CN102024272A - 一种获取三维运动物体计算全息图的装置和方法 - Google Patents

一种获取三维运动物体计算全息图的装置和方法 Download PDF

Info

Publication number
CN102024272A
CN102024272A CN 201010289608 CN201010289608A CN102024272A CN 102024272 A CN102024272 A CN 102024272A CN 201010289608 CN201010289608 CN 201010289608 CN 201010289608 A CN201010289608 A CN 201010289608A CN 102024272 A CN102024272 A CN 102024272A
Authority
CN
China
Prior art keywords
dimensional
projections
projection
motion object
video camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 201010289608
Other languages
English (en)
Inventor
刘道金
黄素娟
赵景景
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN 201010289608 priority Critical patent/CN102024272A/zh
Publication of CN102024272A publication Critical patent/CN102024272A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Holo Graphy (AREA)
  • Image Analysis (AREA)

Abstract

本发明涉及一种获取三维运动物体计算全息图的装置和方法。本装置包括一台摄像机联接一台计算机,在被摄三维运动物体与摄像机之间设置一个环形微透镜阵列。本方法是利用微透镜阵列和中间视点投影合成技术同时获取三维物体的多幅投影,并根据三维傅里叶旋转抛物面获取三维物体频谱信息,从获取的投影频谱中提取三维物体的频谱信息填充二维矩阵,对该矩阵编码即可获得三维运动物体的计算全息图。这是一种获取信息简单和计算效率高的合成三维运动物体计算全息图方法。本方法主要工作过程:通过微透镜阵列和摄像机获取18幅投影并将投影信息传输到计算机中,计算机对特定位置处的投影信息进行提取并按顺序编号;采用中间视点投影合成技术获得相邻投影之间的合成图像,进而获得更多的三维运动物体的二维投影;对所有的投影进行傅里叶变换,从每幅投影频谱的物体区域处提取一个圆形的频谱信息并按特定顺序填充二维矩阵,获得包含三维场景深度信息的二维矩阵,对矩阵编码即可获得三维运动物体的计算全息图。

