CN102010751B - Efficient combined production method for gasoline with ultralow sulfur and high octane value - Google Patents
Efficient combined production method for gasoline with ultralow sulfur and high octane value Download PDFInfo
- Publication number
- CN102010751B CN102010751B CN201010584150.3A CN201010584150A CN102010751B CN 102010751 B CN102010751 B CN 102010751B CN 201010584150 A CN201010584150 A CN 201010584150A CN 102010751 B CN102010751 B CN 102010751B
- Authority
- CN
- China
- Prior art keywords
- gasoline
- catalyst
- sulfur
- zeolite
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003502 gasoline Substances 0.000 title claims abstract description 179
- 229910052717 sulfur Inorganic materials 0.000 title claims abstract description 90
- 239000011593 sulfur Substances 0.000 title claims abstract description 90
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 title claims abstract description 79
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 29
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 title claims abstract description 24
- 239000003054 catalyst Substances 0.000 claims abstract description 100
- 238000006243 chemical reaction Methods 0.000 claims abstract description 60
- 238000005899 aromatization reaction Methods 0.000 claims abstract description 22
- 238000006317 isomerization reaction Methods 0.000 claims abstract description 21
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 18
- 238000006276 transfer reaction Methods 0.000 claims abstract description 15
- 239000002994 raw material Substances 0.000 claims abstract description 11
- 238000005194 fractionation Methods 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims description 57
- 239000010457 zeolite Substances 0.000 claims description 42
- 229910021536 Zeolite Inorganic materials 0.000 claims description 41
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 36
- 239000003921 oil Substances 0.000 claims description 32
- 239000000203 mixture Substances 0.000 claims description 20
- 239000007788 liquid Substances 0.000 claims description 19
- 238000012546 transfer Methods 0.000 claims description 18
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 14
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 9
- 239000002131 composite material Substances 0.000 claims description 9
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 8
- 238000010335 hydrothermal treatment Methods 0.000 claims description 7
- 150000007522 mineralic acids Chemical class 0.000 claims description 7
- 239000003513 alkali Substances 0.000 claims description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims description 6
- 239000001257 hydrogen Substances 0.000 claims description 6
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 5
- 125000003118 aryl group Chemical group 0.000 claims description 5
- 239000011230 binding agent Substances 0.000 claims description 5
- 229910018566 Al—Si—Mg Inorganic materials 0.000 claims description 4
- 229910018575 Al—Ti Inorganic materials 0.000 claims description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 4
- 229910017604 nitric acid Inorganic materials 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 239000007787 solid Substances 0.000 claims description 4
- 229910000314 transition metal oxide Inorganic materials 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 3
- 239000000654 additive Substances 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium group Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 2
- 239000012752 auxiliary agent Substances 0.000 claims description 2
- 150000002431 hydrogen Chemical class 0.000 claims description 2
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 2
- 229910007981 Si-Mg Inorganic materials 0.000 claims 1
- 229910008316 Si—Mg Inorganic materials 0.000 claims 1
- 230000000996 additive effect Effects 0.000 claims 1
- 238000001914 filtration Methods 0.000 claims 1
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum oxide Inorganic materials [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 claims 1
- KTUFCUMIWABKDW-UHFFFAOYSA-N oxo(oxolanthaniooxy)lanthanum Chemical compound O=[La]O[La]=O KTUFCUMIWABKDW-UHFFFAOYSA-N 0.000 claims 1
- 235000021110 pickles Nutrition 0.000 claims 1
- 238000005406 washing Methods 0.000 claims 1
- 150000001336 alkenes Chemical class 0.000 abstract description 50
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 abstract description 31
- 238000006477 desulfuration reaction Methods 0.000 abstract description 20
- 230000023556 desulfurization Effects 0.000 abstract description 20
- 230000009467 reduction Effects 0.000 abstract description 10
- 238000005520 cutting process Methods 0.000 abstract description 9
- 238000002156 mixing Methods 0.000 abstract description 8
- 230000000694 effects Effects 0.000 abstract description 7
- 238000004523 catalytic cracking Methods 0.000 abstract description 4
- 230000000153 supplemental effect Effects 0.000 abstract 1
- 239000000047 product Substances 0.000 description 53
- 230000008569 process Effects 0.000 description 21
- 238000005984 hydrogenation reaction Methods 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 150000003464 sulfur compounds Chemical class 0.000 description 10
- 150000001335 aliphatic alkanes Chemical class 0.000 description 7
- 238000009835 boiling Methods 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 238000005470 impregnation Methods 0.000 description 6
- 238000011160 research Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 5
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- -1 alkylthiophenes Chemical class 0.000 description 4
- 238000005336 cracking Methods 0.000 description 4
- 150000001993 dienes Chemical class 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 150000003568 thioethers Chemical class 0.000 description 4
- 229930192474 thiophene Natural products 0.000 description 4
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 3
- ZQRGREQWCRSUCI-UHFFFAOYSA-N [S].C=1C=CSC=1 Chemical class [S].C=1C=CSC=1 ZQRGREQWCRSUCI-UHFFFAOYSA-N 0.000 description 3
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 230000008929 regeneration Effects 0.000 description 3
- 238000011069 regeneration method Methods 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 150000003577 thiophenes Chemical class 0.000 description 3
- FCEHBMOGCRZNNI-UHFFFAOYSA-N 1-benzothiophene Chemical class C1=CC=C2SC=CC2=C1 FCEHBMOGCRZNNI-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- 238000010306 acid treatment Methods 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- APUPEJJSWDHEBO-UHFFFAOYSA-P ammonium molybdate Chemical compound [NH4+].[NH4+].[O-][Mo]([O-])(=O)=O APUPEJJSWDHEBO-UHFFFAOYSA-P 0.000 description 2
- 239000011609 ammonium molybdate Substances 0.000 description 2
- 229940010552 ammonium molybdate Drugs 0.000 description 2
- 235000018660 ammonium molybdate Nutrition 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 238000005504 petroleum refining Methods 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 235000009854 Cucurbita moschata Nutrition 0.000 description 1
- 240000001980 Cucurbita pepo Species 0.000 description 1
- 235000009852 Cucurbita pepo Nutrition 0.000 description 1
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 1
- 241000237509 Patinopecten sp. Species 0.000 description 1
- 206010035148 Plague Diseases 0.000 description 1
- 241000607479 Yersinia pestis Species 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 1
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 229910000388 diammonium phosphate Inorganic materials 0.000 description 1
- 235000019838 diammonium phosphate Nutrition 0.000 description 1
- 238000006266 etherification reaction Methods 0.000 description 1
- 238000004508 fractional distillation Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- FYDKNKUEBJQCCN-UHFFFAOYSA-N lanthanum(3+);trinitrate Chemical compound [La+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O FYDKNKUEBJQCCN-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 150000005673 monoalkenes Chemical class 0.000 description 1
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 235000010333 potassium nitrate Nutrition 0.000 description 1
- 239000004323 potassium nitrate Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 235000020637 scallop Nutrition 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 235000020354 squash Nutrition 0.000 description 1
- 238000004230 steam cracking Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000005987 sulfurization reaction Methods 0.000 description 1
- 238000004227 thermal cracking Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
Images
Landscapes
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
本发明涉及一种超低硫且高辛烷值汽油的高效组合生产方法。该生产方法包括:使劣质全馏分汽油原料在临氢条件下进行低温定向硫转移反应,然后进行油品切割分馏,获得轻馏分汽油和重馏分汽油,切割分馏温度为50-90℃;使重馏分汽油与选择性加氢脱硫催化剂和补充脱硫-烃类异构/芳构催化剂接触;将轻馏分汽油和处理后的重馏分汽油混合,得到超低硫且高辛烷值的汽油产品。本发明适用于劣质汽油的改质,尤其对超高硫、高烯烃的劣质催化裂化汽油可以获得很好的超深度脱硫、降烯烃效果,且反应后可维持或提高产品的辛烷值并保持较高的产品收率。
The invention relates to a high-efficiency combined production method of ultra-low sulfur and high-octane gasoline. The production method comprises: subjecting low-quality full-distillate gasoline raw materials to low-temperature directional sulfur transfer reaction under hydrogen-facing conditions, and then performing oil product cutting and fractionation to obtain light-distillate gasoline and heavy-distillate gasoline. The cut-off fractionation temperature is 50-90°C; Distillate gasoline is contacted with selective hydrodesulfurization catalyst and supplemental desulfurization-hydrocarbon isomerization/aromatization catalyst; blending light-distillate gasoline and treated heavy-distillate gasoline to obtain ultra-low sulfur and high octane gasoline products. The invention is applicable to the upgrading of inferior gasoline, especially for inferior catalytic cracking gasoline with ultra-high sulfur and high olefins, which can obtain very good effects of ultra-deep desulfurization and olefin reduction, and can maintain or increase the octane number of the product after the reaction and maintain Higher product yield.
