声功率比,并从而确定与该最大的有效载波干扰噪声功率比对应的预编码矩阵、调制编码方案和频带的组合。Aspect 5. The feedback parameter selection device according to aspect 1, wherein the effective carrier-to-interference-to-noise power ratio calculation unit combines the calculated effective carrier-to-interference-to-noise power ratio with the corresponding precoding matrix, modulation and coding scheme, and frequency band Correspondingly stored in the data table, the screening unit screens the effective carrier-to-interference-to-noise power ratio by looking up the data table, and the feedback parameter selection unit searches for the largest effective carrier-to-interference noise power ratio by looking up the data table Noise power ratio, and thus determine the combination of precoding matrix, modulation and coding scheme and frequency band corresponding to the maximum effective carrier-to-interference and noise power ratio.

方面6、一种反馈参数选择方法,用于接收机,其中,所述反馈参数选择方法包括:Aspect 6. A feedback parameter selection method for a receiver, wherein the feedback parameter selection method includes:

有效载波干扰噪声功率比计算步骤,用于计算分别与接收机可以选择的预编码矩阵、调制编码方案和频带的各组合相对应的多个有效载波干扰噪声功率比;An effective carrier-to-interference-to-noise power ratio calculation step, which is used to calculate a plurality of effective carrier-to-interference-to-noise power ratios corresponding to each combination of a precoding matrix, a modulation coding scheme and a frequency band that can be selected by the receiver;

筛选步骤,根据与各调制编码方案对应的有效载波干扰噪声功率比门限值,对所述多个有效载波干扰噪声功率比进行筛选;以及The screening step is to screen the plurality of effective carrier-to-interference noise power ratios according to the effective carrier-to-interference noise power ratio threshold value corresponding to each modulation and coding scheme; and

反馈参数选择步骤,取得经筛选的有效载波干扰噪声功率比中的最大的有效载波干扰噪声功率比,将该最大的有效载波干扰噪声功率比对应的预编码矩阵、调制编码方案和频带的组合选择为要反馈的预编码矩阵、调制编码方案和频带的组合。The feedback parameter selection step is to obtain the maximum effective carrier-to-interference-to-noise power ratio in the screened effective carrier-to-interference-to-noise power ratio, and select the combination of the precoding matrix, modulation and coding scheme and frequency band corresponding to the maximum effective carrier-to-interference-to-noise power ratio is the combination of precoding matrix, modulation and coding scheme and frequency band to be fed back.

方面7、根据方面6所述的反馈参数选择方法,其特征在于,所述反馈参数选择步骤还包括调制编码方案门限获取步骤,所述调制编码方案门限获取步骤用于获得各调制编码方案对应的有效载波干扰噪声功率比门限值。Aspect 7. The feedback parameter selection method according to aspect 6, wherein the feedback parameter selection step further includes a modulation and coding scheme threshold acquisition step, and the modulation and coding scheme threshold acquisition step is used to obtain the corresponding modulation and coding schemes. The effective carrier-to-interference-to-noise power ratio threshold.

方面8、根据方面6所述的反馈参数选择方法,其特征在于,所述有效载波干扰噪声功率比计算步骤采用基于平均的方法、基于信道容量的方法和基于符号互信息的方法计算所述有效载波干扰噪声功率比。Aspect 8. The feedback parameter selection method according to aspect 6, wherein the step of calculating the effective carrier-to-interference-to-noise power ratio adopts an average-based method, a channel capacity-based method, and a symbol-based mutual information-based method to calculate the effective Carrier to Interference to Noise Power Ratio.

方面9、根据方面6所述的反馈参数选择方法,其特征在于,所述有效载波干扰噪声功率比计算步骤采用指数合并的方法计算所述有效载波干扰噪声功率比。Aspect 9. The feedback parameter selection method according to aspect 6, wherein the step of calculating the effective carrier-to-interference-to-noise power ratio adopts an exponential combination method to calculate the effective carrier-to-interference-to-noise power ratio.

方面10、根据方面6所述的反馈参数选择方法,其特征在于,有效载波干扰噪声功率比计算步骤将计算出的有效载波干扰噪声功率比与对应的预编码矩阵、调制编码方案和频带的组合相对应地存储在数据表中,所述筛选步骤通过查找所述数据表对所述有效载波干扰噪声功率比进行筛选,所述反馈参数选择步骤通过查找所述数据表来寻找最大的有效载波干扰噪声功率比,并从而确定与该最大的有效载波干扰噪声功率比对应的预编码矩阵、调制编码方案和频带的组合。Aspect 10. The feedback parameter selection method according to aspect 6, wherein the effective carrier-to-interference-to-noise power ratio calculation step combines the calculated effective carrier-to-interference-to-noise power ratio with the corresponding precoding matrix, modulation and coding scheme and frequency band Correspondingly stored in the data table, the screening step screens the effective carrier-to-interference-to-noise power ratio by looking up the data table, and the feedback parameter selection step searches for the maximum effective carrier-to-interference by looking up the data table Noise power ratio, and thus determine the combination of precoding matrix, modulation and coding scheme and frequency band corresponding to the maximum effective carrier-to-interference and noise power ratio.

参照后文的说明和附图,本发明的这些和进一步的方面和特征将变得更加清楚。在所述的说明和附图中,详细公开了本发明的特定实施方式,指明了本发明的原理可以被采用的方式。应该理解,本发明在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本发明包括许多改变、修改和等同。These and further aspects and features of the invention will become more apparent with reference to the following description and drawings. In the description and drawings, specific embodiments of the invention are disclosed in detail, indicating the manner in which the principles of the invention may be employed. It should be understood that the invention is not thereby limited in scope. The invention embraces many changes, modifications and equivalents within the spirit and scope of the appended claims.

针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。Features described and/or illustrated with respect to one embodiment can be used in the same or similar manner in one or more other embodiments, in combination with, or instead of features in other embodiments .

应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。It should be emphasized that the term "comprising/comprising" when used herein refers to the presence of a feature, integer, step or component, but does not exclude the presence or addition of one or more other features, integers, steps or components.