Description

一种获取三维运动物体计算全息图的装置和方法
技术领域
本发明涉及一种获取三维运动物体计算全息图的装置和方法,特别涉及到利用微透镜阵列和数字处理技术同时获取三维运动物体的多幅投影,并根据三维傅里叶旋转抛物面获取三维物体频谱的理论提取三维物体频谱信息,这是一种有效的减少了三维物体计算全息图合成成本和计算量的获取方法。
背景技术
图1表示记录三维物体的虚拟光学系统。设O(x,y,z)代表具有空间相位不变物体的反射强度,经过傅里叶变换后的频谱为:
g ( x 0 , y 0 ) = ∫ ∫ ∫ O ( x , y , z ) exp { - i 2 π λ [ x 0 x + y 0 y f - ( x 0 2 + y 0 2 ) z 2 f 2 ] } dxdydz - - - ( 1 )
是入射光的虚拟波长,f是三维物体和透镜之间的焦距。为获得上式与物光波O(x,y,z)的三维傅里叶变换频谱之间的关系,令u=x0/  f,v=y0/  f,式(1)可写作:
g ( u , v ) = ∫ ∫ ∫ O ( x , y , z ) exp { - i 2 π [ ux + vy - λ 2 ( u 2 + v 2 ) z ] } dxdydz
= { ∫ ∫ ∫ O ( x , y , z ) exp [ - i 2 π ( ux + vy + wz ) ] dxdydz } | w = - λ ( u 2 + v 2 ) / 2 - - - ( 2 )
= F [ O ( x , y , z ) ] | w = - λ ( u 2 + v 2 ) / 2
其中:
w=-λ(u2+v2)/2    (3)
F[·]代表三维傅里叶变换,式(2)代表三维傅里叶空间(u,v,w)的旋转抛物面,u-v平面如图5所示。因此,我们能够确定傅里叶平面上的波分布完全与O(x,y,z)的三维傅里叶空间上的抛物面等同。
利用上述原理,通过提取投影的频谱信息获取三维旋转抛物面上的信息,并编码得到三维物体的计算全息图。目前的技术是,通过一个拍摄系统的多角度旋转逐一获取三维物体的多幅投影,提取每幅投影的频谱信息并编码得到计算全息图。由于所需要的投影数量多,且不能同时拍摄三维物体的多幅投影,因此这种技术不能应用于三维运动物体的计算全息图获取。
发明内容
本发明的目的在于针对已有技术中的不足一一不能同时拍摄物体的多幅投影,提供一种通过微透镜阵列获取投影与投影合成技术相结合,获取三维运动物体计算全息图的装置和方法。
为达到上述目的,本发明的构思是:通过多透镜阵列获取投影并采用中间视点投影合成技术获得围绕视轴旋转的多幅投影;从每幅投影的频谱上提取一个全圆的频谱信息填充二维矩阵,并对矩阵编码获得三维物体计算全息图。
本发明的全息图获取方法,在投影的获取方面,利用微透镜阵列和摄像机同时获取一系列三维运动物体的二维投影,分别提取这些投影并按顺序编号、存贮,在相邻的两幅投影之间,采用运动补偿方法插入中间视点的投影图像;从每幅投影的频谱上提取一个全圆的频谱信息填充二维矩阵,并对矩阵编码获得三维运动物体的计算全息图。本发明的硬件包括以下单元,如图2示:
环形微透镜阵列单元:如图2单元3所示,微透镜阵列由18个微透镜紧密相连组成,每个微透镜的中心都在大环形上,且均匀分布。通过环形微透镜阵列单元,能够同时从多个不同的角度获得三维运动物体的场景信息。
摄像机单元:如图2单元4所示,摄像机放在环形中心的直线上,以摄像机的中心与微透镜阵列的环形中心连线为视轴,调节微透镜与视轴的夹角为;摄像机就可以同时获取18幅不同角度的三维场景的二维投影,将摄像机获取的投影存贮在计算机中。
计算机单元:如图2单元5所示,计算机将获取的投影进行处理。首先是在相邻图像之间进行一系列投影图像的合成,对相邻投影图像之间进行运动匹配和运动补偿获取合成的投影,然后把合成好的图像连同最初获取的18幅投影按顺序排列,最后根据计算全息图合成算法提取这些投影的频谱,编码成三维物体的计算全息图。
根据上述发明构思,本发明采用下述技术方案:
一种获取三维运动物体计算全息图的装置,包括一台摄像机联接一个计算机,其特征在于在被摄三维运动物体与摄像机之间设置一个环形微透镜阵列。
所述环形透镜阵列单元是:由18个微透镜组成,所有透镜均匀分布且紧密相连,每个透镜的中心都位于环形上,该环形与被摄物体和摄像机连线相垂直,且环形的中心位于该连线上。透镜阵列能够同时获得三维场景的18幅二维投影,且每幅投影的视点位置不同。
所述摄像机单元的功能是通过环形微透镜阵列能够同时拍摄三维场景的18幅二维投影。
所述计算机单元的功能是首先分别提取摄像机获得的18幅二维投影,通过投影合成技术获取相邻投影中间视点的图像;并对所有的投影进行傅里叶变换,然后提取特定的频谱填充二维矩阵并编码获得计算全息图。
一种获取三维运动物体计算全息图的方法,其特征在于首先同时获取三维运动物体的多幅二维投影,然后在相邻投影之间合成一系列中间视点的投影图像,最后提取每幅投影上的频谱信息并通过编码获得计算全息图。
上述方法具体操作步骤如下:
1)利用微透镜阵列同时获取三维运动物体的18幅投影,所述微透镜阵列由18个微透镜紧密排列,组成一个环形的装置,每个微透镜的中心位置都位于环形阵列上,摄像机通过环形微透镜阵列拍摄三维物体,同时得到18幅三维物体的不同角度下的二维投影,分别提取这些二维投影,并按顺序编号排列;