Description
技术领域 technical field
本发明涉及一种超低硫且高辛烷值汽油的高效组合生产方法,尤其涉及一种石油炼制领域用于催化裂化(FCC)汽油,特别是超高硫、高烯烃的劣质FCC汽油的超深度脱硫-恢复辛烷值加氢改质方法。The invention relates to a high-efficiency combined production method of ultra-low sulfur and high-octane gasoline, in particular to a method for catalytic cracking (FCC) gasoline in the field of petroleum refining, especially low-quality FCC gasoline with ultra-high sulfur and high olefins Ultra-deep desulfurization-recovering octane number hydrogenation upgrading method.
背景技术 Background technique
目前,催化裂化汽油中高的硫含量和烯烃含量已成为困扰世界清洁汽油生产的关键问题。在高辛烷值组分重整汽油和烷基化汽油较少的情况下,为满足日益严格的清洁汽油标准要求,FCC汽油的加氢改质就成为车用清洁燃料生产的关键技术之一。At present, the high sulfur content and olefin content in FCC gasoline have become the key problems that plague the world's clean gasoline production. In the case of less high-octane reformed gasoline and alkylated gasoline, in order to meet the increasingly stringent clean gasoline standards, FCC gasoline hydro-upgrading has become one of the key technologies for the production of clean fuel for vehicles .
USP 5770047、USP 5417697等介绍了以加氢精制-裂化/单支链加氢异构为主的脱硫、降烯烃工艺。这些工艺的主要思路是将全馏分FCC汽油切割为轻、重馏分,FCC汽油重馏分经常规加氢精制催化剂深度脱硫处理后,其中的烯烃全部转化为烷烃,然后所得产品在经筛选具有适当酸性的沸石基催化剂上完成烷烃裂化-加氢异构反应,达到改善和恢复辛烷值的目的,随后通过轻重馏分调和获得全馏分改质汽油。按照上述专利的记载,最终调和产品的液体收率为94wt%,汽油研究法辛烷值(RON)损失达到2.0个单位左右。USP 5770047, USP 5417697, etc. introduced the desulfurization and olefin reduction process based on hydrofining-cracking/single-branched hydroisomerization. The main idea of these processes is to cut the whole fraction of FCC gasoline into light and heavy fractions. After the heavy fraction of FCC gasoline is desulfurized by conventional hydrotreating catalysts, all the olefins in it will be converted into alkanes, and then the obtained products will have appropriate acidity after being screened. The alkane cracking-hydroisomerization reaction is completed on the zeolite-based catalyst to achieve the purpose of improving and restoring the octane number, and then the whole fraction of modified gasoline is obtained by blending light and heavy fractions. According to the records of the above-mentioned patents, the liquid yield of the final blended product is 94wt%, and the gasoline research method octane number (RON) loss reaches about 2.0 units.
虽然上述专利提供的汽油加氢改质方法可实现脱硫、降烯烃的目的,但其所针对的原料油中烯烃含量仅为20v%左右且芳烃含量较高(30v%左右),更多适用于国外的汽油组分,对于烯烃和硫含量都较高、芳烃含量较低(20v%左右)的油品,例如对烯烃含量高达40v%左右的我国FCC汽油,使用该工艺进行改质,在脱硫降烯烃的同时,大量烯烃被加氢饱和,导致辛烷值的损失增大,所以这些公开报道的改质技术显然是不适用的。正是这样的原因,针对中国FCC汽油的特殊性,探索更科学合理的改质方法始终是炼油业的研究热点。Although the gasoline hydro-upgrading method provided by the above-mentioned patent can achieve the purpose of desulfurization and olefin reduction, the olefin content in the raw oil it targets is only about 20v% and the aromatic content is relatively high (about 30v%), which is more suitable for Foreign gasoline components, for oil products with high olefin and sulfur content and low aromatic content (about 20v%), such as my country's FCC gasoline with olefin content as high as about 40v%, use this process for upgrading, and in desulfurization While reducing olefins, a large amount of olefins are hydrogenated and saturated, resulting in an increase in the loss of octane number, so these publicly reported upgrading technologies are obviously not applicable. It is for this reason that in view of the particularity of Chinese FCC gasoline, exploring a more scientific and reasonable upgrading method has always been a research hotspot in the oil refining industry.
CN145666A(中国专利申请02121595.2号)中提供的汽油深度脱硫降烯烃的方法,就是针对我国FCC汽油的上述特点,对经加氢精制催化剂实施加氢脱硫脱氮且烯烃饱和后的重汽油馏分,利用具有足够酸性功能的HZSM-5基辛烷值恢复催化剂,实现低辛烷值烷烃分子的裂化和烷烃分子的异构化反应,然后将实施了改质的重馏分与切割得到的轻馏分混合成为最终改质产品。按照该专利的介绍,由于在第一段反应中烯烃被完全加氢饱和,为恢复产品的辛烷值需要提高二段催化剂的裂化能力,其代价是产品液体收率的大幅降低(仅为86%),且加工成本显著提高。CN145666A (Chinese Patent Application No. 02121595.2) provides the method of deep desulfurization and olefin reduction of gasoline, which is aimed at the above-mentioned characteristics of my country's FCC gasoline. The heavy gasoline fraction after hydrodesulfurization and denitrogenation and saturated olefins is used for hydrogenation catalysts. The HZSM-5 based octane recovery catalyst with sufficient acidic function can realize the cracking of low-octane alkane molecules and the isomerization reaction of alkane molecules, and then mix the modified heavy fraction with the cut light fraction to form The final modified product. According to the introduction of this patent, since the olefins are completely hydrogenated and saturated in the first stage reaction, in order to restore the octane number of the product, it is necessary to increase the cracking capacity of the second stage catalyst, at the cost of a significant reduction in the product liquid yield (only 86 %), and the processing cost is significantly increased.
CN 1488722A(中国专利申请0213311.1号)公开了一种与上述专利相似的FCC汽油加氢改质工艺。不同之处在于FCC汽油重馏分经常规加氢精制催化剂深度脱硫、烯烃全部转化为烷烃后,所得反应流出物是在纳米Hβ沸石基催化剂上完成的正构烷烃裂化-单支链加氢异构反应。CN 1488722A (Chinese Patent Application No. 0213311.1) discloses a FCC gasoline hydro-upgrading process similar to the above-mentioned patent. The difference is that after the heavy fraction of FCC gasoline is deeply desulfurized by conventional hydrorefining catalysts and all olefins are converted into alkanes, the resulting reaction effluent is n-paraffin cracking-single branched chain hydroisomerization completed on a nano-Hβ zeolite-based catalyst reaction.
以上两个中国专利的改质工艺的相似之处都是使经过常规加氢精制的重馏分油在酸性功能的沸石基催化剂上异构化,实现正构烷烃裂化-单支链加氢异构,由于HZSM-5沸石和纳米Hβ沸石酸性较强、酸量较大,因此导致裂化反应较为严重,其结果是抑制了烷烃的单支链异构反应。The similarities between the upgrading processes of the above two Chinese patents are that heavy distillate oil that has undergone conventional hydrotreating is isomerized on an acidic functional zeolite-based catalyst to realize n-paraffin cracking-single branched chain hydroisomerization , because HZSM-5 zeolite and nano-Hβ zeolite have strong acidity and large acid content, the cracking reaction is more serious, and the result is that the single branched chain isomerization reaction of alkanes is inhibited.