本发明的实施方式将三种量的选择联合起来,采用统一的量去评估,从而可以选出最优化的PMI/MCS/频带,在一定程度上提高了系统的吞吐量或链路的可靠性。The embodiment of the present invention combines the selection of the three quantities and uses a unified quantity to evaluate, so that the optimal PMI/MCS/frequency band can be selected, which improves the throughput of the system or the reliability of the link to a certain extent .

进一步,本发明的实施方式通过搜索三维表的形式,仅需要涉及简单的比较操作,从而使接收端的电路设计更为简单。Further, the embodiment of the present invention only needs to involve a simple comparison operation by searching the form of a three-dimensional table, so that the circuit design of the receiving end is simpler.

附图说明Description of drawings

图1示出了典型的带反馈的MIMO-OFDM系统;Figure 1 shows a typical MIMO-OFDM system with feedback;

图2示出了依据本发明一种实施方式的反馈参数选择装置;Fig. 2 shows a feedback parameter selection device according to an embodiment of the present invention;

图3示出了依据本发明的一种实施方式计算ECINR的流程图;Fig. 3 shows the flowchart of calculating ECINR according to an embodiment of the present invention;

图4示出了依据本发明的另一种实施方式计算ECINR的流程图;Fig. 4 shows the flowchart of calculating ECINR according to another embodiment of the present invention;

图5示出了ECINR_BLER图的一个示例;Figure 5 shows an example of an ECINR_BLER graph;

图6给出了依据本发明的一种实施方式的筛选单元进行的处理的示意性流程图;Fig. 6 has provided the schematic flowchart of the processing that the screening unit carries out according to an embodiment of the present invention;

图7示出了依据本发明一种实施方式的反馈参数选择方法;以及Figure 7 shows a feedback parameter selection method according to an embodiment of the present invention; and

图8示出了对于不同的调制方式,CINR与符号比的一种示意性关系。Fig. 8 shows a schematic relationship between CINR and symbol ratio for different modulation schemes.

具体实施方式Detailed ways

以下结合附图对本发明实施进行详细描述。The implementation of the present invention will be described in detail below in conjunction with the accompanying drawings.

图2示出了依据本发明一种实施方式的反馈参数选择装置,可以用作图1所示的反馈参数选择单元111。如图2所示,依据本发明一种实施方式的反馈参数选择单元包括ECINR计算单元201、MCS门限单元202、筛选单元203、联合搜索单元204。FIG. 2 shows a feedback parameter selection device according to an embodiment of the present invention, which can be used as the feedback parameter selection unit 111 shown in FIG. 1 . As shown in FIG. 2 , the feedback parameter selection unit according to an embodiment of the present invention includes an ECINR calculation unit 201 , an MCS threshold unit 202 , a screening unit 203 , and a joint search unit 204 .

ECINR计算单元201根据接收机通过信道估计模块估出的频域信道,计算出分别与PMI、MCS和BAND的各种组合相对应的多个ECINR(有效载波干扰噪声功率比)值。其中ECINR用来表征信道链路质量,其计算可以利用指数合并的方法和基于符号互信息的方法等实现。在一种实施方式中,对于指数合并的方法,可以例如利用以下公式(1)来实现:The ECINR calculation unit 201 calculates a plurality of ECINR (effective carrier to interference and noise power ratio) values corresponding to various combinations of PMI, MCS and BAND according to the frequency domain channel estimated by the receiver through the channel estimation module. Among them, ECINR is used to represent the channel link quality, and its calculation can be realized by using the method of index combination and the method based on symbolic mutual information. In one embodiment, for the method of index consolidation, it can be implemented, for example, by using the following formula (1):

ECINRECINR == -- ββ lnln (( 11 NN ΣΣ nno == 11 NN ee -- (( CINRCINR nno ββ )) )) -- -- -- (( 11 ))

其中N是一个频带中包含的子载波总数,n是频带内子载波的序号,β是与MCS相关联的参数,针对不同的MCS采用不同的β来计算ECINR值。CINRn是该频带内第n个子载波对应的CINR值,采用不同的预编码矩阵可以得到不同的CINR值。可以采用本领域技术人员所知的所有方法来进行CINR值计算。这样在计算ECINR的过程中,根据不同的BAND、MCS和预编码矩阵,可以得到不同的ECINR值。Where N is the total number of subcarriers included in a frequency band, n is the serial number of the subcarriers in the frequency band, β is a parameter associated with the MCS, and different β is used to calculate the ECINR value for different MCSs. CINR n is the CINR value corresponding to the nth subcarrier in the frequency band, and different CINR values can be obtained by using different precoding matrices. All methods known to those skilled in the art can be used for CINR value calculation. In this way, in the process of calculating the ECINR, different ECINR values can be obtained according to different BAND, MCS and precoding matrix.

以2个发射天线、2个接收天线的情况为例,假定第k个子载波上的信道响应如以下公式(2)所示。Taking the case of 2 transmitting antennas and 2 receiving antennas as an example, it is assumed that the channel response on the kth subcarrier is as shown in the following formula (2).

Hh kk == hh kk 1111 hh kk 1212 hh kk 21twenty one hh kk 22twenty two -- -- -- (( 22 ))

其中,

Figure B2009101719020D0000073
表示第k个子载波上第j根发送天线到第i根接收天线的信道响应。在多天线传输方案中,根据信道状况,会分成多种Rank(秩)。Rank表征了单位天线单位时间/子载波上传送的信息符号数,不同的Rank对应的方式不同。例如,Rank-1在多个天线上传输的同样的信息,Rank-2在多个天线上传输不同的信息。in,
Figure B2009101719020D0000073
Indicates the channel response from the j-th transmit antenna to the i-th receive antenna on the k-th subcarrier. In the multi-antenna transmission scheme, according to channel conditions, it will be divided into multiple Ranks. Rank represents the number of information symbols transmitted per antenna unit time/subcarrier, and different Ranks correspond to different methods. For example, Rank-1 transmits the same information on multiple antennas, while Rank-2 transmits different information on multiple antennas.

对于Rank-1:设码书中第l个预编码矢量为

Figure B2009101719020D0000074
则等效信道表达式为:For Rank-1: Let the l-th precoding vector in the codebook be
Figure B2009101719020D0000074
Then the equivalent channel expression is:

Figure B2009101719020D0000075
在接收端采用最大比合并,则相应的CINR表达式为:
Figure B2009101719020D0000076
Figure B2009101719020D0000075
The maximum ratio combining is adopted at the receiving end, and the corresponding CINR expression is:
Figure B2009101719020D0000076

其中,l是预编码矢量在码书中的索引,k表示子载波编号,δ2表示高斯白噪声功率。Among them, l is the index of the precoding vector in the codebook, k represents the subcarrier number, and δ2 represents the Gaussian white noise power.