2)根据相邻两幅图像中大部分的信息相似或相同,利用块的匹配原理进行运动矢量的估计获得每一块的运动矢量,根据获取的运动矢量进行运动补偿,得到一系列中间视点的投影图像,把通过摄像机获取的投影图像和通过运动补偿合成的投影图像按顺序编号并将其存贮在计算机中;
3)对每幅二维投影进行傅里叶变换,在每幅投影频谱上的特定区域处提取一个圆形的信息并填充二维傅里叶平面,最终获得一个包含三维物体深度信息的二维复矩阵,对该矩阵进行全息图编码,即获得三维运动物体的计算全息图。
上述同时获取三维运动物体的多幅二维投影是通过微透镜阵列能够获取三维运动场景的多幅二维投影,避免了传统方法中获取三维物体投影时摄像机的圆形运动,降低了获取的难度,而且通过一台摄像机能够同时获取三维运动物体的多幅二维投影。
上述相邻投影图像之间合成一系列中间视点的图像是采用中间视点投影合成技术,在充分获取三维运动场景信息的同时,有效的降低了获取多幅投影的复杂度。
所述的频谱提取,是在单幅投影的傅里叶平面提取一个圆形的频谱信息,把获得的频谱信息填充到一个二维矩阵中,该矩阵包含了三维场景的深度信息,对矩阵编码即可获得三维物体的计算全息图。
本发明的有益效果:
1.用途广泛:全息三维显示有着广大的应用前景,例如三维照相、三维游戏、科学可视化、多媒体展示、虚拟现实(快速虚拟成型)等领域,而且,三维动态全息显示在视频会议、远程手术和三维物体再现等方面发挥着独特的优势。
2.动态记录:通过摄像机和环形阵列同时获取18幅三维场景的二维投影,并利用投影合成技术获取更多的三维物体的二维投影;提取每幅投影上的频谱填充矩阵并编码,即可获得三维运动物体的计算全息图。
3.结构简单:该方法仅需要18个微透镜和一个摄像机装置。18个微透镜组成一个环形的微透镜阵列,与摄像机连结起来,具备模块化的特点,系统单元更为简单经济。
附图说明
图1是记录三维物体的虚拟光学系统。其中1是三维物体,2是傅里叶透镜,3是接收屏
图2是本发明中计算全息图合成的硬件结构图。其中1是三维物体,2是微透镜,3是微透镜阵列,4是摄像机,5是计算机
图3是传统方法中摄像机拍摄物体的方式。其中1是三维物体,2是摄像机
图4是运动估计中的块匹配示意图。
图5是旋转抛物面与傅里叶平面相交部分。
图6是傅里叶变换u-v平面上单幅投影的频谱提取。
具体实施方式:
本发明用于获取三维运动物体的计算全息图,其目的是提出一种简单有效的获取三维运动物体计算全息图的方法。
参见图1所示:物光波经过傅里叶透镜后,在接收屏上获取的频谱信息如式(1)所示。经过适当的变换获得式(2)。式(2)表明,可以通过获取物光波O(x,y,z)的三维傅里叶旋转抛物面信息进而获取三维物体的频谱分布g(u,v)。由于直接获取O(x,y,z)的三维傅里叶旋转抛物面信息难度较大,本发明采用从三维物体的投影频谱上获取旋转抛物面频谱信息的方法。传统方法中采用图3所示的拍摄系统,相机与z轴成  角绕z轴旋转(0°≤  ≤60°)扫描获取三维物体的多幅投影。尽管获得的投影不是十分精确的正交投影,但由于物体到CCD的距离比物体的深度大的多,可以认为获得的是三维物体的正交投影图像。但传统方法需要对三维场景进行多角度拍摄,因此不能用于合成三维运动物体的计算全息图。
下面结合附图对本发明的优选实施例作详细说明:
实施例一:参见图2,本获取三维运动物体计算全息图的装置,包括一种获取三维运动物体计算全息图的装置,包括一台摄像机4联接一台计算机5,其特征在于被摄三维运动物体1与摄像机4之间设置一个环形微透镜阵列3。
所述微透镜阵列如图2单元3所示,该单元由18个微透镜组成,透镜均匀排列在一个大圆环上。该大圆环与被摄物体1和摄像机4连线相垂直,且大圆环中心位于该连线上。利用该透镜阵列可获取三维场景的18个不同视点的信息,避免了摄像机围绕视轴做旋转的操作步骤,使记录运动的三维场景信息成为了可能。
摄像机单元4位于穿过环形微透镜中心的视轴线上,通过摄像机单元4与环形微透镜阵列单元3可以同时获取18幅三维场景的二维投影。
摄像机把获取的18幅投影信息传送到计算机单元5中。计算机根据摄像机单元4获取信息的特定位置提取每幅投影的信息,并把投影按顺序编号,然后在相邻视点的两幅投影之间进行插值操作。
实施例二:本获取三维运动物体计算全息图的方法,首先同时获取一种获取三维运动物体计算全息图的方法,其特征在于首先同时获取三维运动物体的多幅二维投影,然后在相邻投影之间合成一系列中间视点的投影图像,最后提取每幅投影上的频谱信息并通过编码获得计算全息图。
具体操作步骤如下:
1)利用微透镜阵列同时获取三维运动物体的18幅投影,所述微透镜阵列由18个微透镜紧密排列,组成一个环形的装置,每个微透镜的中心位置都位于环形阵列上,摄像机通过环形微透镜阵列拍摄三维物体,同时得到18幅三维物体的不同角度下的二维投影,分别提取这些二维投影,并按顺序编号排列;
2)根据相邻两幅图像中大部分的信息相似或相同,利用块的匹配原理进行运动矢量的估计获得每一块的运动矢量,根据获取的运动矢量进行运动补偿,得到一系列中间视点的投影图像,把通过摄像机获取的投影图像和通过运动补偿合成的投影图像按顺序编号并将其存贮在计算机中;
