CN102021678A - Method for surface treatment of carbon fiber - Google Patents

Method for surface treatment of carbon fiber Download PDF

Info

Publication number
CN102021678A
CN102021678A CN 201010284026 CN201010284026A CN102021678A CN 102021678 A CN102021678 A CN 102021678A CN 201010284026 CN201010284026 CN 201010284026 CN 201010284026 A CN201010284026 A CN 201010284026A CN 102021678 A CN102021678 A CN 102021678A
Authority
CN
China
Prior art keywords
carbon fiber
carbon
ozone water
surface treatment
carbon fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 201010284026
Other languages
Chinese (zh)
Inventor
王浩静
范立东
刘福杰
王红飞
程璐
庞培东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
XiAn Institute of Optics and Precision Mechanics of CAS
Original Assignee
XiAn Institute of Optics and Precision Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by XiAn Institute of Optics and Precision Mechanics of CAS filed Critical XiAn Institute of Optics and Precision Mechanics of CAS
Priority to CN 201010284026 priority Critical patent/CN102021678A/en
Publication of CN102021678A publication Critical patent/CN102021678A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Inorganic Fibers (AREA)

Abstract

The invention relates to a method for the surface treatment of carbon fibers, which comprises the following steps: 1) preparing ozone water, wherein the concentration of the ozone water is 5-150 mg/L and the temperature is 5-45 DEG C; 2) soaking the carbon fiber, that is, soaking the carbon fiber processed by high temperature carbonization in the ozone water for 0.5-10 min to obtain a carbon fiber with composite properties. The invention solves the technical problems that existing methods for the surface treatment of carbon fibers allow the easy introduction of electrolyte impurities and thus the carbon fibers are polluted; the present invention improves surface properties of carbon fibers and increases the interlaminar shear strength of carbon fiber reinforced composite materials.