对于Rank-2:设码书中第l个预编码矢量为

Figure B2009101719020D0000081
则等效信道表达式为:For Rank-2: Let the l-th precoding vector in the codebook be
Figure B2009101719020D0000081
Then the equivalent channel expression is:

Hh ^^ kk == Hh kk PP ll == hh kk 1111 pp 1111 ll ++ hh kk 1212 pp 21twenty one ll hh kk 1111 pp 1212 ll ++ hh kk 1212 pp 22twenty two ll hh kk 21twenty one pp 1111 ll ++ hh kk 22twenty two pp 21twenty one ll hh kk 21twenty one pp 1212 ll ++ hh kk 22twenty two pp 22twenty two ll

在接收端采用最小均方误差(MMSE,Minimum Mean Square Error)检测,检测矩阵为

Figure B2009101719020D0000083
则相应的CINR表达式为:
Figure B2009101719020D0000084
Figure B2009101719020D0000085
其中[A]i,j表示矩阵A中第(i,j)个元素。The minimum mean square error (MMSE, Minimum Mean Square Error) detection is used at the receiving end, and the detection matrix is
Figure B2009101719020D0000083
Then the corresponding CINR expression is:
Figure B2009101719020D0000084
Figure B2009101719020D0000085
Where [A] i, j represents the (i, j)th element in matrix A.

对于Rank-1: ECINR ( band , mcs , pmi ) = - β mcs ln ( 1 N Σ n = band ( 1 ) band ( N ) e - ( CINR ( pmi , n ) β mcs ) ) For Rank-1: ECINR ( band , mcs , pmi ) = - β mcs ln ( 1 N Σ no = band ( 1 ) band ( N ) e - ( CINR ( pmi , no ) β mcs ) )

对于Rank-2: ECINR ( band , mcs , pmi ) = - β mcs ln ( 1 2 N Σ n = band ( 1 ) band ( N ) ( e - ( CINR 1 ( pmi , n ) β mcs ) + e - ( CINR 2 ( pmi , n ) β mcs ) ) ) For Rank-2: ECINR ( band , mcs , pmi ) = - β mcs ln ( 1 2 N Σ no = band ( 1 ) band ( N ) ( e - ( CINR 1 ( pmi , no ) β mcs ) + e - ( CINR 2 ( pmi , no ) β mcs ) ) )

这样通过固定PMI而改变频带和MCS,可以得到与一个固定PMI相对应的多个ECINR。然后改变PMI,可以得到与改变后的PMI相对应的多个ECINR,反复这样的过程,可以得到分别与各PMI对应的多组ECINR。In this way, by changing the frequency band and MCS by fixing the PMI, multiple ECINRs corresponding to one fixed PMI can be obtained. Then, by changing the PMI, multiple ECINRs corresponding to the changed PMI can be obtained. By repeating this process, multiple sets of ECINRs respectively corresponding to each PMI can be obtained.

图3示出了ECINR计算单元201计算分别与PMI、MCS和BAND的各种组合相对应的多个ECINR的一种示意性方法的示意性流程图。FIG. 3 shows a schematic flowchart of an exemplary method for the ECINR calculating unit 201 to calculate multiple ECINRs corresponding to various combinations of PMI, MCS and BAND.

如图3所示,首先,在步骤S301,进行初始化,即将MCS、PMI和频带都设定为第一种(在本实施方式中,令MCS、PMI和频带的索引值mcs=0、pmi=0和band=0)。然后在步骤S302,计算当前频带的各子载波的CINR(pmi,band(n)),并从而计算当前频带的ECINR,随后在步骤S303,增加band,即指定到下一频带,并在步骤S304,判断是否对于当前的PMI和MCS,已完成针对所有频带的运算,即判断是否band=B,这里B是信道的频带总数。如果还没有完成针对所有频带的运算(步骤S304,否),则返回步骤S302,计算针对下一频带的ECINR。如果已完成针对所有频带的运算(步骤S304,是),则进入步骤S305,增加mcs,即指向下一MCS,并在步骤S306判断是否已经针对所有的MCS进行了运算,即判断mcs是否等于M,这里M是MCS种类的总数。如果判断还没有对所有的MCS进行了运算(步骤S306,否),则返回步骤S302,进行针对MCS运算ECINR。如果判断出已经完成了对所有的MCS的运算(步骤S306,是),则进入步骤S307,增加pmi,即指向下一PMI,并在步骤S308判断是否已经针对所有的PMI进行了运算,即判断pmi是否等于P,这里P是PMI的总数。如果判断还没有对所有的PMI进行了运算(步骤S308,否),则返回步骤S302,进行该PMI重复以上的步骤S302-S308。如果判断出已经完成了对所有的PMI的运算(步骤S308,是),则返回所运算出的所有ECINR,并结束处理。As shown in Figure 3, at first, in step S301, carry out initialization, promptly MCS, PMI and frequency band are all set as the first kind (in this embodiment, make the index value mcs=0 of MCS, PMI and frequency band, pmi= 0 and band=0). Then in step S302, calculate the CINR (pmi, band(n)) of each subcarrier of the current frequency band, and thereby calculate the ECINR of the current frequency band, then in step S303, increase band, promptly specify to the next frequency band, and in step S304 , judging whether the calculations for all frequency bands have been completed for the current PMI and MCS, that is, judging whether band=B, where B is the total number of frequency bands of the channel. If the calculations for all frequency bands have not been completed (step S304, No), return to step S302 to calculate the ECINR for the next frequency band. If have finished computing (step S304, yes) for all frequency bands, then enter step S305, increase mcs, promptly point to next MCS, and judge in step S306 whether computing has been carried out for all MCS, promptly judge whether mcs is equal to M , where M is the total number of MCS species. If it is judged that calculations have not been performed on all MCSs (step S306, No), then return to step S302 to calculate the ECINR for MCSs. If it is judged that the calculations to all MCSs have been completed (step S306, yes), then enter step S307, increase pmi, promptly point to the next PMI, and judge in step S308 whether calculations have been carried out for all PMIs, i.e. judge Is pmi equal to P, where P is the total number of PMI. If it is judged that calculations have not been performed on all PMIs (step S308, No), return to step S302, and repeat the above steps S302-S308 for this PMI. If it is judged that the calculations on all PMIs have been completed (step S308, Yes), all calculated ECINRs are returned, and the processing ends.

