CN102010934A - RH refining desulphurization process of non-oriented electrical steel - Google Patents

RH refining desulphurization process of non-oriented electrical steel Download PDF

Info

Publication number
CN102010934A
CN102010934A CN201010595509.7A CN201010595509A CN102010934A CN 102010934 A CN102010934 A CN 102010934A CN 201010595509 A CN201010595509 A CN 201010595509A CN 102010934 A CN102010934 A CN 102010934A
Authority
CN
China
Prior art keywords
sweetening agent
slag
vacuum
decarburization
ladle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201010595509.7A
Other languages
Chinese (zh)
Other versions
CN102010934B (en
Inventor
王�华
孟华
王建军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN201010595509.7A priority Critical patent/CN102010934B/en
Publication of CN102010934A publication Critical patent/CN102010934A/en
Application granted granted Critical
Publication of CN102010934B publication Critical patent/CN102010934B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

The invention discloses an RH refining desulphurization process of non-oriented electrical steel, belonging to the technical field of steel making. The process comprises the following steps: setting the lift gas flowrate to 1200 NL/min after the entering of the RH, and enhancing the lift gas flowrate to 1600 NL/min 3 minutes later; blowing oxygen to perform the forced decarburization when the vacuum degree is reduced to 2.0 mba, and when the oxygen blowing is finished and the vacuum degree is lower than 2.0 mba, performing the natural decarburization for 20 minutes; adding the aluminum for deoxidation when the vacuum decarburization is finished; and performing the silicon alloying by using the low carbon ferrosilicon, and adding the desulfurizing agent into the vacuum chamber in two times through the RH alloy bin. The circulation time of the test furnace batch is from 10 minutes to 15 minutes. The process provided by the invention has the advantages that the RH device needs no reconstruction, and the operation is simple. The average RH desulphurization degree is 36.7%, and the desulphurization effect is better. The contents of the FeO and the MnO of the ladle slag have significant influence on the desulphurization effect, and the enhancing of the alkalinity of the ladle slag can increase the RH desulphurization efficiency as well as reduce the corrosion of the RH device.