Description

A kind of method of surface treatment of carbon fibers
Technical field
The present invention relates to the new material production field, relate to the aftertreatment technology in the carbon fiber preparation process, be specifically related to a kind of method of surface treatment of carbon fibers.
Background technology
Carbon fiber is a kind of novel metalloid material, has high specific strength, high ratio modulus, high temperature resistant, corrosion-resistant, creep resistant, low-thermal-expansion, high conduction and a series of excellent properties such as heat conduction, self-lubricating; And as fiber also have flexibility and can compile, weaving property, be widely used in civilian industries such as leading-edge fields such as space flight and aviation, national defense and military and senior sports goods, medicine equipment, become one of main enhancing body of advanced composite material, be described as the most vital new material in 21 century.
Carbon fiber is to utilize its phosphorus content that organic fiber makes through technical process such as pre-oxidation, low-temperature carbonization and high temperature cabonization in the new carbon more than 90%.Because carbonization treatment in high temperature inert atmosphere along with the volatilization of non-carbon and the enrichment of carbon, reduces its surface-activity, surface tension reduces, with the wettability variation of matrix resin, cause the interlaminar shear strength of its composite to reduce, can not reach the use designing requirement.In order to make carbon fiber surface change lyophily into by lyophobicity, need carry out surface treatment to it, improve its interlaminar shear strength, satisfy design and practical requirement.Carbon fiber surface treatment method is more, but online matching used method is less, and at present widely used is the anode electrolysis oxidizing process.As everyone knows, through the residual a certain amount of electrolyte of carbon fiber surface after the anodized, need to wash, otherwise will influence carbon fiber and performance of composites thereof through washing step.Therefore, cause the aftertreatment technology and the equipment complexity of carbon fiber production process, and in the anode electrolysis oxidation processes, easily introduce electrolyte impurity, pollute carbon fiber.
Summary of the invention
In order to solve the technical problem that existing carbon fiber surface treatment method is introduced electrolyte impurity easily, polluted carbon fiber, the purpose of this invention is to provide a kind of method of surface treatment of carbon fibers.
Technical solution of the present invention:
A kind of method of surface treatment of carbon fibers, its special character is: may further comprise the steps:
1] preparation Ozone Water: the concentration of described Ozone Water is 5~150mg/L, and temperature is 5~45 ℃;
2] soak carbon fiber: the carbon fiber after high temperature cabonization is handled soaks 0.5~10min in above-mentioned Ozone Water, obtain having the carbon fiber of composite performance.
Above-mentioned steps comprises that also thereby the oxygen concentration of carbon of measuring the carbon fiber finished surface is than the step of adjusting consistency of ozone water and soak time: when the oxygen concentration of carbon than less than 0.02 the time, need to increase consistency of ozone water and soak time, when the oxygen concentration of carbon than greater than 0.30 the time, need to reduce consistency of ozone water and soak time.
Above-mentioned oxygen concentration of carbon is 0.08~0.20 than scope.
Above-mentioned steps 1] in Ozone Water be that to adopt pure air or oxygen be that source of the gas produces ozone through ozone generator, mixed with deionized water again through static mixer.
The concentration of above-mentioned Ozone Water is 50~100mg/L, and temperature is 15~25 ℃.
Above-mentioned steps 2] time of soaking carbon fiber is 1~5min.
The advantage that the present invention had:
1, the inventive method adopts certain density Ozone Water that carbon fiber surface is carried out the oxide impregnation processing, has improved the surface characteristic of carbon fiber, thereby has improved the interlaminar shear strength of carbon fibre reinforced composite.
2, the inventive method have that equipment is simple, treatment effeciency is high, treatment effect is good, to the free of contamination substantially advantage of environment, handle the back carbon fiber through this method simultaneously, do not need to carry out the washing process washing, make the aftertreatment technology of carbon fiber production process simplify, minimizing improves the mechanical property of carbon fiber to the mechanical damage of carbon fiber.
3, method of the present invention can be directly and the online supporting use of existing carbon fiber production line, and have that process equipment is simple, treatment effeciency is high, treatment effect is good, and to the free of contamination substantially advantage of environment.
The specific embodiment
The method of surface treatment of carbon fibers of the present invention may further comprise the steps:
1, preparation Ozone Water: the concentration of Ozone Water is 5~150mg/L, is preferably 50~100mg/L; Temperature is 5~45 ℃; Be preferably 15~25 ℃;
2, soak carbon fiber: the carbon fiber after high temperature cabonization is handled soaks 0.5~10min in above-mentioned Ozone Water, obtain having the carbon fiber of composite performance.
For the cleanliness factor that guarantees Ozone Water and steady concentration, controllability, the concentration of Ozone Water is 5~150mg/L, is preferably 50~100mg/L; Ozone Water generally adopts pure air or oxygen is that source of the gas produces ozone through ozone generator, and mixed through static mixer with deionized water again, its concentration satisfies above-mentioned scope.If consistency of ozone water is lower than 5mg/L, then the surface treatment of carbon fibers time longer, treatment effeciency is low, is unfavorable for the online supporting use of industrialization; If consistency of ozone water is higher than 150mg/L, then the surface treatment of carbon fibers etching is serious and uniformity is relatively poor, and consistency of ozone water is too high simultaneously, increases production cost.The time of described surface treatment of carbon fibers is relevant with the concentration of Ozone Water, is generally 0.5~10min, is preferably 1-5min; If the surface treatment of carbon fibers time, then the carbon fiber surface etching was insufficient less than 0.5min, cause the composite performance of carbon fiber and matrix resin relatively poor; If the surface treatment of carbon fibers time, then the carbon fiber surface overetch caused tensile strength of carbon fibers to reduce, and is unfavorable for the online supporting use of industrialization simultaneously, also can increase the carbon fiber production cost greater than 10min; The described surface treatment of carbon fibers time is meant the time of staying of carbon fiber in Ozone Water.The Ozone Water temperature of described surface treatment of carbon fibers has certain requirement, is generally 5~45 ℃, is preferably 15~25 ℃; If the temperature of Ozone Water is too high, the ozone that then is dissolved in the water will be decomposed into oxygen, and surface-treated efficient is lower.
In order to guarantee to have good composite performance between carbon fiber and the matrix resin, the oxygen concentration of carbon of the carbon fiber surface after the process surface treatment is 0.02~0.30 than (O/C), is preferably 0.08~0.20.If the oxygen concentration of carbon ratio of carbon fiber surface is lower than 0.02, the oxygen-containing functional group in the carbon fiber is very few, with the adhesive property reduction of resin matrix, and then the reduction of the interlaminar shear strength of carbon fibre composite, need to increase consistency of ozone water and soak time this moment; If the oxygen concentration of carbon ratio of carbon fiber surface is higher than 0.30, oxygen-containing functional group in the carbon fiber is too much, reduced adhesive property on the contrary with resin matrix, the tensile strength of carbon fiber itself reduces significantly owing to its surperficial overetch simultaneously, cause the mechanical property of carbon fibre composite to reduce, need to reduce consistency of ozone water and soak time this moment.
Carbon fiber surface treatment method provided by the present invention is handled with traditional anode electrolysis oxidized surface and is compared, and the main distinction is to adopt certain density Ozone Water that carbon fiber surface is carried out impregnation process.The decomposition mechanism of ozone in pure water is extremely complicated, the hydroxide ion (OH in it and the water -) generation series reaction generation hydroxyl radical free radical (OH), hydroxyl radical free radical has extremely strong oxidisability (standard oxidationreduction potential is 2.85V), be only second to fluorine (standard oxidationreduction potential 3.06V), the strong oxidizer that belongs to the ball electron type, and the selectivity height of oxidation reaction are easily with two key reactions, therefore can carry out oxidation to carbon fiber surface, its result not only introduces oxygen-containing functional group on its surface, and can eliminate its blemish, and carbon fiber strength is increased.Described surface-treated treatment media is Ozone Water and non-electrolytic solution, therefore need not to carry out washing process after the surface treatment of carbon fibers washs, the result makes the aftertreatment technology of carbon fiber production process simplify, reduce the mechanical damage of washing step, can improve the mechanical property of carbon fiber to a certain extent carbon fiber.
With the 3K polyacrylonitrile-based precursor is raw material, carries out pre-oxidation treatment in 180~275 ℃ air atmosphere, wherein, 10 gradient warm areas from low to high is set in the said temperature scope, and the preparation volume density is 1.35g/cm 3Pre-oxidized fibers.
Above-mentioned preparation pre-oxidized fibers is carried out low-temperature carbonization handle in 300~900 ℃ nitrogen atmosphere, in 1200-1600 ℃ nitrogen atmosphere, carry out high temperature cabonization then and handle, make not surface-treated carbon fiber.
With above-mentioned not surface-treated 3K carbon fiber is raw material, adopts above-mentioned technological process to carry out post processing, and wherein surface treatment condition table 1 is listed, and making tensile strength is that 3.95GPa, Young's modulus are the carbon fiber of 228GPa.
In order to estimate the effect of surface treatment of carbon fibers, adopt the method for the interlaminar shear strength (ILSS) of test carbon fibre composite to estimate among the present invention, specifically carry out according to the method for testing of GB GB3357-82.
ILSS test result such as the table 1 of each embodiment is listed among the present invention.
The surface treatment condition of the different embodiment of table 1 and the ILSS result of carbon fibre composite thereof
Figure BDA0000026463830000041