CN 1743425A(中国专利申请200410074058.7号)公开了一种针对我国高烯烃FCC汽油的加氢改质工艺,其中,全馏分FCC汽油经脱二烯烃、烯烃芳构和补充降烯烃三个反应改质后,脱硫率为78%、产品烯烃含量为30v%、产品RON损失为1.0个单位,产品液收为98.5wt%左右。但是该方法主要针对低含硫FCC汽油,在尽可能减少RON损失的前提下,脱硫率较低、烯烃降幅小,所得产品质量难以满足国III和国Ⅳ清洁汽油标准,显然不适合于高含硫量的原料油。CN 1743425A (Chinese Patent Application No. 200410074058.7) discloses a hydrogenation and upgrading process for high-olefin FCC gasoline in my country, wherein, the full-cut FCC gasoline is modified by three reactions of de-diene, olefin aromatization and supplementary olefin reduction. , the desulfurization rate is 78%, the product olefin content is 30v%, the product RON loss is 1.0 unit, and the product liquid yield is about 98.5wt%. However, this method is mainly aimed at low-sulfur FCC gasoline. Under the premise of reducing the loss of RON as much as possible, the desulfurization rate is low and the olefin reduction rate is small. Sulfur content of raw oil.
CN 1488724A(中国专利申请02133130.8号)公开了一种基于纳米沸石催化剂的FCC汽油加氢精制/芳构化联合工艺。该工艺是使全馏分FCC汽油经加氢精制将大部分烯烃转化为烷烃后,再在纳米沸石催化剂上进行烷烃芳构化,该专利通过采用一种包含主族、过渡族金属和镧系稀土金属氧化物的纳米级氢型分子筛催化剂,使改质产品脱硫率高、烯烃降幅大,但该方法得到的产品液收率仅为90wt%左右,产品RON损失较大(达到2.0-3.0个单位),且纳米沸石制备复杂,再生性能不佳,导致工艺成本增加,难以适应工业化生产。CN 1488724A (Chinese Patent Application No. 02133130.8) discloses a combined FCC gasoline hydrofinishing/aromatization process based on a nano-zeolite catalyst. The process is to convert most of the olefins into alkanes by hydrotreating the whole fraction of FCC gasoline, and then carry out the aromatization of the alkanes on the nano-zeolite catalyst. The nanoscale hydrogen-type molecular sieve catalyst of metal oxide makes the desulfurization rate of the modified product high and the olefin drop rate is large, but the product liquid yield obtained by this method is only about 90wt%, and the product RON loss is relatively large (reaching 2.0-3.0 units ), and the preparation of nano zeolite is complicated, and the regeneration performance is not good, which leads to an increase in process cost and is difficult to adapt to industrial production.
CN 1718688A(中国专利申请200410020932.9号)公开了一种劣质FCC汽油加氢改质方法。该专利方法在氢气存在和温度逐渐升高的条件下,形成三个反应区,使全馏分FCC汽油与三种催化剂接触,先采用常规加氢精制催化剂在高进料空速下(6h-1)进行脱二烯反应,然后采用纳米沸石催化剂在高温(415℃)下进行芳构化、异构化反应,最后采用Co-Mo-K-P/Al2O3催化剂在高温(415℃)、更高空速(40h-1)下进行选择性脱硫。该方法的优点是所获得产品的烯烃和硫含量均较低,但产品RON损失为3.0个单位左右,产品液体收率为94wt%左右,且纳米沸石制备复杂,高温下易失活,再生性能不佳,另外在很高空速和很高温度下的第三段脱硫催化剂也易失活,影响了整个工艺的反应稳定性,增加了工业化生产的应用难度。CN 1718688A (Chinese Patent Application No. 200410020932.9) discloses a method for hydrogenation and upgrading of inferior FCC gasoline. The patented method forms three reaction zones under the conditions of hydrogen presence and temperature gradually increasing, so that the whole distillate FCC gasoline is contacted with three kinds of catalysts . ) for dealdiene reaction, and then use nano-zeolite catalyst to carry out aromatization and isomerization reaction at high temperature (415°C), and finally use Co-Mo-KP/Al 2 O 3 catalyst at high temperature (415°C) and more Selective desulfurization is carried out at high space velocity (40h -1 ). The advantage of this method is that the olefin and sulfur content of the obtained product are all low, but the product RON loss is about 3.0 units, the product liquid yield is about 94wt%, and the preparation of nano zeolite is complicated, easy to deactivate at high temperature, and the regeneration performance In addition, the desulfurization catalyst in the third stage is easily deactivated at very high space velocity and high temperature, which affects the reaction stability of the entire process and increases the difficulty of industrial production.
CN 1597865A(中国专利申请03133992.1号)公开了一种与CN 1718688A思路相似的劣质FCC汽油加氢改质方法。该工艺方法先采用常规加氢精制催化剂在高进料空速下(6h-1)进行全馏分FCC汽油的脱二烯烃反应,然后采用Co-Mo-K-P/Al2O3催化剂进行选择性脱硫,最后采用纳米沸石催化剂在高温(415℃)下进行烯烃芳构化。该专利方法所获得产品的烯烃含量较低,但产品RON损失为1.0个单位左右,上述纳米沸石的不足之处依然存在,且产品硫含量较高(脱硫率仅75%),难以满足国III和国Ⅳ清洁汽油标准。CN 1597865A (Chinese Patent Application No. 03133992.1) discloses a method for hydrogenation and upgrading of low-quality FCC gasoline similar to CN 1718688A. In this process, a conventional hydrotreating catalyst is used to carry out the deolefination reaction of the whole cut FCC gasoline at a high feed space velocity (6h -1 ), and then a Co-Mo-KP/Al 2 O 3 catalyst is used for selective desulfurization , and finally use nano-zeolite catalyst to carry out olefin aromatization at high temperature (415°C). The olefin content of the product obtained by this patented method is low, but the RON loss of the product is about 1.0 units. The shortcomings of the above-mentioned nano zeolite still exist, and the sulfur content of the product is high (the desulfurization rate is only 75%), and it is difficult to meet the requirements of National III. And the country Ⅳ clean gasoline standard.
CN 1769388A(中国专利申请200410082704.4号)公开了一种降低FCC汽油硫和烯烃含量的加氢改质工艺。该专利的工艺是先采用常规加氢精制催化剂在高进料空速下(6h-1)进行全馏分FCC汽油的脱二烯烃反应,然后进行预分馏,轻馏分汽油在纳米沸石催化剂上主要进行烯烃芳构化,重馏分汽油在低金属含量氧化铝催化剂和高金属含量氧化铝催化剂上依次进行选择性加氢脱硫反应,最后将反应后的轻重汽油混合后可得全馏分改质汽油。该专利方法所获得产品的烯烃和硫含量较低,但整个加工过程依然使产品RON损失为1.5个单位左右,而上述纳米沸石的不足之处依然存在,且需要四种催化剂和配套的复杂工艺,限制了其工业应用。CN 1769388A (Chinese Patent Application No. 200410082704.4) discloses a hydro-upgrading process for reducing the sulfur and olefin content of FCC gasoline. The process of this patent is to use conventional hydrorefining catalyst to carry out the diene reaction of whole fraction FCC gasoline at high feed space velocity (6h -1 ), and then carry out pre-fractionation, light fraction gasoline is mainly carried out on nano zeolite catalyst Olefin aromatization, heavy distillate gasoline is sequentially subjected to selective hydrodesulfurization reaction on low metal content alumina catalyst and high metal content alumina catalyst, and finally the reacted light and heavy gasoline can be mixed to obtain whole distillate modified gasoline. The content of olefins and sulfur in the product obtained by this patented method is relatively low, but the RON loss of the product is still about 1.5 units during the entire processing process, and the above-mentioned shortcomings of nano-zeolite still exist, and four catalysts and supporting complex processes are required , limiting its industrial application.