上面的说明只是示例性的,可以采用不同的顺序计算与接收机可以使用的PMI、MCS和频带的各组合相对应的多个ECINR。图4示出了依据本发明的另一种实施方式计算ECINR的流程图。The above description is only exemplary, and a plurality of ECINRs corresponding to each combination of PMI, MCS, and frequency band usable by the receiver may be calculated in a different order. Fig. 4 shows a flow chart of calculating ECINR according to another embodiment of the present invention.

如图4所示,首先,在步骤S401,进行初始化,即将MCS、PMI和频带都设定为第一种(在本实施方式中,令MCS、预编码矩阵和频带的索引值mcs=0、pmi=0和band=0)。然后在步骤S402,计算当前频带的各子载波的CINR(pmi,band(n)),并在步骤S403计算当前频带的ECINR,随后在步骤S404,增加mcs,即指定到下一MCS,并在步骤S405,判断是否对于当前的频带,已完成了针对所有MCS的运算,即判断是否mcs=M,这里M是接收机可以使用的mcs的总数。如果还没有完成针对所有MCS的运算(步骤S405,否),则返回步骤S403,计算针对下一MCS,当前频带的ECINR。如果已完成针对所有MCS的运算(步骤S405,是),则进入步骤S406,增加band,即指向下一频带,并在步骤S407判断是否已经针对所有的频带进行了运算,即判断band是否等于B,这里B是信道的频带总数。如果判断还没有对所有的频带进行过运算(步骤S407,否),则返回步骤S402,进行下一频带的各子载波的CINR运算。如果判断出已经完成了对所有的频带的运算(步骤S407,是),则进入步骤S408,增加pmi,即指向下一PMI,并在步骤S409判断是否已经针对所有的PMI进行了运算,即判断pmi是否等于P,这里P是PMI的总数。如果判断还没有对所有的PMI进行了运算(步骤S409,否),则返回步骤S402,进行该PMI重复以上的步骤S402-S409。如果判断出已经完成了对所有的PMI的运算(步骤S409,是),则返回所运算出的所有ECINR,并结束处理。As shown in Figure 4, first, in step S401, initialization is performed, that is, the MCS, PMI and frequency band are all set as the first type (in this embodiment, the index values of MCS, precoding matrix and frequency band mcs=0, pmi=0 and band=0). Then in step S402, calculate the CINR (pmi, band(n)) of each subcarrier of the current frequency band, and calculate the ECINR of the current frequency band in step S403, then in step S404, increase mcs, promptly specify to the next MCS, and Step S405, judging whether the calculations for all MCSs have been completed for the current frequency band, that is, judging whether mcs=M, where M is the total number of mcs that the receiver can use. If the calculations for all MCSs have not been completed (step S405, No), return to step S403 to calculate the ECINR of the current frequency band for the next MCS. If have finished computing (step S405, yes) for all MCSs, then enter step S406, increase band, promptly point to next frequency band, and judge in step S407 whether computing has been carried out for all frequency bands, promptly judge whether band is equal to B , where B is the total number of frequency bands of the channel. If it is determined that calculations have not been performed on all frequency bands (step S407, No), return to step S402 to perform CINR calculations for each subcarrier in the next frequency band. If it is judged that the computing to all frequency bands has been completed (step S407, yes), then enter step S408, increase pmi, promptly point to the next PMI, and judge whether computing has been carried out for all PMIs in step S409, promptly judge Is pmi equal to P, where P is the total number of PMI. If it is judged that all PMIs have not been calculated (step S409, No), then return to step S402, and repeat the above steps S402-S409 for this PMI. If it is judged that the calculations on all PMIs have been completed (step S409, Yes), all calculated ECINRs are returned, and the processing ends.

这样如公式3所示,根据不同的频带、MCS和PMI,可以得到不同的ECINR值。In this way, as shown in formula 3, different ECINR values can be obtained according to different frequency bands, MCS and PMI.

ECINRECINR (( bandband ,, mcsmcs ,, pmipmi )) == -- ββ mcsmcs lnln (( 11 NN ΣΣ nno == bandband (( 11 )) bandband (( NN )) ee -- (( CINRCINR (( pmipmi ,, bandband (( nno )) )) ββ mcsmcs )) )) -- -- -- (( 33 ))

计算所得就是相应ECINR为元素的三维表。例如该三维表可以表现为:The calculated result is a three-dimensional table with corresponding ECINR elements. For example, the three-dimensional table can be expressed as:

表1Table 1

 频带索引Band Index   MCS索引MCS index   PMI索引PMI index  ECINR值ECINR value  频带索引1Band Index 1   MCS索引1MCS index 1   PMI索引1PMI index 1  值1value 1  频带索引1Band Index 1   MCS索引1MCS index 1   PMI索引2PMI index 2  值2value 2   ......  ......  频带索引1Band Index 1   MCS索引2MCS index 2   PMI索引1PMI index 1  值P+1Value P+1   ......   ......  ......  频带索引2Band Index 2   MCS索引1MCS index 1   PMI索引1PMI index 1  值P×M+1Value P×M+1   ......   ......  ......  频带索引NBand Index N   MCS索引MMCS index M   PMI索引PPMI index P  值P×M×NValue P×M×N

该表可以存储在接收机的存储装置中,也可以存储在专用的寄存器中。The table can be stored in the storage device of the receiver or in a dedicated register.

上表以索引的方式进行存储,还需要另外的表将索引与所索引的内容相关联。另外,也可以直接将索引的内容存储在该表中,而不采用索引的方式。例如可以将MCS索引列改为MCS列,并用QPSK 1/2取代MCS索引1,用QPSK 3/4取代MCS索引2等等。The above table is stored as an index, and another table is required to associate the index with the indexed content. In addition, the content of the index can also be directly stored in the table without using an index. For example, you can change the MCS index column to MCS column, and replace MCS index 1 with QPSK 1/2, replace MCS index 2 with QPSK 3/4, and so on.