Description

A kind of RH refining desulfuration technology that is used for non-oriented electrical steel
Technical field
The invention belongs to steelmaking technical field, particularly relate to a kind of RH refining desulfuration technology that is used for non-oriented electrical steel, it is the processing method of non-oriented electrical steel desulfurization first-selection.
Background technology
Along with the raising gradually that the user requires steel product quality, the contour trade mark Ultra-low carbon of non-oriented electrical steel, super low sulfur steel grade smelting technology are suddenly waited to develop.Tradition non-oriented electrical steel production process only relies on the dark desulfurization of molten iron, reduction converter to return sulphur and control sulphur content.Yet only control back sulphur and realize the more production of the non-oriented electrical steel of low sulfur content, not only can cause great converter smelting pressure, and can't satisfy of the requirement of higher category non-oriented electrical steel for sulphur content by hot metal pretreatment and converter.Therefore the exploitation of RH vacuum desulfurization technology comes into one's own gradually.
The present present situation of Technology: Baosteel has obtained a kind of average desulfurization degree in the RH desulfurization test be 42.9% the dark sulfur removal technology of RH.Wuhan Iron and Steel Plant, steel company and Nippon Steel have all obtained the RH average desulfurization degree more than 50% in the Taiwan in production practice, and have all obtained sulphur content at the ultralow-sulfur steel below 0.002%.Yet sweetening agent CaF in the above process of the test 2Content causes serious erosion all more than 15% to RH equipment, has influenced rhythm of production.People such as Yu Xuebin, Shi Qilong utilizes the CaO after the improvement 2-Al 2O 3-SiO 2Slag system hangs down the fluorine sweetening agent, when handling, the RH desulfurization that weak deoxidized steels such as non-oriented electrical steel are carried out obtained 31.6% average desulfurization degree, obviously improved the sweetening effectiveness of low fluorine class sweetening agent, but the desulfurization degree of low fluorine class sweetening agent is still lower generally, and the corrosion to equipment is still relatively more serious in the RH treating processes.Therefore need to seek aborning the process control condition that is fit to and improve the RH desulfuration efficiency, further reduce in the RH desulfurization treating processes corrosion equipment.
Summary of the invention
The objective of the invention is: a kind of RH refining desulfuration technology that is used for non-oriented electrical steel is provided.The present invention has drawn the RH control condition of suitable non-oriented electrical steel desulfurization by the analysis to factors such as equipment corrosion, top slag composition, basicity, desulfurization times, has determined the related process parameter control of suitable RH desulfurization.Make the RH desulfurization degree on average reach 36.7%, have sweetening effectiveness preferably.Can be widely used in the RH refining desulfuration technology of non-oriented electrical steel.
The technical scheme that the present invention is used for the RH refining desulfuration technology of non-oriented electrical steel is: it is characterized in that:
(1) technological process of production is: molten iron pretreatment desulfurizing → LD (ladle) → pushing off the slag tapping → LF (electric furnace refining) → RH (vacuum refinement) decarburization, desulfurization → continuous casting;
(2) after RH enters the station, be 1200NL/min, behind the 3min lift gas flow be increased to 1600NL/min the lift gas flow set;
(3) decarburization is forced in oxygen blast after vacuum tightness is reduced to 2.0mba, and oxygen blast below 2.0mba, enters the nature decarburization with vacuum degree control after finishing, and guarantees that the nature decarburization time is at 20min;
(4) after vacuum decarburization finishes, aluminum deoxidation, and by FeO+MnO content in the add-on control top slag of aluminium, at first adopt low-carbon ferrosilicon to carry out alloying with silicon, drop into the low fluorine sweetening agent of fritting by RH alloy feed bin to vacuum chamber then, sweetening agent adds in batches, and first sweetening agent added 60% of sweetening agent gross weight before alloy adds, behind the vacuum cycle 2min, second batch of sweetening agent adds together with alloy.Sweetening agent adds the back and guarantees that vacuum tightness is 15min less than RH cycling time of 2.0mba.
The adding mode of sweetening agent of the present invention adopts the direct addition method of alloy feed bin, adopts the low fluorine sweetening agent of fritting, and the sweetening agent particle diameter is controlled at 3~5mm, and add-on is 3~5Kg/t.