CN1283761C(中国专利200410060574.4号)公开了一种劣质汽油加氢改质工艺。该工艺先将全馏分FCC汽油切割为轻馏分和重馏分汽油,然后将重馏分汽油在Co(Ni)-Mo/TiO2催化剂上进行加氢脱硫,再在Co(Ni)-Mo(W)/ZSM-5-/TiO2催化剂上进行芳烃化,最后将反应后的轻重汽油混合成为全馏分改质汽油。按照该专利方法所获得产品的烯烃含量较低,但产品硫含量难以满足国Ⅳ标准中不高于50μg.g-1的要求,另一方面,该方法针对高含硫油,为了提高最终混合产品的RON,该方法的关键之一是对加氢脱硫后的重馏分汽油进行芳构化,但芳烃是焦炭的前驱物,较高的芳烃生成量(产品芳烃高于原料10v%以上)对催化剂的稳定性极为不利;再者,该方法中的催化剂载体要求以TiO2为主,这也使得催化剂的强度大幅降低,不利于其长周期稳定运转和再生。CN1283761C (Chinese Patent No. 200410060574.4) discloses a process for hydrogenation and upgrading of inferior gasoline. In this process, the whole fraction FCC gasoline is first cut into light fraction and heavy fraction gasoline, and then the heavy fraction gasoline is subjected to hydrodesulfurization on Co(Ni)-Mo/ TiO2 catalyst, and then the Co(Ni)-Mo(W) /ZSM-5-/TiO 2 catalyst for aromatization, and finally the light and heavy gasoline after the reaction is mixed to become full fraction modified gasoline. The olefin content of the product obtained according to this patented method is relatively low, but the sulfur content of the product is difficult to meet the requirements of the National IV standard of no more than 50 μg.g -1 . On the other hand, this method is aimed at high sulfur oil. The RON of the product, one of the keys of this method is to carry out aromatization to the heavy distillate gasoline after hydrodesulfurization, but aromatic hydrocarbon is the precursor of coke, and higher aromatic hydrocarbon generation amount (product aromatic hydrocarbon is higher than raw material more than 10v%) is harmful to The stability of the catalyst is extremely unfavorable; moreover, the catalyst carrier in this method is required to be mainly TiO 2 , which also greatly reduces the strength of the catalyst, which is not conducive to its long-term stable operation and regeneration.
总之,针对高含硫和高烯烃的我国FCC汽油等劣质油品,虽然已有很多研究都在试图通过不同手段的改质实现脱硫降烯烃,同时尽可能保持和改善油品的辛烷值,这些公开的方法虽然各有优点,但探索一种更为合理的改质工艺,选择适当功能和活性的催化剂,在保持辛烷值的同时,实现超深度脱硫和大幅降烯烃,并解决催化剂稳定性不理想以及加工成本高等问题,始终是石油炼制领域所追求的目标。In short, for low-quality oil products such as my country’s FCC gasoline with high sulfur content and high olefins, although many studies have tried to achieve desulfurization and olefin reduction through different means of upgrading, while maintaining and improving the octane number of the oil as much as possible, Although these published methods have their own advantages, it is necessary to explore a more reasonable upgrading process, select a catalyst with appropriate function and activity, achieve ultra-deep desulfurization and greatly reduce olefins while maintaining octane number, and solve the problem of catalyst stability. Problems such as unsatisfactory performance and high processing costs have always been the goals pursued by the field of petroleum refining.
发明内容 Contents of the invention
针对现有技术的不足,本发明的目的是提供一种超低硫且高辛烷值汽油的高效组合生产方法,通过使劣质全馏分汽油原料在临氢条件下与低温定向硫转移催化剂接触,使较轻的硫醇及噻吩类硫化合物转化为高沸点的硫化合物而转移到较重的汽油馏分中,然后对经过硫转移处理的劣质全馏分汽油进行馏分切割;再对重馏分汽油进行处理,最后将轻馏分汽油和处理后的重馏分汽油混合,得到超低硫且高辛烷值的汽油。该方法适用于超高硫、高烯烃劣质汽油的改质,能够达到对劣质汽油进行超深度脱硫、降烯烃的同时,改善产品辛烷值并保持较高的产品液体收率的效果。Aiming at the deficiencies in the prior art, the purpose of the present invention is to provide a high-efficiency combined production method for ultra-low sulfur and high-octane gasoline, by contacting low-quality full-cut gasoline feedstock with a low-temperature directional sulfur transfer catalyst under hydrogen-facing conditions, Convert lighter mercaptans and thiophene sulfur compounds into high-boiling sulfur compounds and transfer them to heavier gasoline fractions, and then cut the fractions of inferior full-distillate gasoline that has undergone sulfur transfer treatment; and then treat heavy distillate gasoline , and finally blend the light distillate gasoline with the treated heavy distillate gasoline to obtain ultra-low sulfur and high octane gasoline. The method is applicable to the upgrading of low-quality gasoline with ultra-high sulfur and high olefins, and can achieve ultra-deep desulfurization and olefin reduction for low-quality gasoline, while improving the product octane number and maintaining a high product liquid yield.
为达到上述目的,本发明提供了一种超低硫且高辛烷值汽油的高效组合生产方法,该方法主要包括:In order to achieve the above object, the present invention provides a high-efficiency combined production method for ultra-low sulfur and high-octane gasoline, which mainly includes:
使劣质全馏分汽油原料在临氢条件下进行低温定向硫转移反应,然后进行油品切割分馏,获得轻馏分汽油和重馏分汽油,切割分馏温度为50-90℃;Make low-quality full-distillate gasoline raw materials undergo low-temperature directional sulfur transfer reaction under hydrogen-facing conditions, and then conduct oil cutting and fractionation to obtain light-distillate gasoline and heavy-distillate gasoline. The cutting and fractionation temperature is 50-90°C;
使重馏分汽油与选择性加氢脱硫催化剂和补充脱硫-烃类异构/芳构催化剂接触;Contacting heavy distillate gasoline with a selective hydrodesulfurization catalyst and a make-up desulfurization-hydrocarbon isomerization/aromatization catalyst;
将轻馏分汽油和处理后的重馏分汽油混合,得到超低硫且高辛烷值的汽油产品。Blending light distillate gasoline and treated heavy distillate gasoline to obtain ultra-low sulfur and high octane gasoline products.
在本发明所提供的超低硫且高辛烷值汽油的高效组合生产方法中,首先使劣质全馏分汽油原料在临氢条件下与低温定向硫转移催化剂接触,使较轻的硫醇及噻吩类硫化合物转化为高沸点的硫化合物而转移到较重的汽油馏分中,然后对经过硫转移处理的劣质全馏分汽油进行馏分切割,得到轻馏分汽油和重馏分汽油;再使重馏分汽油首先与选择性加氢脱硫催化剂接触进行脱硫,脱除硫醚、烷基噻吩、苯并噻吩等硫化合物,然后再与补充脱硫-烃类异构/芳构催化剂接触,进一步脱除噻吩硫等硫化物,并通过异构/芳构效应恢复产品的辛烷值;最后将轻馏分汽油和处理后的重馏分汽油混合,得到超低硫且高辛烷值的汽油产品。In the high-efficiency combined production method of ultra-low-sulfur and high-octane gasoline provided by the present invention, firstly, the raw material of inferior full-distillate gasoline is contacted with a low-temperature directional sulfur transfer catalyst under the condition of hydrogen, and the lighter mercaptan and thiophene Sulfur-like compounds are converted into high-boiling sulfur compounds and transferred to heavier gasoline fractions, and then cut the inferior full-distillate gasoline that has undergone sulfur transfer treatment to obtain light-distillate gasoline and heavy-distillate gasoline; then make the heavy-distillate gasoline first Contact with selective hydrodesulfurization catalysts for desulfurization, remove sulfur compounds such as sulfides, alkylthiophenes, and benzothiophenes, and then contact with supplementary desulfurization-hydrocarbon isomerization/aromatic catalysts to further remove sulfur compounds such as thiophene sulfur and restore the octane number of the product through the isomerization/aromatization effect; finally, the light-distillate gasoline and the treated heavy-distillate gasoline are mixed to obtain ultra-low sulfur and high-octane gasoline products.