另外,可以利用基于符号互信息等的方法计算ECINR。In addition, the ECINR can be calculated using a method based on symbolic mutual information or the like.

当采用基于符号互信息(Symbol information,SI)的方法计算ECINR时,可以基于以下的公式(6):When using the method based on symbol information (Symbol information, SI) to calculate ECINR, it can be based on the following formula (6):

ECINR ( band , mcs , pmi ) = 1 N Σ n = band ( 1 ) band ( N ) SI ( pmi , band ( n ) ) (6) ECINR ( band , mcs , pmi ) = 1 N Σ no = band ( 1 ) band ( N ) Si ( pmi , band ( no ) ) (6)

== 11 NN ΣΣ nno == bandband (( 11 )) bandband (( NN )) γγ mcsmcs (( CINRCINR (( pmipmi ,, bandband (( nno )) )) ))

其中γmcs是CINR到SI的映射函数,随着调制方式变化。图8示出了对于不同的调制方式,CINR与SI的一种示意性关系。对于受益于对本发明前面的实施方式的描述的本领域技术人员来说,可以根据公式6构思出类似图3和图4的流程图,因而这里不再进行更加详细的描述。Among them, γ mcs is the mapping function from CINR to SI, which varies with the modulation mode. Fig. 8 shows a schematic relationship between CINR and SI for different modulation schemes. Those skilled in the art who have benefited from the description of the previous embodiments of the present invention can conceive a flowchart similar to that of FIG. 3 and FIG. 4 according to Equation 6, so no more detailed description will be made here.

MCS门限单元202获得与各MCS对应的ECINR门限,MCS门限单元202可以根据不同的MCS选择策略(如最大化吞吐量、目标BLER/BER(误块率/误码率)准则、考虑HARQ的目标BLER/BER准则),从而计算出不同的MCS所对应的ECINR门限。The MCS threshold unit 202 obtains the ECINR threshold corresponding to each MCS, and the MCS threshold unit 202 can select strategies according to different MCSs (such as maximizing throughput, target BLER/BER (block error rate/bit error rate) criterion, considering the target of HARQ BLER/BER criteria), so as to calculate the corresponding ECINR thresholds of different MCS.

可以利用公式计算ECINR门限。例如当BLER不超过10%时,可以根据下式进行计算。The ECINR threshold can be calculated using the formula. For example, when the BLER does not exceed 10%, it can be calculated according to the following formula.

SelectedSelected __ mcsmcs == argarg maxmax mcsmcs &Element;&Element; MCSMCS {{ RR mcsmcs &CenterDot;&Center Dot; (( 11 -- BLERBLER mcsmcs (( ECINRECINR )) )) || BLERBLER mcsmcs (( ECINRECINR )) << 1010 %% ))

其中selected_mcs是特定MCS方式,arg_max是数学表达形式,表示求最大,在上面的公式中具体表示在MCS集内找到满足BLER<10%的,并令表达式最大mcs的意思。Rmcs是指mcs对应的符号速率。BLERmcs(ECINR)指对于mcs,ECINR所对应的BLER。Among them, selected_mcs is a specific MCS method, and arg_max is a mathematical expression form, which means to seek the maximum. In the above formula, it specifically means to find the MCS set that satisfies BLER<10%, and make the expression the maximum mcs. R mcs refers to the symbol rate corresponding to mcs. BLER mcs (ECINR) refers to the BLER corresponding to mcs, ECINR.

另外,可以配合ECINR_BLER图(预先仿真得出),根据BLER要求确定相应的MCS对应ECINR门限值。In addition, the ECINR threshold corresponding to the MCS can be determined according to the requirements of the BLER in conjunction with the ECINR_BLER diagram (obtained by pre-simulation).

图5示出了ECINR_BLER图的一个示例。如图5所示,要求BLER小于10%时,对于64QAM 2/3,其门限值大约为16。Figure 5 shows an example of the ECINR_BLER map. As shown in Figure 5, when the BLER is required to be less than 10%, the threshold is about 16 for 64QAM 2/3.

另外,也可以预先根据各准则确定好与各MCS对应的ECINR门限,并保存在存储器中。在这种情况下,MCS门限单元202可以是一存储单元。假设系统一共有8种MCS,则例如可以得到下表2:In addition, the ECINR threshold corresponding to each MCS may also be determined in advance according to each criterion, and stored in a memory. In this case, the MCS threshold unit 202 may be a storage unit. Assuming that the system has a total of 8 types of MCS, the following table 2 can be obtained, for example:

表2Table 2

  MCS索引MCS index   MCSMCS   ECINR门限ECINR threshold   1 1   QPSK 1/2QPSK 1/2   T1 T 1   2 2   QPSK 3/4QPSK 3/4   T2 T 2   33   16QAM 1/216QAM 1/2   T3 T 3   44   16QAM 3/416QAM 3/4   T4 T 4   55   64QAM 1/264QAM 1/2   T5 T 5   66   64QAM 2/364QAM 2/3   T6 T 6   77   64QAM 3/464QAM 3/4   T7 T 7   8 8   64QAM 5/664QAM 5/6   T8 T 8

其中门限的含义在于只有测得的ECINR值大于相应的门限,才可以采用对应的MCS方式进行传输。The meaning of the threshold is that only when the measured ECINR value is greater than the corresponding threshold, the corresponding MCS mode can be used for transmission.

MCS门限单元202也可以是输入单元,通过该输入单元输入各MCS对应的门限值。The MCS threshold unit 202 may also be an input unit, through which the threshold values corresponding to each MCS are input.

筛选单元203利用MCS门限单元202所得的MCS_ECINR门限表对ECINR计算单元201计算得到的ECINR三维表进行筛选。筛选单元203主要是用来去除ECINR三维表中不合理的元素。按照MCS门限单元202得到的门限表,只有ECINR值达到一定要求才能支持相应的MCS,因此需要对三维表中ECINR值不足以支撑与其对应的MCS的记录予以去除。The screening unit 203 uses the MCS_ECINR threshold table obtained by the MCS threshold unit 202 to screen the three-dimensional ECINR table calculated by the ECINR calculation unit 201 . The screening unit 203 is mainly used to remove unreasonable elements in the ECINR three-dimensional table. According to the threshold table obtained by the MCS threshold unit 202, the corresponding MCS can only be supported if the ECINR value meets a certain requirement. Therefore, records in the three-dimensional table whose ECINR value is insufficient to support the corresponding MCS need to be removed.