3)对每幅二维投影进行傅里叶变换,在每幅投影频谱上的特定区域处提取一个圆形的信息并填充二维傅里叶平面,最终获得一个包含三维物体深度信息的二维复矩阵,对该矩阵进行全息图编码,即获得三维运动物体的计算全息图。
所述同时获得三维运动物体的多幅二维投影是通过微透镜阵列能够获取三维运动场景的多幅二维投影,避免了传统方法中获取三维物体投影时摄像机的圆形运动,降低了获取的难度,而且通过一台摄像机能够同时获取三维运动物体的多幅二维投影。
所述相邻投影图像之间合成一系列中间视点的图像是采用中间视点投影合成技术,在充分获取三维运动场景信息的同时,有效的降低了获取多幅投影的复杂度。
在中间视点投影的合成过程中,采用了运动估计和运动补偿原理合成中间视点的图像。这种算法通过运动估计(向量匹配)得到平滑的运动向量,利用运动向量进行运动补偿插值。由于考虑了图像间的运动信息,所得到的合成图像能够很好地反映目标物体的运动及深度信息。
运动估计的基本思想是将当前图像分成许多互不重叠的块(矩形块,一般为8×8像素),并认定块内所有像素的位移量都相同,对于当前图像中的每一块,在前一幅或后一幅图像中一定的搜索范围内根据匹配准则找出与当前块最相似的块,即匹配块。由匹配块与当前块的相对位置计算出运动位移,所得运动位移即为当前块的运动向量。如图4所示:在第k-1与第k+1幅图像之间插入第k幅图像,首先对第k-1与第k+1幅图像进行运动估计,求出每一块的运动向量。
匹配算法主要是计算误差代价函数,通常使用SAD(绝对差和)标准作为匹配准则,SAD定义如下:
SAD ( i , j ) = Σ m = 1 M Σ n = 1 N | f k ( m , n ) - f k - 1 ( m + i , n + j ) | - - - ( 4 )
式(4)中,fk(m,n)与fk-1(m,n)分别是当前块和参考块图像,(i,j)为参考块相对于当前块的运动向量,M,N分别为每个块中的行像素数和列像素数。根据SAD获取的最佳运动向量定义如下:
MV=(MVX,MVY)=(i,j)|MINSAD    (5)
MINSAD=MIN[SAD(i,j)]           (6)
其中MINSAD表示当前块对应的所有SAD中的最小值,MV表示最小的SAD所对应的运动向量,即最佳运动向量。
求出两幅图像的完整运动向量后,在两幅图像之间进行一系列中间视点投影图像的合成。设n代表两幅图像间要插入的图像幅数,设N=n+1,两幅图像间插入的第D幅投影图像的位置由位移关系D/N得到,其中1≤D≤n。设相邻的两幅投影分别是P1,P2,合成的图像为P。通过P1到P2的运动估计,得到水平和垂直方向上的运动向量分别为dx,dy,则相对位移为D/N的视点图像为:
P(x,y)=0.5×P1[x-(1-D/N)×dx,y-(1-D/N)×dy]    (7)
       +0.5×P2[x+D/N×dx,y+D/N×dy]
其中,x,y是像素坐标,符号[]为取整号。根据(7)式,通过相邻两幅投影进行图像的合成。图像合成后,把通过摄像机获取的投影图像和新合成的中间视点图像按顺序排列,并存贮在计算机中。
对获取的所有投影进行傅里叶变换,在傅里叶变换u-v平面上获得三维物体所有投影的频谱信息,并编码获得计算全息图。首先对所获取的二维投影做傅里叶变换,投影中心与三维旋转抛物面在傅里叶变换u-v平面上的中心一致。如图3所示,摄像机与z轴的夹角为,绕z轴旋转获取三维物体的二维投影,其中旋转方位角(0≤  ≤360°),当旋转方位角=0时,获得方程
w sinθ=v cosθ    (8)
只有二维投影的傅里叶平面与旋转抛物面相交的部分才可以从物体投影的傅里叶平面中提取出来。通过式(3)与式(8)求得交点部分的方程为
( u - tan θ λ ) 2 + v 2 = ( tan θ λ ) 2 , w = - u tan θ - - - ( 9 )
其中是光的波长,u,v分别是傅里叶平面上的坐标。式(9)表明二维投影的傅里叶平面与三维傅里叶旋转抛物面的相交部分为一个椭圆形,如图5所示。为了简化问题,降低抽样难度,我们只取它在傅里叶变换u-v平面上的投影值,相交部分投影到傅立叶变换u-v平面上变成了一个圆形,其半径为tan,圆的中心坐标随投影的方向变化。为了获得二维傅里叶变换u-v平面上所有的投影信息,只需要对三维物体进行圆形扫描,并从每一幅投影的频谱特定区域提取一个圆形的信息填充傅里叶变换u-v平面。图6是方位角时的一幅投影填充傅里叶变换u-v平面。当通过摄像机获取的投影图像和新合成的中间视点图像按顺序排列,存贮在计算机中后,在每幅投影频谱上的特定区域提取一个圆形的信息并按获取投影的顺序依次填充到二维矩阵中,对包含有三维频谱信息的二维矩阵进行全息图编码就可以获得三维运动物体的计算全息图。
使用上述实施方式所示的投影获取装置以及频谱信息提取方法,通过全息图编码可以获得三维运动物体的计算全息图。另外,本发明并不限定于上述这种实施方式,在不超过本发明的范围内,可以进行各种变形或者修改。
产业上的可利用性
本发明所涉及的环形透镜阵列装置作为三维信息的提取装置是大有用处的,上述设备包括多个透镜。本发明涉及到的从二维投影频谱上提取三维物体频谱信息的方法作为三维信息的提取方式,效率是比较高的,除了用于研究的计算全息图获取,还可以应用于其他各类的三维显示中。