Claims (6)

1. the method for a surface treatment of carbon fibers is characterized in that: may further comprise the steps:
1] preparation Ozone Water: the concentration of described Ozone Water is 5~150mg/L, and temperature is 5~45 ℃;
2] soak carbon fiber: the carbon fiber after high temperature cabonization is handled soaks 0.5~10min in above-mentioned Ozone Water, obtain having the carbon fiber of composite performance.
2. the method for surface treatment of carbon fibers according to claim 1, it is characterized in that: thus described step comprises that also the oxygen concentration of carbon of measuring the carbon fiber finished surface is than the step of adjusting consistency of ozone water and soak time: when the oxygen concentration of carbon than less than 0.02 the time, need to increase consistency of ozone water and soak time, when the oxygen concentration of carbon than greater than 0.30 the time, need to reduce consistency of ozone water and soak time.
3. the method for surface treatment of carbon fibers according to claim 2, it is characterized in that: described oxygen concentration of carbon is 0.08~0.20 than scope.
4. according to the method for claim 1 or 2 or 3 described surface treatment of carbon fibers, it is characterized in that: described step 1] in Ozone Water be that to adopt pure air or oxygen be that source of the gas produces ozone through ozone generator, mixed with deionized water again through static mixer.
5. the method for surface treatment of carbon fibers according to claim 4, it is characterized in that: the concentration of described Ozone Water is 50~100mg/L, temperature is 15~25 ℃.
6. the method for surface treatment of carbon fibers according to claim 5 is characterized in that: described step 2] time of soaking carbon fiber is 1~5min.
CN 201010284026 2010-09-16 2010-09-16 Method for surface treatment of carbon fiber Pending CN102021678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010284026 CN102021678A (en) 2010-09-16 2010-09-16 Method for surface treatment of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010284026 CN102021678A (en) 2010-09-16 2010-09-16 Method for surface treatment of carbon fiber

Publications (1)

Publication Number Publication Date
CN102021678A true CN102021678A (en) 2011-04-20