图6给出了依据本发明的一种实施方式的筛选单元进行的处理的示意性流程图。首先,在步骤S601,从ECINR三维表取出第一条记录,然后在步骤S602,将该记录的ECINR值与MCS_ECINR门限表中具有与该第一条记录中的MCS索引相同的MCS索引的记录的ECINR门限进行比较。如果小于该门限值(步骤S602,否),则在步骤S603标记删除该条记录,并在步骤S604判断是否已处理完ECINR三维表中所有的记录。如果还没有处理完ECINR三维表中所有的记录(步骤S604,否),则取出ECINR三维表的下一条记录,并返回步骤S602,针对该下一条记录重复步骤S602-S605。另一方面,如果在步骤S602,判断出当前记录的ECINR值小于该门限值,则直接进入步骤S604。而如果在步骤S604判断出已处理完ECINR三维表中所有的记录,则结束处理。Fig. 6 shows a schematic flowchart of the processing performed by the screening unit according to an embodiment of the present invention. First, in step S601, the first record is taken out from the ECINR three-dimensional table, and then in step S602, the ECINR value of the record is compared with the record in the MCS_ECINR threshold table that has the same MCS index as the MCS index in the first record ECINR threshold for comparison. If it is less than the threshold value (step S602, No), then mark and delete the record in step S603, and judge in step S604 whether all the records in the three-dimensional ECINR table have been processed. If all the records in the ECINR three-dimensional table have not been processed (step S604, No), then take out the next record in the ECINR three-dimensional table, and return to step S602, and repeat steps S602-S605 for the next record. On the other hand, if in step S602, it is judged that the currently recorded ECINR value is less than the threshold value, then go directly to step S604. And if it is determined in step S604 that all the records in the ECINR three-dimensional table have been processed, the processing ends.

尽管以上对ECINR的筛选是在选择最大ECINR之前进行的,但也可以在选择出最大ECINR之后进行。例如在选出最大ECINR后,判断该最大ECINR是否大于与该最大ECINR相对应的MCS所对应的ECINR门限,而进行筛选。Although the above screening of ECINR is performed before selecting the maximum ECINR, it can also be performed after the selection of the maximum ECINR. For example, after the maximum ECINR is selected, it is judged whether the maximum ECINR is greater than the ECINR threshold corresponding to the MCS corresponding to the maximum ECINR, and screening is performed.

联合搜索单元204在经筛选单元203筛选过的三维表中,查找ECINR值最大的记录,将该记录对应的PMI/MCS/频带值选作最终的PMI/MCS/频带值。The joint search unit 204 searches the three-dimensional table screened by the screening unit 203 for the record with the largest ECINR value, and selects the PMI/MCS/frequency band value corresponding to the record as the final PMI/MCS/frequency band value.

图7示出了依据本发明一种实施方式的反馈参数选择方法。如图7所示,首先,在步骤S701,计算分别与接收机可以使用的PMI、MCS和频带的各组合相对应的多个ECINR。然后在步骤S702,根据与各MCS对应的ECINR门限值,对这些ECINR进行筛选,最后在步骤S703,取得经筛选的ECINR中的最大值,将该最大值对应的PMI、MCS和频带的组合确定为所反馈的参数组合。Fig. 7 shows a feedback parameter selection method according to an embodiment of the present invention. As shown in FIG. 7 , first, in step S701 , a plurality of ECINRs corresponding to combinations of PMI, MCS, and frequency bands that can be used by the receiver are calculated. Then in step S702, these ECINRs are screened according to the ECINR threshold values corresponding to each MCS, and finally in step S703, the maximum value among the screened ECINRs is obtained, and the combination of PMI, MCS and frequency band corresponding to the maximum value Determined as the feedback parameter combination.

以上对本发明实施方式的说明只是示例性的,目的是为了使本领域的技术人员对本发明的实施方式的实现有清楚的了解,在文中没有描述那些对实现本发明实施方式所涉及的装置(如接收机)工作所必须但对于本领域技术人员来说都清楚的其它部件。The above description of the embodiments of the present invention is only exemplary, and the purpose is to enable those skilled in the art to have a clear understanding of the implementation of the embodiments of the present invention, and those devices involved in implementing the embodiments of the present invention (such as other components necessary for the operation of the receiver) but are clear to those skilled in the art.

本发明实施方式以上的装置和方法可以由硬件(例如现场可编程逻辑部件等)实现,也可以由硬件结合软件(如执行程序的具有存储器的微芯片等)实现。本发明涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本发明还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。The above devices and methods in the embodiments of the present invention can be implemented by hardware (such as field programmable logic components, etc.), and can also be realized by combining hardware with software (such as a microchip with memory for executing programs, etc.). The present invention relates to such a computer-readable program that, when the program is executed by a logic component, enables the logic component to realize the above-mentioned device or constituent component, or enables the logic component to realize the above-mentioned various methods or steps. The present invention also relates to a storage medium for storing the above program, such as hard disk, magnetic disk, optical disk, DVD, flash memory and the like.

以上结合具体的实施方式对本发明进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本发明保护范围的限制。本领域技术人员可以根据本发明的精神和原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范围内。The present invention has been described above in conjunction with specific embodiments, but those skilled in the art should be clear that these descriptions are all exemplary and not limiting the protection scope of the present invention. Those skilled in the art can make various variations and modifications to the present invention according to the spirit and principle of the present invention, and these variations and modifications are also within the scope of the present invention.