本发明提供的超低硫且高辛烷值汽油的生产方法所适用的劣质汽油可以包括催化裂化汽油、焦化汽油、催化裂解汽油、热裂化汽油和蒸汽裂解汽油等中的一种或几种的混合物,尤其是超高硫、高烯烃的劣质FCC汽油。The low-quality gasoline suitable for the production method of ultra-low sulfur and high-octane gasoline provided by the present invention may include one or more of catalytic cracking gasoline, coker gasoline, catalytic cracking gasoline, thermal cracking gasoline and steam cracking gasoline, etc. Mixtures, especially low-quality FCC gasoline with ultra-high sulfur and high olefins.
本发明提供的超低硫且高辛烷值汽油的高效组合生产方法中,低温定向硫转移反应是使低沸点的硫醇及噻吩等硫化合物通过与烯烃(不仅指二烯烃,还包括单烯烃)之间进行醚化、烷基化等反应使其变重而转移到汽油重馏分中。该低温定向硫转移反应可以通过使汽油原料在临氢条件下与硫转移催化剂接触实现。优选地,低温定向硫转移反应的反应条件为:反应压力1-3MPa,液体体积空速2-8h-1,反应温度100-220℃,氢油体积比200-600。In the high-efficiency combined production method of ultra-low sulfur and high-octane gasoline provided by the present invention, the low-temperature directional sulfur transfer reaction is to make sulfur compounds such as low-boiling mercaptans and thiophenes pass through and olefins (not only diolefins, but also monoolefins) ) between etherification, alkylation and other reactions to make it heavier and transferred to gasoline heavy fractions. The low-temperature directional sulfur transfer reaction can be realized by contacting gasoline feedstock with a sulfur transfer catalyst under hydrogen-facing conditions. Preferably, the reaction conditions for the low-temperature directional sulfur transfer reaction are: reaction pressure 1-3 MPa, liquid volume space velocity 2-8 h -1 , reaction temperature 100-220°C, hydrogen-oil volume ratio 200-600.
本发明提供的超低硫且高辛烷值汽油的高效组合生产方法中,通过使汽油原料发生低温定向硫转移反应,使低沸点的硫醇及噻吩等硫化合物变重进入汽油重馏分中,因此,切割之后所得到的汽油轻馏分无需再进行处理就可以满足清洁汽油标准的要求,省去了对汽油轻馏分进行处理的步骤,可以节省催化剂和投资。而且,低温定向硫转移反应在切割塔之前的固定床反应器中进行,使得硫转移和汽油馏分切割分开进行,可以避免二者相互影响,确保反应条件的稳定控制,从而使低沸点硫化合物高效地转移到重馏分中。In the high-efficiency combined production method of ultra-low sulfur and high-octane gasoline provided by the present invention, low-boiling sulfur compounds such as mercaptans and thiophenes are made heavy into gasoline heavy fractions through low-temperature directional sulfur transfer reaction of gasoline raw materials, Therefore, the gasoline light fraction obtained after cutting can meet the requirements of the clean gasoline standard without further treatment, which saves the catalyst and investment by eliminating the step of processing the gasoline light fraction. Moreover, the low-temperature directional sulfur transfer reaction is carried out in the fixed-bed reactor before the cutting tower, so that the sulfur transfer and gasoline fraction cutting are carried out separately, which can avoid the mutual influence of the two and ensure the stable control of the reaction conditions, so that the low-boiling point sulfur compounds can be efficiently transferred to the heavy fraction.
本发明提供的超低硫且高辛烷值汽油的高效组合生产方法中,优选地,重馏分汽油在选择性加氢脱硫催化剂上的反应条件(重馏分汽油的选择性加氢脱硫反应条件)为:反应压力1-3MPa,液体体积空速3-6h-1,反应温度200-300℃,氢油体积比200-600;重馏分汽油在补充脱硫-烃类异构/芳构催化剂上的反应条件(重馏分汽油的补充脱硫-烃类异构/芳构化反应条件)为:反应压力1-3MPa,液体体积空速1-4h-1,反应温度340-430℃,氢油体积比200-600。In the high-efficiency combined production method of ultra-low sulfur and high-octane gasoline provided by the present invention, preferably, the reaction conditions of heavy distillate gasoline on the selective hydrodesulfurization catalyst (selective hydrodesulfurization reaction conditions of heavy distillate gasoline) It is: reaction pressure 1-3MPa, liquid volume space velocity 3-6h -1 , reaction temperature 200-300°C, hydrogen-to-oil volume ratio 200-600; The reaction conditions (supplementary desulfurization of heavy distillate gasoline-hydrocarbon isomerization/aromatization reaction conditions) are: reaction pressure 1-3MPa, liquid volume space velocity 1-4h -1 , reaction temperature 340-430°C, hydrogen-oil volume ratio 200-600.
本发明提供的超低硫且高辛烷值汽油的高效组合生产方法中,采用硫转移催化剂对劣质全馏分汽油进行定向硫转移,使低沸点的硫醇及噻吩等硫化合物转化为高沸点的硫化合物而转移到汽油重馏分中,可确保轻馏分中的硫含量大幅降低,能够满足清洁汽油标准的要求。以催化剂总重量计,上述定向硫转移反应中的硫转移催化剂的组成包括:过渡金属氧化物2-30%、助剂0.5-6%、沸石10-40%,余量为无机耐熔氧化物。其中,上述过渡金属氧化物为NiO、CoO、ZnO、MoO3、WO3和CuO等中的一种或几种;上述助剂为K2O、MgO和La2O3等中的一种或几种;上述沸石为HZSM-5、Hβ和HY等中的一种或多种,且沸石是依次经过碱处理、铵交换、水热处理的沸石;上述无机耐熔氧化物为氧化铝(纯氧化铝)、氧化硅和含硅氧化铝等中的一种或几种。硫转移催化剂的具体制备方法,例如可以是将碱处理-铵交换-水热处理的沸石和无机氧化物混合,加入粘合剂,经挤条机挤条成型、干燥、焙烧后,制备出催化剂载体,然后采用浸渍法负载过渡金属及助剂,经过干燥、焙烧即得所需硫转移催化剂。In the high-efficiency combined production method of ultra-low-sulfur and high-octane gasoline provided by the present invention, a sulfur-transfer catalyst is used to carry out directional sulfur transfer on low-quality full-cut gasoline, so that sulfur compounds such as low-boiling mercaptans and thiophenes are converted into high-boiling point sulfur compounds. Sulfur compounds are transferred to gasoline heavy fractions, which can ensure that the sulfur content in light fractions is greatly reduced and can meet the requirements of clean gasoline standards. Based on the total weight of the catalyst, the composition of the sulfur transfer catalyst in the above directional sulfur transfer reaction includes: 2-30% of transition metal oxides, 0.5-6% of additives, 10-40% of zeolites, and the balance is inorganic refractory oxides . Wherein, the above-mentioned transition metal oxide is one or more of NiO, CoO, ZnO, MoO 3 , WO 3 and CuO, etc.; the above-mentioned auxiliary agent is one or more of K 2 O, MgO, La 2 O 3 , etc. Several kinds; the above-mentioned zeolite is one or more of HZSM-5, Hβ and HY, etc., and the zeolite is a zeolite that has undergone alkali treatment, ammonium exchange, and hydrothermal treatment in sequence; the above-mentioned inorganic refractory oxide is alumina (pure oxide One or more of aluminum), silicon oxide, and silicon-containing aluminum oxide. The specific preparation method of the sulfur transfer catalyst can be, for example, mixing alkali treatment-ammonium exchange-hydrothermal treatment zeolite and inorganic oxides, adding a binder, extruding through an extruder, drying, and roasting to prepare a catalyst carrier , and then use the impregnation method to load transition metals and additives, and then obtain the required sulfur transfer catalyst after drying and roasting.