The present invention is by adding the content that aluminum shot is regulated top slag FeO+MnO to ladle top slag, the content that FeO+MnO in the ladle top slag that enters the station is handled in the RH desulfurization is controlled at below 12%, the top basicity of slag need be controlled at more than 6, RH desulfurization processing finishes the back and adds silicon carbide to the ladle top slag modification in ladle, improve ladle top slag basicity, reduce the ladle top slag oxidisability, return sulphur to prevent subsequent handling.
The RH desulphurization circulating time of the present invention will guarantee preferably can reach 15min more than 10min, and sweetening agent adds the back and guarantees that vacuum tightness is 15min less than the vacuum cycle time of 2.0mba.
The RH of the present invention top basicity of slag that enters the station reaches 6, guarantees in the slag of top that the content of MgO is 8%~10%.
Beneficial effect of the present invention is: 1, RH significant desulfurization effect, average desulfurization degree can reach 36.7%, specifically sees Table 2.Can satisfy the requirement of the dark desulfurization of non-oriented electrical steel.
2, can regulate FeO+MnO content by adding aluminum shot to ladle top slag.The RH desulfurization is handled in the ladle top slag that enters the station FeO+MnO content and need be controlled at below 12% and can obtain sweetening effectiveness preferably, and the low more sweetening effectiveness of FeO+MnO content is good more, and the top basicity of slag need be controlled at more than 6.RH desulfurization processing finishes and need prevent that subsequent handling from returning sulphur to the ladle top slag modification, thereby guarantees the RH sweetening effectiveness.
3, in order to guarantee the RH sweetening effectiveness, the RH desulphurization circulating time will guarantee preferably can reach 15min more than 10min.
4, the RH station top basicity of slag that enters the station reaches 6, and the loss of the anti-material of equipment when 8~10% can obviously reduce the RH desulfurization and handle of the assurance MgO content in the slag of top improves RH equipment life, specifically sees Table 3.Table 1 is that RH sweetening agent of the present invention is formed, and table 2 is a RH sweetening effectiveness of the present invention, and table 3 improves RH effect equipment life for the present invention.
Embodiment
The production technique that the present invention adopts is: molten iron pretreatment desulfurizing → LD → pushing off the slag tapping → LF → RH decarburization, desulfurization → continuous casting.
Determine processing parameter lift gas flow: increase the lift gas flow within the specific limits and can increase the RH circulation, thereby accelerate desulfurization rate, but after the saturated Argon amount of Argon amount greater than equipment, circulation no longer increases with the increase of Argon amount.Excessive Argon amount can make the serious splash of molten steel in the vacuum chamber on the contrary, thereby produces a large amount of cold steel.Therefore needing rule of thumb, formula F=(0.75~1.0) * S determines rational Argon amount.In the formula: F is the Argon amount, and unit is NL/min; S is a tubular stinger internal diameter sectional area, and unit is cm 2
On-the-spot tubular stinger internal diameter is 45cm, thereby determines that the lift gas flow is:
F=(0.75~1.0)×(22.5) 2×π=1190~1590NL/min
Determine the sweetening agent processing parameter:, therefore adopt the low fluorine CaO-Al that fusing point is low, basicity is high because RH desulfurization processing requirements sweetening agent has lower fusing point and higher basicity 2O 3The slag system sweetening agent.Simultaneously in sweetening agent, add BaO, thus improved sweetening agent sweetening power, reduced the sweetening agent fusing point, reduced CaF 2Consumption.Sweetening agent sees Table 1 concrete the composition.Pre-melted desulfurizing agent is adopted in test, and the sweetening agent particle diameter is controlled at 3~5mm.Add-on is 3~5Kg/t.The adding mode of sweetening agent adopts the direct addition method of alloy feed bin.In order to realize continuing desulfurization, with sweetening agent time adding in two batches, first sweetening agent added 60% of sweetening agent gross weight before alloy adds, and behind the vacuum cycle 2min, second batch of sweetening agent adds together with alloy.Sweetening agent adds the back and guarantees that the vacuum cycle time of the little 2.0mba of vacuum tightness is 15min.
Embodiment 1:
Technology of the present invention is: after RH enters the station, be 1200NL/min with the lift gas flow set, behind the 3min lift gas flow be increased to 1600NL/min.Decarburization is forced in oxygen blast after vacuum tightness is reduced to 2.0mba, and oxygen blast below 2.0mba, enters the nature decarburization with vacuum degree control after finishing, and guarantees that the nature decarburization time is at 20min.After vacuum decarburization finishes, aluminum deoxidation.At first adopt low-carbon ferrosilicon to carry out alloying with silicon, drop into sweetening agent by RH alloy feed bin to vacuum chamber then, sweetening agent is inferior in two batches to add.Test heat cycling time is 10min to 15min.