Claims (6)

1.一种获取三维运动物体计算全息图的装置,包括一台摄像机(4)联接一台计算机(5),其特征在于在被摄三维运动物体(1)与摄像机(4)之间设置一个环形微透镜阵列(3)。
2.根据权利要求1所述的获取三维运动物体计算全息图的装置,其特征在于所述环形微透镜阵列(3)是由18个微透镜(2)均匀分布且紧密相连布列,它们的中心都位于同一个环形上,该环形与被摄物体(1)和摄像机(4)连线相垂直,且环形的中心位于该连线上。
3.一种获取三维运动物体计算全息图的方法,其特征在于首先同时获取三维运动物体的多幅二维投影,然后在相邻投影之间合成一系列中间视点的投影图像,最后提取每幅投影上的频谱信息并通过编码获得计算全息图。
4.根据权利要求3所述的获取三维运动物体计算全息图的方法,其特征在于如下具体步骤:
1)利用微透镜阵列同时获取三维运动物体的18幅投影,所述微透镜阵列由18个微透镜紧密排列,组成一个环形的装置,每个微透镜的中心位置都位于环形阵列上,摄像机通过环形微透镜阵列拍摄三维物体,同时得到18幅三维物体的不同角度下的二维投影,分别提取这些二维投影,并按顺序编号排列;
2)根据相邻两幅图像中大部分的信息相似或相同,利用块的匹配原理进行运动矢量的估计获得每一块的运动矢量,根据获取的运动矢量进行运动补偿,得到一系列中间视点的投影图像,把通过摄像机获取的投影图像和通过运动补偿合成的投影图像按顺序编号并将其存贮在计算机中;
3)对每幅二维投影进行傅里叶变换,在每幅投影频谱上的特定区域处提取一个圆形的信息并填充二维傅里叶平面,最终获得一个包含三维物体深度信息的二维复矩阵,对该矩阵进行全息图编码,即获得三维运动物体的计算全息图。
5.根据权利要求3或4所述的获取三维运动物体计算全息图的方法,其特征在于所述同时获取三维运动物体的多幅二维投影是通过微透镜阵列能够获取三维运动场景的多幅二维投影,避免了传统方法中获取三维物体投影时摄像机的圆形运动,降低了获取的难度,而且通过一台摄像机能够同时获取三维运动物体的多幅二维投影。
6.根据权利要求3或4所述的获取三维运动物体计算全息图的方法,其特征在于所述相邻投影图像之间合成一系列中间视点的图像是采用中间视点投影合成技术,在充分获取三维运动场景信息的同时,有效的降低了获取多幅投影的复杂度。
CN 201010289608 2010-09-21 2010-09-21 一种获取三维运动物体计算全息图的装置和方法 Pending CN102024272A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010289608 CN102024272A (zh) 2010-09-21 2010-09-21 一种获取三维运动物体计算全息图的装置和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010289608 CN102024272A (zh) 2010-09-21 2010-09-21 一种获取三维运动物体计算全息图的装置和方法