本发明提供的超低硫且高辛烷值汽油的高效组合生产方法中,对于重馏分汽油,首先采用选择性加氢脱硫催化剂进行加氢反应,脱除硫醚、烷基噻吩、苯并噻吩等硫化物,以催化剂总重量计,上述选择性加氢脱硫催化剂的重量组成包括:MoO310-18%、CoO2-6%、K2O 1-7%和P2O52-6%,余量为Al-Si-Mg复合氧化物载体,且Al-Si-Mg复合氧化物在催化剂中的重量组成为Al2O360-75%、SiO25-15%和MgO 3-10%。In the high-efficiency combined production method of ultra-low sulfur and high-octane gasoline provided by the present invention, for heavy distillate gasoline, a selective hydrodesulfurization catalyst is first used for hydrogenation reaction to remove sulfides, alkylthiophenes, and benzothiophenes. and other sulfides, based on the total weight of the catalyst, the weight composition of the above selective hydrodesulfurization catalyst includes: MoO 3 10-18%, CoO2-6%, K 2 O 1-7% and P 2 O 5 2-6% , the balance is Al-Si-Mg composite oxide carrier, and the weight composition of Al-Si-Mg composite oxide in the catalyst is Al 2 O 3 60-75%, SiO 2 5-15% and MgO 3-10 %.
本发明提供的超低硫且高辛烷值汽油的高效组合生产方法中,对重馏分汽油进行选择性加氢脱硫后,使其流出物与补充脱硫-烃类异构/芳构催化剂接触,进一步脱除噻吩硫等硫化物,并通过异构/芳构效应恢复产品辛烷值,以催化剂总重量计,上述补充脱硫-烃类异构/芳构催化剂的重量组成包括:MoO34-8%、CoO 1-4%、P2O51-3%、改性HZSM-5沸石50-70%,余量为Al-Ti复合氧化物粘结剂;其中,Al-Ti复合氧化物粘结剂的重量组成包括:Al2O370-95%,TiO25-30%。上述改性HZSM-5沸石可以是按照以下方法制备得到的:在温度500-700℃左右、水汽空速约1-4h-1的条件下,对HZSM-5沸石进行15-50分钟左右的水热处理;利用pH值为1.0-4.0的无机酸溶液,在50-90℃左右对水热处理产物进行1-4小时的酸洗处理,其中,无机酸溶液与水热处理产物的液固比为约5-10mL/g;然后对酸洗处理的产物进行洗涤、过滤、100-120℃干燥2-4小时、500-550℃焙烧4-6小时的处理之后,制成改性HZSM-5沸石。上述HZSM-5沸石的SiO2/Al2O3摩尔比可以为30-60,优选为35-50;上述无机酸可以为硝酸、硫酸和盐酸等中的一种或几种。In the high-efficiency combined production method of ultra-low sulfur and high-octane gasoline provided by the present invention, after selective hydrodesulfurization of heavy distillate gasoline, the effluent is contacted with a supplementary desulfurization-hydrocarbon isomerization/aromatization catalyst, Further remove sulfides such as thiophene sulfur, and restore the octane number of the product through the isomerization/aromatization effect. Based on the total weight of the catalyst, the weight composition of the above supplementary desulfurization-hydrocarbon isomerization/aromatization catalyst includes: MoO 3 4- 8%, CoO 1-4%, P 2 O 5 1-3%, modified HZSM-5 zeolite 50-70%, and the balance is Al-Ti composite oxide binder; among them, Al-Ti composite oxide The weight composition of the binder includes: 70-95% of Al 2 O 3 and 5-30% of TiO 2 . The above-mentioned modified HZSM-5 zeolite can be prepared according to the following method: under the conditions of a temperature of about 500-700°C and a water vapor space velocity of about 1-4h Heat treatment: using an inorganic acid solution with a pH value of 1.0-4.0, pickling the hydrothermally treated product at about 50-90°C for 1-4 hours, wherein the liquid-solid ratio of the inorganic acid solution to the hydrothermally treated product is about 5 -10mL/g; then the acid-washed product is washed, filtered, dried at 100-120°C for 2-4 hours, and calcined at 500-550°C for 4-6 hours to prepare a modified HZSM-5 zeolite. The SiO 2 /Al 2 O 3 molar ratio of the HZSM-5 zeolite may be 30-60, preferably 35-50; the inorganic acid may be one or more of nitric acid, sulfuric acid and hydrochloric acid.
按照催化剂领域惯常的表达方式,本发明所提及的载体及催化剂上活性组分(元素)含量均以其相应氧化物计。According to the usual expressions in the field of catalysts, the content of active components (elements) on the carrier and catalyst mentioned in the present invention are all calculated by their corresponding oxides.
本发明所提供的超清洁汽油生产方法,对超高硫、高烯烃的劣质汽油(例如FCC汽油)可以获得良好的加氢改质效果,例如:硫含量为1000-2500μg.g-1、烯烃含量为40-45v%的劣质汽油。The ultra-clean gasoline production method provided by the present invention can obtain a good hydrogenation modification effect on low-quality gasoline with ultra-high sulfur and high olefins (such as FCC gasoline), for example: sulfur content of 1000-2500 μg.g -1 , olefins Low-quality gasoline with a content of 40-45v%.
与现有技术相比,本发明所提供的超低硫且高辛烷值汽油高效组合生产方法具有如下特点:Compared with the prior art, the high-efficiency combined production method of ultra-low sulfur and high-octane gasoline provided by the present invention has the following characteristics:
(1)可将硫含量为1000-2500μg.g-1、烯烃含量为40-45v%的劣质汽油改质成为硫含量≤10μg.g-1、烯烃含量≤20v%、汽油研究法辛烷值(RON)损失≤1.0个单位的优质汽油,且产品液体收率≥98wt%;(1) Low-quality gasoline with a sulfur content of 1000-2500μg.g -1 and an olefin content of 40-45v% can be modified into a gasoline with a sulfur content of ≤10μg.g -1 , an olefin content of ≤20v%, and a gasoline research method octane number (RON) loss ≤ 1.0 units of high-quality gasoline, and product liquid yield ≥ 98wt%;
(2)热量能够得到充分利用,易于操作,重馏分汽油改质反应器出口产物温度较高,可以通过与未经处理的重馏分汽油原料换热的方法利用热量;(2) The heat can be fully utilized and easy to operate. The outlet product temperature of the heavy-distillate gasoline reforming reactor is relatively high, and the heat can be utilized by exchanging heat with untreated heavy-distillate gasoline raw materials;
(3)在本发明的上述方法中,首先对劣质全馏分汽油进行定向硫转移反应,然后将经过硫转移处理后的劣质全馏分汽油分馏得到轻馏分汽油和重馏分汽油,再对重馏分汽油依次进行选择性加氢脱硫和补充脱硫-烃类异构/芳烃处理,这些多重反应有利于实现全馏分劣质汽油的超深度脱硫、降烯烃、恢复辛烷值的效果;(3) In the above-mentioned method of the present invention, at first carry out directional sulfur transfer reaction to inferior whole cut gasoline, then obtain light cut gasoline and heavy cut gasoline by fractional distillation of the inferior full cut gasoline after sulfur transfer treatment, then carry out heavy cut gasoline Sequentially carry out selective hydrodesulfurization and supplementary desulfurization-hydrocarbon isomerization/aromatics treatment. These multiple reactions are beneficial to realize the effects of ultra-deep desulfurization, olefin reduction and octane recovery of full-cut inferior gasoline;
(4)本发明提供的上述汽油高效组合生产方法尤其适用于超高硫、高烯烃含量的劣质汽油改质,可在超深度脱硫、降烯烃的同时,改善其辛烷值并保持较高的产品液体收率,因此较之国外的汽油加氢改质方法,本发明提供的上述汽油高效组合生产方法更适用对于我国的劣质汽油组分进行处理。(4) The high-efficiency combined production method of gasoline provided by the present invention is especially suitable for upgrading low-quality gasoline with ultra-high sulfur and high olefin content. It can improve its octane number and maintain a higher octane number while ultra-deep desulfurization and olefin reduction Therefore, compared with foreign gasoline hydrogenation and upgrading methods, the above-mentioned gasoline high-efficiency combined production method provided by the present invention is more suitable for processing inferior gasoline components in my country.