Carry out on the slab production line RH of certain iron and steel enterprise refining furnace, the test steel grade is a non-oriented electrical steel.The employing production technique is: molten iron pretreatment desulfurizing → LD → pushing off the slag tapping → LF → RH decarburization, desulfurization → continuous casting.Rule of thumb formula is determined rational Argon amount then, to determine rational lift gas flow.After RH enters the station, be 1200NL/min, behind the 3min lift gas flow be increased to 1600NL/min the lift gas flow set.After vacuum decarburization finished, aluminum deoxidation was controlled at FeO+MnO content in the slag of top below 12%.Adopt the low fluorine sweetening agent of fritting, the adding mode is the direct addition method of alloy feed bin, and the sweetening agent particle diameter is controlled at 3~5mm, and add-on is 3~5Kg/t.With sweetening agent time adding in two batches.Drop into the sweetening agent circulation 2min that first accounts for 60% total add-on by RH alloy feed bin to vacuum chamber after the deoxidation, adopt low-carbon ferrosilicon to carry out alloying with silicon then and add second batch of sweetening agent simultaneously.Sweetening agent adds the back and guarantees that vacuum tightness is 15min less than the vacuum cycle time of 2.0mba.Add 200Kg silicon carbide in the RH departures ladle top slag.The finished product sulphur content can be controlled at below the 40ppm, and the average desulfuration efficiency of RH operation reaches more than 36%.The RH tubular stinger life-span can reach 68 stoves.
Contrast case 1:
Carry out on the slab production line RH of iron and steel enterprise of same steel mill refining furnace, the test steel grade is a non-oriented electrical steel.Adopt molten iron pretreatment desulfurizing → LD → pushing off the slag tapping → LF → RH decarburization → continuous casting production process.After RH enters the station, be 1200NL/min, behind the 3min lift gas flow be increased to 1600NL/min the lift gas flow set.Decarburization is forced in oxygen blast after vacuum tightness is reduced to 2.0mba, and oxygen blast below 2.0mba, enters the nature decarburization with vacuum degree control after finishing, and guarantees that the nature decarburization time is at 20min.Do not carry out desulfurization and handle, ladle RH departures ladle top slag does not carry out modification.The finished product sulphur content is more than 65ppm, and the RH operation does not have sweetening power.The RH tubular stinger life-span is 75 stoves.
Contrast case 2:
Carry out on the slab production line RH of iron and steel enterprise of same steel mill refining furnace, the test steel grade is a non-oriented electrical steel.Adopt molten iron pretreatment desulfurizing → LD → pushing off the slag tapping → LF → RH decarburization, desulfurization → continuous casting production process.After RH enters the station, be 1200NL/min, behind the 3min lift gas flow be increased to 1600NL/min the lift gas flow set.After vacuum decarburization finished, aluminum deoxidation was not controlled FeO+MnO in the slag of top.Adopt fritting tradition sweetening agent, the adding mode is the direct addition method of alloy feed bin, and the sweetening agent particle diameter is controlled at 3~5mm, and add-on is 3~5Kg/t.Carrying out alloying with silicon at the employing low-carbon ferrosilicon once adds sweetening agent simultaneously.Sweetening agent adds the back and guarantees that vacuum tightness is 15min less than the vacuum cycle time of 2.0mba.The not plus silicon carbide modification of RH departures ladle top slag.The finished product sulphur content can be controlled at below the 55ppm, and the average desulfuration efficiency of RH operation reaches more than 33%.The RH tubular stinger life-span is 46 stoves.
The invention has the advantages that: RH equipment need not to transform, and is simple to operate.The RH desulfurization degree on average reaches 36.7%, has sweetening effectiveness preferably.The content of finding the FeO+MnO of ladle top slag has material impact for sweetening effectiveness.Improving ladle top slag basicity not only can improve the RH desulfuration efficiency but also can alleviate corrosion to RH equipment.
Table 1 RH sweetening agent is formed
SiO 2 Al 2O 3 CaO MgO BaO CaF 2
3 25~30 50~55 3~5 7~12 3
Table 2 RH sweetening effectiveness
The heat numbering The RH sulphur content (%) that enters the station at the station RH station departures sulphur content (%) Desulfurization degree (%)
1 0.0059 0.0036 39.0
2 0.0043 0.0025 41.9
3 0.0056 0.0039 30.4
4 0.0062 0.0042 32.3
5 0.0050 0.0028 44.0
6 0.0058 0.0039 32.8
Table 3 improves RH effect equipment life
Figure BSA00000390964600061