Claims (10)

1.一种反馈参数选择装置,用于接收机,其中,所述反馈参数选择装置包括:1. A feedback parameter selection device for a receiver, wherein the feedback parameter selection device comprises: 有效载波干扰噪声功率比计算单元,用于计算分别与接收机能够选择的预编码矩阵、调制编码方案和频带的各组合相对应的多个有效载波干扰噪声功率比;An effective carrier-to-interference-to-noise power ratio calculation unit, which is used to calculate a plurality of effective carrier-to-interference-to-noise power ratios corresponding to each combination of a precoding matrix, a modulation coding scheme and a frequency band that can be selected by the receiver; 筛选单元,根据与各调制编码方案对应的有效载波干扰噪声功率比门限值,对所述多个有效载波干扰噪声功率比进行筛选;以及The screening unit is configured to screen the plurality of effective carrier-to-interference-to-noise power ratios according to the effective carrier-to-interference-to-noise power ratio threshold value corresponding to each modulation and coding scheme; and 反馈参数选择单元,取得经筛选的有效载波干扰噪声功率比中的最大的有效载波干扰噪声功率比,将该最大的有效载波干扰噪声功率比所对应的预编码矩阵、调制编码方案和频带的组合确定为要反馈的预编码矩阵、调制编码方案和频带的组合。The feedback parameter selection unit obtains the largest effective carrier-to-interference-to-noise power ratio among the screened effective carrier-to-interference-to-noise power ratios, and combines the precoding matrix, modulation and coding scheme, and frequency band corresponding to the largest effective carrier-to-interference-to-noise power ratio It is determined as a combination of a precoding matrix to be fed back, a modulation and coding scheme, and a frequency band. 2.根据权利要求1所述的反馈参数选择装置,其特征在于,所述反馈参数选择装置还包括调制编码方案门限单元,所述调制编码方案门限单元用于获得各调制编码方案对应的有效载波干扰噪声功率比门限值。2. The feedback parameter selection device according to claim 1, wherein the feedback parameter selection device further comprises a modulation and coding scheme threshold unit, and the modulation and coding scheme threshold unit is used to obtain the effective carrier corresponding to each modulation and coding scheme Interference noise power ratio threshold. 3.根据权利要求1所述的反馈参数选择装置,其特征在于,所述有效载波干扰噪声功率比计算单元采用基于符号互信息的方法计算所述有效载波干扰噪声功率比。3 . The feedback parameter selection device according to claim 1 , wherein the effective carrier-to-interference-to-noise power ratio calculation unit calculates the effective carrier-to-interference-to-noise power ratio by a method based on symbol mutual information. 4.根据权利要求1所述的反馈参数选择装置,其特征在于,所述有效载波干扰噪声功率比计算单元采用指数合并的方法计算所述有效载波干扰噪声功率比。4 . The feedback parameter selection device according to claim 1 , wherein the effective carrier-to-interference-to-noise power ratio calculation unit adopts an exponential combination method to calculate the effective carrier-to-interference-to-noise power ratio. 5.根据权利要求1所述的反馈参数选择装置,其特征在于,有效载波干扰噪声功率比计算单元将计算出的有效载波干扰噪声功率比与对应的预编码矩阵、调制编码方案和频带的组合相对应地存储在数据表中,所述筛选单元通过查找所述数据表,对所述有效载波干扰噪声功率比进行筛选,所述反馈参数选择单元通过查找所述数据表来寻找最大的有效载波干扰噪声功率比,并从而确定与该最大的有效载波干扰噪声功率比对应的预编码矩阵、调制编码方案和频带的组合。5. The feedback parameter selection device according to claim 1, wherein the effective carrier-to-interference-to-noise power ratio calculation unit calculates the effective carrier-to-interference-to-noise power ratio and the combination of the corresponding precoding matrix, modulation and coding scheme and frequency band Correspondingly stored in the data table, the screening unit screens the effective carrier-to-interference-to-noise power ratio by looking up the data table, and the feedback parameter selection unit searches for the largest effective carrier by looking up the data table Interference and noise power ratio, and thus determine the combination of precoding matrix, modulation and coding scheme and frequency band corresponding to the maximum effective carrier to interference and noise power ratio. 6.一种反馈参数选择方法,用于接收机,其中,所述反馈参数选择方法包括:6. A feedback parameter selection method for a receiver, wherein the feedback parameter selection method comprises: 有效载波干扰噪声功率比计算步骤,用于计算分别与接收机能够选择的预编码矩阵、调制编码方案和频带的各组合相对应的多个有效载波干扰噪声功率比;An effective carrier-to-interference-to-noise power ratio calculation step, which is used to calculate a plurality of effective carrier-to-interference-to-noise power ratios corresponding to each combination of a precoding matrix, a modulation coding scheme and a frequency band that can be selected by the receiver; 筛选步骤,根据与各调制编码方案对应的有效载波干扰噪声功率比门限值,对所述多个有效载波干扰噪声功率比进行筛选;以及The screening step is to screen the plurality of effective carrier-to-interference noise power ratios according to the effective carrier-to-interference noise power ratio threshold value corresponding to each modulation and coding scheme; and 反馈参数选择步骤,取得经筛选的有效载波干扰噪声功率比中的最大的有效载波干扰噪声功率比,将该最大的有效载波干扰噪声功率比所对应的预编码矩阵、调制编码方案和频带的组合选择为要反馈的预编码矩阵、调制编码方案和频带的组合。The feedback parameter selection step is to obtain the maximum effective carrier-to-interference-to-noise power ratio in the screened effective carrier-to-interference-to-noise power ratio, and the combination of the precoding matrix, modulation and coding scheme and frequency band corresponding to the maximum effective carrier-to-interference-to-noise power ratio The choice is a combination of precoding matrix, modulation coding scheme and frequency band to be fed back. 7.根据权利要求6所述的反馈参数选择方法,其特征在于,所述反馈参数选择步骤还包括调制编码方案门限获取步骤,所述调制编码方案门限获取步骤用于获得各调制编码方案对应的有效载波干扰噪声功率比门限值。7. The feedback parameter selection method according to claim 6, wherein the feedback parameter selection step also includes a modulation and coding scheme threshold acquisition step, and the modulation and coding scheme threshold acquisition step is used to obtain the corresponding modulation and coding scheme The effective carrier-to-interference-to-noise power ratio threshold. 8.根据权利要求6所述的反馈参数选择方法,其特征在于,所述有效载波干扰噪声功率比计算步骤采用基于符号互信息的方法计算所述有效载波干扰噪声功率比。8. The feedback parameter selection method according to claim 6, wherein the step of calculating the effective carrier-to-interference-to-noise power ratio adopts a method based on symbol mutual information to calculate the effective carrier-to-interference-to-noise power ratio. 9.根据权利要求6所述的反馈参数选择方法,其特征在于,所述有效载波干扰噪声功率比计算步骤采用指数合并的方法计算所述有效载波干扰噪声功率比。9. The feedback parameter selection method according to claim 6, characterized in that, the effective carrier-to-interference-to-noise power ratio calculation step adopts an exponential combination method to calculate the effective carrier-to-interference-to-noise power ratio. 10.根据权利要求6所述的反馈参数选择方法,其特征在于,有效载波干扰噪声功率比计算步骤将计算出的有效载波干扰噪声功率比与对应的预编码矩阵、调制编码方案和频带的组合相对应地存储在数据表中,所述筛选步骤通过查找所述数据表对所述有效载波干扰噪声功率比进行筛选,所述反馈参数选择步骤通过查找所述数据表来寻找最大的有效载波干扰噪声功率比,并从而确定与该最大的有效载波干扰噪声功率比对应的预编码矩阵、调制编码方案和频带的组合。10. The feedback parameter selection method according to claim 6, wherein the effective carrier-to-interference-to-noise power ratio calculation step calculates the effective carrier-to-interference-to-noise power ratio and the combination of the corresponding precoding matrix, modulation and coding scheme and frequency band Correspondingly stored in the data table, the screening step screens the effective carrier-to-interference-to-noise power ratio by looking up the data table, and the feedback parameter selection step searches for the maximum effective carrier-to-interference by looking up the data table Noise power ratio, and thus determine the combination of precoding matrix, modulation and coding scheme and frequency band corresponding to the maximum effective carrier-to-interference and noise power ratio.
CN2009101719020A 2009-09-18 2009-09-18 Feedback parameter selection device and feedback parameter selection method Pending CN102025456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009101719020A CN102025456A (en) 2009-09-18 2009-09-18 Feedback parameter selection device and feedback parameter selection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009101719020A CN102025456A (en) 2009-09-18 2009-09-18 Feedback parameter selection device and feedback parameter selection method