Family

ID=43863442

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010284026 Pending CN102021678A (en) 2010-09-16 2010-09-16 Method for surface treatment of carbon fiber

Country Status (1)

Country Link
CN (1) CN102021678A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104514085A (en) * 2013-09-29 2015-04-15 泰安鲁普耐特塑料有限公司 Production method for basalt fiber protective net

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3723607A (en) * 1970-07-16 1973-03-27 Celanese Corp Surface modification of carbon fibers
KR20040070397A (en) * 2003-02-03 2004-08-09 한국화학연구원 A method for preparing a carbon fiber reinforced composite having an improved mechanical property
CN101189373A (en) * 2004-10-22 2008-05-28 海珀里昂催化国际有限公司 Improved ozonolysis of carbon nanotubes
CN101290836A (en) * 2008-06-13 2008-10-22 陕西师范大学 Method for enhancing specific capacitance of phenolic resin based activated carbon fiber
JP2009079344A (en) * 2007-09-06 2009-04-16 Mitsubishi Rayon Co Ltd Surface treatment method of carbon fiber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3723607A (en) * 1970-07-16 1973-03-27 Celanese Corp Surface modification of carbon fibers
KR20040070397A (en) * 2003-02-03 2004-08-09 한국화학연구원 A method for preparing a carbon fiber reinforced composite having an improved mechanical property
CN101189373A (en) * 2004-10-22 2008-05-28 海珀里昂催化国际有限公司 Improved ozonolysis of carbon nanotubes
JP2009079344A (en) * 2007-09-06 2009-04-16 Mitsubishi Rayon Co Ltd Surface treatment method of carbon fiber
CN101290836A (en) * 2008-06-13 2008-10-22 陕西师范大学 Method for enhancing specific capacitance of phenolic resin based activated carbon fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104514085A (en) * 2013-09-29 2015-04-15 泰安鲁普耐特塑料有限公司 Production method for basalt fiber protective net

Similar Documents

Publication Publication Date Title
CN111501329B (en) Preparation method of nickel hydroxide/polyetheramine modified carbon fiber
CN103806281B (en) Carbon fiber surface grafting hyperbranched poly glycerine improves the method for composite material interface performance
CN107034662A (en) A kind of method of carbon fiber surface modification
CN102628212A (en) Carbon fiber surface treatment method based on ultrasonic strengthening
CN105754288A (en) Polyether-ether-ketone wear resistant composite material, preparation method and application thereof in mechanical polishing retaining rings
CN105696312A (en) Method for modifying carbon fibers by carrying out acidification assisted electrophoretic deposition to initiate graphene oxide deposition
CN104151581A (en) Preparation method of composite carbon fiber/graphene oxide/organosilicone resin multidimensional hybrid material
CN102021678A (en) Method for surface treatment of carbon fiber
CN113863001A (en) Carbon fiber surface complexing modification method
CN114086273A (en) Graphene anti-ultraviolet anti-cutting high-stretch-resistance composite fiber and preparation method thereof
CN103469367A (en) Preparation technology of high-strength and high modulus carbon fibers
CN105506785B (en) A kind of low-density high-strength high-modulus acrylonitrile base carbon fiber and preparation method thereof
CN201520917U (en) Continuous carbon fiber after-treatment device
WO2024027527A1 (en) Modified continuous carbon fiber reinforced polyether ether ketone composite material laminated plate and preparation method therefor
CN109750492A (en) A kind of surface treatment method of carbon cloth surfaces homoepitaxial carbon nanotube early period
CN106987925B (en) Functionalized graphene preparation method based on ion exchange
CN105332098A (en) Carbon fiber activation process
CN104151827A (en) Preparation method of carbon fiber/carbon nanotube/organic silicone resin multidimensional hybrid composite material
CN104047158A (en) Carbon fiber surface treatment technology
US11447165B2 (en) Train window structure and train with train window structure
CN109485912B (en) Electro-promotion heterogeneous catalytic device for recycling CFRP (carbon fiber reinforced plastics) and control method thereof
KR20030049703A (en) Manufacturing process of nickel-plated carbon fibers by electroplating method
CN113921877A (en) Preparation method of composite proton exchange membrane and prepared composite proton exchange membrane
JP2015137444A (en) Surface treatment method of carbon fiber bundle, method for producing carbon fiber bundle and carbon fiber
CN107055525A (en) The preparation method of industrial oxidation graphene

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20110420