Publications (1)

Publication Number Publication Date
CN102024272A true CN102024272A (zh) 2011-04-20

Family

ID=43865531

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010289608 Pending CN102024272A (zh) 2010-09-21 2010-09-21 一种获取三维运动物体计算全息图的装置和方法

Country Status (1)

Country Link
CN (1) CN102024272A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104090476A (zh) * 2014-06-30 2014-10-08 中国科学院上海光学精密机械研究所 用于全息显示的三维场景信息的获取方法
WO2016045100A1 (zh) * 2014-09-26 2016-03-31 深圳市泛彩溢实业有限公司 全息三维信息采集、还原装置及方法
CN106707680A (zh) * 2017-03-10 2017-05-24 东南大学 一种基于光场的全息投影方法
CN108762033A (zh) * 2018-05-28 2018-11-06 江苏慧光电子科技有限公司 成像方法和光学系统及其存储介质、芯片与组合
CN109350010A (zh) * 2018-11-19 2019-02-19 郑州轻工业学院 一种全息内窥光学相干层析成像装置和成像方法
CN110133766A (zh) * 2018-02-08 2019-08-16 深圳市泛彩溢实业有限公司 一种信息采集透镜阵列板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1564086A (zh) * 2004-03-29 2005-01-12 深圳市泛彩溢实业有限公司 数字散斑全息图的制作方法和装置
JP2006113182A (ja) * 2004-10-13 2006-04-27 Masaaki Okamoto 多視点立体表示装置
CN1811589A (zh) * 2005-12-23 2006-08-02 深圳市泛彩溢实业有限公司 一种全息投影屏及其制作方法、系统和应用
US20070121182A1 (en) * 2005-09-29 2007-05-31 Rieko Fukushima Multi-viewpoint image generation apparatus, multi-viewpoint image generation method, and multi-viewpoint image generation program
WO2010072065A1 (zh) * 2008-12-25 2010-07-01 深圳市泛彩溢实业有限公司 全息三维图像信息采集装置、方法及还原装置、方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1564086A (zh) * 2004-03-29 2005-01-12 深圳市泛彩溢实业有限公司 数字散斑全息图的制作方法和装置
JP2006113182A (ja) * 2004-10-13 2006-04-27 Masaaki Okamoto 多視点立体表示装置
US20070121182A1 (en) * 2005-09-29 2007-05-31 Rieko Fukushima Multi-viewpoint image generation apparatus, multi-viewpoint image generation method, and multi-viewpoint image generation program
CN1811589A (zh) * 2005-12-23 2006-08-02 深圳市泛彩溢实业有限公司 一种全息投影屏及其制作方法、系统和应用
WO2010072065A1 (zh) * 2008-12-25 2010-07-01 深圳市泛彩溢实业有限公司 全息三维图像信息采集装置、方法及还原装置、方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《OPTICS EXPRESS》 20041213 Yusuke Sando et al 《Full-color computer-generated holograms using 3-D Fourier spectra》 1-6 1 第12卷, 第25期 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104090476A (zh) * 2014-06-30 2014-10-08 中国科学院上海光学精密机械研究所 用于全息显示的三维场景信息的获取方法
CN104090476B (zh) * 2014-06-30 2017-01-04 中国科学院上海光学精密机械研究所 用于全息显示的三维场景信息的获取方法
WO2016045100A1 (zh) * 2014-09-26 2016-03-31 深圳市泛彩溢实业有限公司 全息三维信息采集、还原装置及方法
CN105637415A (zh) * 2014-09-26 2016-06-01 深圳市泛彩溢实业有限公司 全息三维信息采集、还原装置及方法
CN105637415B (zh) * 2014-09-26 2018-05-08 深圳市泛彩溢实业有限公司 全息三维信息采集、还原装置及方法
CN106707680A (zh) * 2017-03-10 2017-05-24 东南大学 一种基于光场的全息投影方法
CN106707680B (zh) * 2017-03-10 2019-03-12 东南大学 一种基于光场的全息投影方法
CN110133766A (zh) * 2018-02-08 2019-08-16 深圳市泛彩溢实业有限公司 一种信息采集透镜阵列板
CN108762033A (zh) * 2018-05-28 2018-11-06 江苏慧光电子科技有限公司 成像方法和光学系统及其存储介质、芯片与组合
CN109350010A (zh) * 2018-11-19 2019-02-19 郑州轻工业学院 一种全息内窥光学相干层析成像装置和成像方法
CN109350010B (zh) * 2018-11-19 2023-12-26 郑州轻工业学院 一种全息内窥光学相干层析成像装置和成像方法