Claims (5)

1. RH refining desulfuration technology that is used for non-oriented electrical steel is characterized in that:
(1) technological process of production is: molten iron pretreatment desulfurizing → LD (ladle) → pushing off the slag tapping → LF (electric furnace refining) → RH (vacuum refinement) decarburization, desulfurization → continuous casting;
(2) after RH enters the station, be 1200NL/min, behind the 3min lift gas flow be increased to 1600NL/min the lift gas flow set;
(3) decarburization is forced in oxygen blast after vacuum tightness is reduced to 2.0mba, and oxygen blast below 2.0mba, enters the nature decarburization with vacuum degree control after finishing, and guarantees that the nature decarburization time is at 20min;
(4) after vacuum decarburization finishes, aluminum deoxidation, and by FeO+MnO content in the add-on control top slag of aluminium, at first adopt low-carbon ferrosilicon to carry out alloying with silicon, drop into the low fluorine sweetening agent of fritting by RH alloy feed bin to vacuum chamber then, sweetening agent adds in batches, and first sweetening agent added 60% of sweetening agent gross weight before alloy adds, behind the vacuum cycle 2min, second batch of sweetening agent adds together with alloy.Sweetening agent adds the back and guarantees that vacuum tightness is 15min less than RH cycling time of 2.0mba.
2. method according to claim 1 is characterized in that: the adding mode of sweetening agent adopts the direct addition method of alloy feed bin, adopts the low fluorine sweetening agent of fritting, and the sweetening agent particle diameter is controlled at 3~5mm, and add-on is 3~5Kg/t.
3. method according to claim 1, it is characterized in that: by adding the content that aluminum shot is regulated top slag FeO+MnO to ladle top slag, the content that FeO+MnO in the ladle top slag that enters the station is handled in the RH desulfurization is controlled at below 12%, the top basicity of slag need be controlled at more than 6, RH desulfurization processing finishes the back and adds silicon carbide to the ladle top slag modification in ladle, improve ladle top slag basicity, reduce the ladle top slag oxidisability, return sulphur to prevent subsequent handling.
4. method according to claim 1 is characterized in that: the RH desulphurization circulating time will guarantee preferably can reach 15min more than 10min, and sweetening agent adds the back and guarantees that vacuum tightness is 15min less than the vacuum cycle time of 2.0mba.
5. method according to claim 1 is characterized in that: the RH top basicity of slag that enters the station reaches 6, guarantees in the slag of top that the content of MgO is 8%~10%.
CN201010595509.7A 2010-12-20 2010-12-20 RH refining desulphurization process of non-oriented electrical steel Expired - Fee Related CN102010934B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201010595509.7A CN102010934B (en) 2010-12-20 2010-12-20 RH refining desulphurization process of non-oriented electrical steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010595509.7A CN102010934B (en) 2010-12-20 2010-12-20 RH refining desulphurization process of non-oriented electrical steel

Publications (2)

Publication Number Publication Date
CN102010934A true CN102010934A (en) 2011-04-13
CN102010934B CN102010934B (en) 2013-04-03

Family

ID=43841262

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010595509.7A Expired - Fee Related CN102010934B (en) 2010-12-20 2010-12-20 RH refining desulphurization process of non-oriented electrical steel

Country Status (1)