附图说明 Description of drawings
图1为本发明所提供的超低硫且高辛烷值汽油高效组合生产方法的流程示意图。Fig. 1 is a schematic flow diagram of the high-efficiency combined production method for ultra-low sulfur and high-octane gasoline provided by the present invention.
具体实施方式 Detailed ways
为了对本发明的技术特征、目的和有益效果有更加清楚的理解,现对本发明的技术方案进行以下详细说明,但不能理解为对本发明的可实施范围的限定。In order to have a clearer understanding of the technical features, purposes and beneficial effects of the present invention, the technical solution of the present invention is described in detail below, but it should not be construed as limiting the scope of implementation of the present invention.
实施例1Example 1
本实施例提供了一种以硫含量为1750μg.g-1、烯烃含量为48.4v%的超高硫、高烯烃劣质全馏分FCC汽油(全馏分原料油1)为原料进行加氢改质处理制备超低硫且高辛烷值汽油的高效组合生产方法。This example provides an ultra-high-sulfur, high-olefin low-quality full-fraction FCC gasoline (full-fraction feedstock 1) with a sulfur content of 1750 μg.g -1 and an olefin content of 48.4v% as a raw material for hydroreforming treatment An efficient combined production method for producing ultra-low sulfur and high-octane gasoline.
其中,各种催化剂的成分配比如下,分别以各催化剂的总重量计:Wherein, the composition ratio of various catalysts is as follows, respectively based on the total weight of each catalyst:
硫转移催化剂:12wt%NiO-6wt%MoO3-2wt%La2O3/20wt%HZSM-5-60wt%(Al2O3-SiO2)(含硅氧化铝);Sulfur transfer catalyst: 12wt% NiO-6wt% MoO 3 -2wt% La 2 O 3 /20wt% HZSM-5-60wt% (Al 2 O 3 -SiO 2 ) (silicon-containing alumina);
选择性加氢脱硫催化剂:4wt%CoO-12wt%MoO3-3wt%K2O-2wt%P2O5/67wt%Al2O3-8wt%SiO2-4wt%MgO:Selective hydrodesulfurization catalyst: 4wt%CoO- 12wt % MoO3-3wt % K2O -2wt% P2O5 / 67wt %Al2O3-8wt% SiO2-4wt %MgO :
补充脱硫-烃类异构/芳构催化剂:2wt%CoO-6wt%MoO3-1wt%P2O5/65wt%HZSM-5-21wt%Al2O3-5wt%TiO2。Supplementary desulfurization-hydrocarbon isomerization/aromatization catalyst: 2wt%CoO-6wt% MoO3-1wt % P2O5 / 65wt %HZSM- 5-21wt % Al2O3-5wt % TiO2 .
硫转移催化剂(催化剂I)的具体制备步骤如下:The specific preparation steps of sulfur transfer catalyst (catalyst 1) are as follows:
首先将HZSM-5沸石(SiO2/Al2O3摩尔比为30)按10mL/g的液固比置于NaOH水溶液中,将pH值调节至13,于75℃下搅拌4小时,过滤、将滤出的沸石洗涤至中性,在120℃干燥3小时;将经NaOH水溶液处理的HZSM-5沸石按照沸石∶硝酸铵∶水的重量比为1∶0.8∶10的比例混合,并于80℃搅拌4小时,然后对产物进行过滤、洗涤,并于120℃干燥、480℃焙烧4小时,得到碱处理-铵交换的HZSM-5沸石;将上述经碱处理和铵交换的HZSM-5沸石在600℃下通入水蒸汽处理20-50分钟,得到改性的HZSM-5沸石(碱处理-铵交换-水热处理的HZSM-5沸石);First, put HZSM-5 zeolite (SiO 2 /Al 2 O 3 molar ratio is 30) in NaOH aqueous solution at a liquid-solid ratio of 10 mL/g, adjust the pH value to 13, stir at 75°C for 4 hours, filter, The filtered zeolite was washed to neutrality and dried at 120° C. for 3 hours; the HZSM-5 zeolite treated with NaOH aqueous solution was mixed according to the ratio of zeolite: ammonium nitrate: water in a weight ratio of 1:0.8:10, and mixed at 80 ℃ and stirred for 4 hours, then the product was filtered, washed, dried at 120 ℃, and calcined at 480 ℃ for 4 hours to obtain alkali-treated-ammonium-exchanged HZSM-5 zeolite; the above-mentioned alkali-treated and ammonium-exchanged HZSM-5 zeolite Passing steam at 600°C for 20-50 minutes to obtain a modified HZSM-5 zeolite (alkali treatment-ammonium exchange-hydrothermal treatment HZSM-5 zeolite);
称取50.2g硅铝粉(含Al2O392.0wt%,SiO28.0wt%)和30.0g上述改性的HZSM-5沸石、2.5g田菁粉,将其研磨混合均匀,加入6mL质量浓度为65%的硝酸溶液,充分混捏后于挤条机中挤出直径为2mm的三叶草形条,经120℃干燥4小时、520℃焙烧4小时后,制得成型的催化剂载体;Weigh 50.2g of silica-alumina powder (containing Al 2 O 3 92.0wt%, SiO 2 8.0wt%), 30.0g of the above-mentioned modified HZSM-5 zeolite, 2.5g of squash powder, grind and mix them evenly, add 6mL mass Concentration is 65% nitric acid solution, after fully kneading, extrude clover-shaped strips with a diameter of 2mm in the extruder, dry at 120°C for 4 hours, and bake at 520°C for 4 hours to obtain a shaped catalyst carrier;
依照化学计量比配制含NiO、MoO3和La2O3的硝酸镍、钼酸铵、硝酸镧混合溶液,然后采用等体积浸渍法将浸渍液均匀滴加到上述催化剂载体上,经120℃干燥4小时、520℃焙烧4小时后,制得催化剂I。Prepare a mixed solution of nickel nitrate, ammonium molybdate, and lanthanum nitrate containing NiO, MoO 3 and La 2 O 3 according to the stoichiometric ratio, and then uniformly drop the impregnation solution onto the above-mentioned catalyst carrier by an equal-volume impregnation method, and dry at 120°C After calcination at 520° C. for 4 hours for 4 hours, catalyst I was prepared.