Publications (1)

Publication Number Publication Date
CN102025456A true CN102025456A (en) 2011-04-20

Family

ID=43866370

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009101719020A Pending CN102025456A (en) 2009-09-18 2009-09-18 Feedback parameter selection device and feedback parameter selection method

Country Status (1)

Country Link
CN (1) CN102025456A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008064819A1 (en) * 2006-11-30 2008-06-05 Nokia Siemens Networks Gmbh & Co. Kg Adaptive modulation and coding in a sc-fdma system
WO2009011514A2 (en) * 2007-07-13 2009-01-22 Lg Electronics Inc. Method of transmitting feedback information in multiple antenna system
WO2009023681A3 (en) * 2007-08-13 2009-05-22 Qualcomm Inc Mimo transmission with spatial pre-coding
WO2009083960A2 (en) * 2007-12-31 2009-07-09 Runcom Technologies Ltd. System and method for mode selection based on effective cinr
CN101510820A (en) * 2008-12-30 2009-08-19 普天信息技术研究院有限公司 Selection method of pre-encoding matrix

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008064819A1 (en) * 2006-11-30 2008-06-05 Nokia Siemens Networks Gmbh & Co. Kg Adaptive modulation and coding in a sc-fdma system
WO2009011514A2 (en) * 2007-07-13 2009-01-22 Lg Electronics Inc. Method of transmitting feedback information in multiple antenna system
WO2009023681A3 (en) * 2007-08-13 2009-05-22 Qualcomm Inc Mimo transmission with spatial pre-coding
WO2009083960A2 (en) * 2007-12-31 2009-07-09 Runcom Technologies Ltd. System and method for mode selection based on effective cinr
WO2009083959A2 (en) * 2007-12-31 2009-07-09 Runcom Technologies Ltd. Generalized eesm system and method
CN101510820A (en) * 2008-12-30 2009-08-19 普天信息技术研究院有限公司 Selection method of pre-encoding matrix

Similar Documents

Publication Publication Date Title
CN102271026B (en) Closed-loop adaptive transmission method for uplink of long term evolution advanced system
US9654193B2 (en) Structured MIMO codebook
KR101867392B1 (en) Method and terminal for feeding back channel state information
EP2158694B1 (en) Method and apparatus for feedback in closed loop transmitting
US9391679B2 (en) Variable size codebook for MIMO system
CN102882575B (en) For determining the method and apparatus of channel condition information
CN106464648B (en) Data transmission device in multi-user downlink cellular system
CN101212281B (en) Multi-input/multi-output system based communication method and device
CN103222201A (en) Method and apparatus for transmitting and receiving codebook subset restriction bitmap
Schwarz et al. Throughput maximizing feedback for MIMO OFDM based wireless communication systems
CN107181562A (en) A kind of CSI feedback method, precoding and device
CN101753259B (en) Precoding matrix selection method
CN104662953A (en) Feedback method and apparatus for channel state information
CN105933042B (en) Adaptive Limited Feedback new method based on sub-clustering in a kind of LTE system
CN102571674B (en) Limited Feedback multiple antennas ofdm system adaptive coding and modulating device and method
CN107222248A (en) Channel quality indicates to determine method and device, communication equipment
CN101997654B (en) Method and device for generating pre-coding matrix code book group
CN101656599B (en) Subchannel selection method and subchannel selection device and receiver using device
CN104092516B (en) A kind of nonopiate precoding codebook design method suitable for MU mimo systems
CN103036656A (en) Double-codebook multi-user multiple-input multiple-output (MU-MIMO) precoding method based on Schmidt orthonormalization
CN102025456A (en) Feedback parameter selection device and feedback parameter selection method
KR101359808B1 (en) Appratus and method for generating differential code-book in a multiple transmit and receive antenna system therefor transceive appratus and method
CN101969417A (en) Low-return self-adaptive multimode transmission method of MIMO-SCFDE (Multiple Input Multiple Output Single Carrier Frequency Domain Equilibrium) system
CN102868490B (en) Low-complexity sphere decoding detection method
Hu et al. A novel link adaptive transmission scheme in higher-order MIMO systems

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned

Effective date of abandoning: 20110420

C20 Patent right or utility model deemed to be abandoned or is abandoned