Country Link
CN (1) CN102010934B (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102199687A (en) * 2011-04-26 2011-09-28 攀钢集团钢铁钒钛股份有限公司 RH vacuum treatment desulfurizing agent used for non-oriented electrical steel, preparation method thereof, and desulfurizing method using same
CN102417951A (en) * 2011-10-17 2012-04-18 南京钢铁股份有限公司 Vacuum refining process
CN102634642A (en) * 2012-04-10 2012-08-15 河北省首钢迁安钢铁有限责任公司 Deep desulfuration method for non-oriented electrical steel
CN103468907A (en) * 2013-09-18 2013-12-25 济钢集团有限公司 Method for producing cold-rolled non-oriented electrical steel based on ASP (AnGang Strip Production) medium thin slab continuous casting and rolling process
CN103484600A (en) * 2013-09-10 2014-01-01 首钢总公司 Anti-RH (Relative Humidity) resulfurization technology for ultralow-sulfur moderate-thickness plate steel in high-sulfur molten steel smelting
CN104073599A (en) * 2014-07-21 2014-10-01 攀钢集团西昌钢钒有限公司 Deep decarbonization method for mild steel and steel prepared according to method
CN105200195A (en) * 2015-10-26 2015-12-30 江苏省沙钢钢铁研究院有限公司 RH vacuum refining method for raising yield of antimony element
CN107299196A (en) * 2017-07-28 2017-10-27 江苏省沙钢钢铁研究院有限公司 A kind of non-orientation silicon steel RH vacuum drying ovens molten steel and clinker synchronized desulfuring method
CN107460409A (en) * 2017-07-05 2017-12-12 邢台钢铁有限责任公司 A kind of pole jaw of car electricity generator high Al electrician's billet and its production method
CN108660294A (en) * 2018-05-31 2018-10-16 江苏省沙钢钢铁研究院有限公司 A kind of silicomanganese calmness non-orientation silicon steel inclusion control method
CN110578036A (en) * 2019-09-26 2019-12-17 湖南华菱涟钢薄板有限公司 RH refining method and smelting process of aluminum-containing electrical steel
CN114752731A (en) * 2022-03-23 2022-07-15 北京首钢股份有限公司 RH refining high-efficiency desulfurization method
CN115896602A (en) * 2022-11-11 2023-04-04 湖南华菱涟源钢铁有限公司 Method for producing oriented silicon steel slab and oriented silicon steel slab

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
《2010年第十一届中国电工钢专业学术年会论文集》 20101209 卿家胜等 无取向电工钢冶炼过程中硫含量控制的研究 第145-151页 1-5 , 2 *
《2010年第十一届中国电工钢专业学术年会论文集》 20101209 陈亮等 电工钢RH脱硫的生产实践 第140-144页 3、5 , 2 *
《宝钢技术》 19990630 郑建忠等 RH精炼过程深脱硫的试验研究 第33-36页 1-5 , 第6期 2 *
《炼钢 Steelmaking》 20010630 艾立群等 RH处理过程钢液脱硫 第53-57页 1-5 第17卷, 第3期 2 *
《钢铁钒钛》 20090430 郭上型等 RH用低氟型CaO+Al2O3基熔剂深脱硫工业试验 第46-49页 1-5 第30卷, 第2期 2 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102199687A (en) * 2011-04-26 2011-09-28 攀钢集团钢铁钒钛股份有限公司 RH vacuum treatment desulfurizing agent used for non-oriented electrical steel, preparation method thereof, and desulfurizing method using same
CN102417951A (en) * 2011-10-17 2012-04-18 南京钢铁股份有限公司 Vacuum refining process
CN102634642A (en) * 2012-04-10 2012-08-15 河北省首钢迁安钢铁有限责任公司 Deep desulfuration method for non-oriented electrical steel
CN103484600A (en) * 2013-09-10 2014-01-01 首钢总公司 Anti-RH (Relative Humidity) resulfurization technology for ultralow-sulfur moderate-thickness plate steel in high-sulfur molten steel smelting
CN103484600B (en) * 2013-09-10 2015-05-27 首钢总公司 Anti-RH (Relative Humidity) resulfurization technology for ultralow-sulfur moderate-thickness plate steel in high-sulfur molten steel smelting
CN103468907A (en) * 2013-09-18 2013-12-25 济钢集团有限公司 Method for producing cold-rolled non-oriented electrical steel based on ASP (AnGang Strip Production) medium thin slab continuous casting and rolling process
CN104073599A (en) * 2014-07-21 2014-10-01 攀钢集团西昌钢钒有限公司 Deep decarbonization method for mild steel and steel prepared according to method
CN105200195B (en) * 2015-10-26 2017-05-31 江苏省沙钢钢铁研究院有限公司 A kind of RH process for vacuum refining for improving antimony element recovery rate
CN105200195A (en) * 2015-10-26 2015-12-30 江苏省沙钢钢铁研究院有限公司 RH vacuum refining method for raising yield of antimony element
CN107460409A (en) * 2017-07-05 2017-12-12 邢台钢铁有限责任公司 A kind of pole jaw of car electricity generator high Al electrician's billet and its production method
CN107460409B (en) * 2017-07-05 2019-10-18 邢台钢铁有限责任公司 A kind of pole jaw of car electricity generator high Al electrician's billet and its production method
CN107299196A (en) * 2017-07-28 2017-10-27 江苏省沙钢钢铁研究院有限公司 A kind of non-orientation silicon steel RH vacuum drying ovens molten steel and clinker synchronized desulfuring method
CN108660294A (en) * 2018-05-31 2018-10-16 江苏省沙钢钢铁研究院有限公司 A kind of silicomanganese calmness non-orientation silicon steel inclusion control method
CN108660294B (en) * 2018-05-31 2019-12-10 江苏省沙钢钢铁研究院有限公司 Silicon-manganese killed non-oriented silicon steel inclusion control method
CN110578036A (en) * 2019-09-26 2019-12-17 湖南华菱涟钢薄板有限公司 RH refining method and smelting process of aluminum-containing electrical steel
CN114752731A (en) * 2022-03-23 2022-07-15 北京首钢股份有限公司 RH refining high-efficiency desulfurization method
CN114752731B (en) * 2022-03-23 2023-05-05 北京首钢股份有限公司 RH refining high-efficiency desulfurization method
CN115896602A (en) * 2022-11-11 2023-04-04 湖南华菱涟源钢铁有限公司 Method for producing oriented silicon steel slab and oriented silicon steel slab