Similar Documents

Publication Publication Date Title
CN102164298B (zh) 全景成像系统中基于立体匹配的元素图像获取方法
Shum et al. Omnivergent stereo
CN105279789B (zh) 一种基于图像序列的三维重建方法
CN102024272A (zh) 一种获取三维运动物体计算全息图的装置和方法
CN109712232B (zh) 一种基于光场的物体表面轮廓三维成像方法
Bangchang et al. Experimental system of free viewpoint television
CN101089551A (zh) 一种基于二维编码的三维形貌测量方法
CN108513123A (zh) 一种集成成像光场显示的图像阵列生成方法
US8577202B2 (en) Method for processing a video data set
CN108234989B (zh) 一种基于棋盘格标定板的会聚式集成成像拍摄方法
Kang et al. High-quality multi-view depth generation using multiple color and depth cameras
Gurrieri et al. Acquisition of omnidirectional stereoscopic images and videos of dynamic scenes: a review
Furukawa et al. One-shot entire shape acquisition method using multiple projectors and cameras
JPWO2019065260A1 (ja) 情報処理装置、情報処理方法、及び、プログラム、並びに、交換レンズ
CN111064945A (zh) 一种裸眼3d图像采集及生成方法
Zhang et al. Synthetic aperture based on plenoptic camera for seeing through occlusions
KR20200064999A (ko) 정보 처리 장치, 정보 처리 방법 및 프로그램, 그리고 교환 렌즈
Xiao et al. 3D integral imaging using sparse sensors with unknown positions
Peer et al. Panoramic depth imaging: Single standard camera approach
Shin et al. Computational technique of volumetric object reconstruction in integral imaging by use of real and virtual image fields
Yan et al. Performance-improved smart pseudoscopic to orthoscopic conversion for integral imaging by use of lens array shifting technique
Fachada et al. A calibration method for subaperture views of plenoptic 2.0 camera arrays
Tian et al. Multi-face real-time tracking based on dual panoramic camera for full-parallax light-field display
Kim et al. Super-resolution of multi-view ERP 360-degree images with two-stage disparity refinement
US10965861B2 (en) Image processing device, image processing method, and program

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20110420