Also Published As

Publication number Publication date
CN102010934B (en) 2013-04-03

Similar Documents

Publication Publication Date Title
CN102010934B (en) RH refining desulphurization process of non-oriented electrical steel
CN101240397B (en) Converter-RH-LF-continuous casting technique for producing pipe line steel
CN105603156B (en) The production method of super-low sulfur IF steel
CN108823346B (en) method for producing secondary flaw detection Q345R medium steel plate with low cost
CN109022664B (en) Method for smelting Ti-IF steel by using vanadium-titanium-containing molten iron
CN108998628B (en) Low-cost deoxidation process for killed steel
CN108531807A (en) A kind of heavy wall heavy caliber X80M pipelines clean steel and smelting process
CN107365890A (en) A kind of control method of X80 inclusion in pipeline steel
CN103571999A (en) Method for smelting nitrogen-controlling martensite stainless steel through total molten iron
CN102851447A (en) Outside-furnace refining production method of steel used in carbon steel welding wire
CN102051444B (en) Desulfurizing method of ladle refining furnace and desulfurizing method used for slab-grade steel
CN103215406B (en) Low-carbon and ultralow sulfur steel smelting method
CN105624367A (en) Refining device and method for controlling nitrogen content of molten steel
CN105177408A (en) Low-cost hot-rolled thin strip steel containing boron and manufacturing method thereof
CN107058679A (en) A kind of method for stablizing half steel quality
CN102226225A (en) Oxygen supply lance height control method of converter for producing low-carbon and low-phosphorus steel
CN103643117A (en) Ultra-low aluminum steel and smelting method thereof
CN113832380A (en) Smelting method of ultralow-aluminum-content low-sulfur non-oriented silicon steel
CN103215408A (en) Method for converter steelmaking by adding steel slag blocks
CN112458236A (en) Method for refining and deep desulfurization of molten steel, device for refining molten steel and application
CN102732678A (en) Control method of oxygen in low-carbon low-silicon aluminum-killed steel
CN109930064A (en) A kind of effective heat resisting steel of corrosion-resistant high-pressure boiler and its production method
CN108913846B (en) Semi-steel steelmaking converter post-furnace desulfurization method
CN113913580B (en) Production method of ultralow-carbon low-aluminum structural molten steel
CN105238907B (en) A kind of method of vacuum refining molten steel

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130403

Termination date: 20141220

EXPY Termination of patent right or utility model