选择性加氢脱硫催化剂(催化剂II)的具体制备步骤如下:The concrete preparation steps of selective hydrodesulfurization catalyst (catalyst II) are as follows:
称取70g具有适宜Al/Si/Mg比例的Al-Si-Mg复合物粉末(含水25wt%)和2g田菁粉,将其研磨混合均匀,加入5mL质量浓度为65%的硝酸溶液,充分混捏后于挤条机中挤条成型,经120℃干燥3小时、520℃焙烧4小时后,制得成型的催化剂载体;Weigh 70g of Al-Si-Mg composite powder (water content 25wt%) and 2g of scallop powder with suitable Al/Si/Mg ratio, grind and mix them evenly, add 5mL of nitric acid solution with a mass concentration of 65%, and fully knead Afterwards, extrude into a strip in an extruder, dry at 120°C for 3 hours, and bake at 520°C for 4 hours to obtain a shaped catalyst carrier;
将40g上述催化剂载体浸渍于35mL硝酸钾和磷酸氢二铵的混合浸渍液中,以氧化物计,该浸渍液中含有1.5g K2O和1.0g P2O5,然后在室温下陈化处理5小时,再在120℃干燥3小时、520℃焙烧4小时,得到已负载钾和磷的催化剂载体;Immerse 40g of the catalyst carrier above in 35mL of a mixed impregnation solution of potassium nitrate and diammonium hydrogen phosphate, which contains 1.5g K 2 O and 1.0g P 2 O 5 in terms of oxides, and then age at room temperature Treat for 5 hours, then dry at 120°C for 3 hours, and bake at 520°C for 4 hours to obtain a catalyst carrier loaded with potassium and phosphorus;
配制32.0mL含有2.0gCoO和6.1gMoO3(各活性组分的含量以氧化物形式计,并非限制混合液中的活性组分以氧化物形式存在)的硝酸钴和钼酸铵混合液,并加入3.0mL质量浓度为17%的氨水,充分振荡直至固体完全溶解制成浸渍液,然后将上述已负载钾和磷的催化剂载体浸渍于该浸渍液中,室温陈化5小时,经120℃干燥处理3小时、520℃焙烧处理5小时后,制得催化剂II。Prepare 32.0mL of cobalt nitrate and ammonium molybdate mixed solution containing 2.0gCoO and 6.1gMoO 3 (the content of each active component is calculated in the form of oxide, and the active component in the mixed solution is not limited to exist in the form of oxide), and add 3.0mL ammonia water with a mass concentration of 17%, fully shake until the solid is completely dissolved to make an impregnation solution, then impregnate the catalyst carrier loaded with potassium and phosphorus in the impregnation solution, age at room temperature for 5 hours, and dry at 120°C After 3 hours and 520°C calcination treatment for 5 hours, the catalyst II was prepared.
补充脱硫-烃类异构/芳构催化剂(催化剂III)可以按照CN101508912A(申请号为200910080112.1)记载的方法制备(将CN101508912A的全文引到这里作为参考),所不同的是将CN101508912A公开的制备方法中水热处理后采用无机酸-有机酸处理改为水热处理后进行单一的无机酸处理(处理条件相同)。Supplementary desulfurization-hydrocarbon isomerization/aromatization catalyst (catalyst III) can be prepared according to the method described in CN101508912A (application number is 200910080112.1) (the full text of CN101508912A is incorporated here as a reference), the difference is the preparation method disclosed in CN101508912A Inorganic acid-organic acid treatment after reclaimed hydrothermal treatment was changed to single inorganic acid treatment after hydrothermal treatment (the treatment conditions were the same).
利用全馏分原料油1改质生产超低硫且高辛烷值汽油的过程如下,其工艺流程如图1所示:The process of producing ultra-low-sulfur and high-octane gasoline by upgrading whole-distillate feedstock 1 is as follows, and the process flow is shown in Figure 1:
待处理的原料油品为全馏分原料油1,其性质参见表1。超高硫的劣质全馏分原料油1首先在低温硫转移催化剂(催化剂I)上进行定向硫转移反应,硫转移反应条件为:反应压力2MPa,液体体积空速5h-1,反应温度160℃,氢油体积比400;然后经过硫转移反应后的劣质全馏分汽油进入切割塔通过馏分切割得到轻馏分汽油和重馏分汽油,汽油切割分馏温度为70℃;The raw oil product to be treated is full distillate raw oil 1, and its properties are shown in Table 1. The ultra-high-sulfur low-quality full-fraction feedstock 1 first performs directional sulfur transfer reaction on a low-temperature sulfur transfer catalyst (catalyst I). The sulfur transfer reaction conditions are: reaction pressure 2 MPa, liquid volume space velocity 5 h -1 , reaction temperature 160 °C, The volume ratio of hydrogen to oil is 400; then the inferior full-distillate gasoline after the sulfur transfer reaction enters the cutting tower to obtain light-distillate gasoline and heavy-distillate gasoline, and the cutting and fractionating temperature of gasoline is 70°C;
重馏分汽油采用简单串联操作,在两个反应器串联的装置上进行,在第一个反应器中与催化剂II接触,发生选择性加氢脱硫反应,反应条件为:反应压力1.8MPa,液体体积空速3h-1,反应温度220℃,氢油体积比300;在第二个反应器中与催化剂III接触,发生脱硫-烃类异构/芳构反应,反应条件为:反应压力1.8MPa,液体体积空速1.7h-1,反应温度360℃,氢油体积比300;The heavy distillate gasoline adopts simple series operation and is carried out on a device with two reactors connected in series. In the first reactor, it contacts with Catalyst II, and a selective hydrodesulfurization reaction occurs. The reaction conditions are: reaction pressure 1.8MPa, liquid volume The space velocity is 3h -1 , the reaction temperature is 220°C, and the volume ratio of hydrogen to oil is 300; in the second reactor, it is in contact with catalyst III, and desulfurization-hydrocarbon isomerization/aromatization reaction occurs. The reaction conditions are: reaction pressure 1.8MPa, The liquid volume space velocity is 1.7h -1 , the reaction temperature is 360°C, and the volume ratio of hydrogen to oil is 300;
上述反应完成后,将轻馏分汽油和处理后的重馏分汽油混合,得到轻、重馏分汽油调和产品,即超低硫高辛烷值汽油。After the above reaction is completed, the light distillate gasoline and the treated heavy distillate gasoline are mixed to obtain a blend product of light distillate gasoline and heavy distillate gasoline, that is, ultra-low-sulfur high-octane gasoline.
在反应过程中,所有催化剂均以瓷砂稀释,并且,在各个反应器或反应装置气密合格后,对催化剂采用常规预硫化工艺进行预硫化,反应400小时后,采样分析。表1给出了反应改质产品的性质参数。During the reaction process, all catalysts were diluted with porcelain sand, and after the airtightness of each reactor or reaction device was qualified, the catalyst was pre-sulfurized by conventional pre-sulfurization process, and after 400 hours of reaction, sampling and analysis were performed. Table 1 gives the property parameters of the reaction modified products.
从表1可以看出,本发明的改质方法可以使劣质FCC汽油的硫含量由1750μg.g-1降低到5μg.g-1,烯烃含量由48.4v%降低到19.8v%,而且产品中异构烷烃和芳烃含量均有大幅增加,异构烷烃含量由17.4v%增加到25.9v%,芳烃含量由16.3v%增加到25.7v%,这使得在超深度脱硫、降烯烃含量的同时,产品研究法辛烷值提高0.2个单位,调和汽油产品收率为98.8wt%,产品质量符合国V清洁汽油标准的要求。As can be seen from Table 1, the upgrading method of the present invention can reduce the sulfur content of inferior FCC gasoline from 1750 μg.g -1 to 5 μg.g -1 , the olefin content from 48.4v% to 19.8v%, and the product The content of isoparaffin and aromatics has increased significantly, the content of isoparaffins has increased from 17.4v% to 25.9v%, and the content of aromatics has increased from 16.3v% to 25.7v%. The octane number of the product research method is increased by 0.2 units, the yield of the blended gasoline product is 98.8wt%, and the product quality meets the requirements of the National V clean gasoline standard.
表1全馏分原料油1和改质后的轻、重馏分汽油调和产品的性质参数Table 1 The property parameters of whole distillate feed oil 1 and modified light and heavy distillate gasoline blending products
实施例2Example 2
本实施例提供了一种以硫含量为2210μg·g-1、烯烃含量为51.3v%的超高硫、高烯烃劣质全馏分FCC汽油(全馏分原料油2)为原料进行加氢改质处理制备超低硫且高辛烷值汽油的高效组合生产方法。This example provides an ultra-high-sulfur, high-olefin low-quality full-fraction FCC gasoline (full-fraction feedstock 2) with a sulfur content of 2210 μg·g -1 and an olefin content of 51.3v% as a raw material for hydroreforming treatment An efficient combined production method for producing ultra-low sulfur and high-octane gasoline.
其中,各种催化剂的成分配比如下,分别以各催化剂的总重量计:Wherein, the composition ratio of various catalysts is as follows, respectively based on the total weight of each catalyst:
硫转移催化剂:10wt%NiO-7wt%MoO3-2wt%K2O-2wt%CuO/35wt%HZSM-5-44wt%(Al2O3-SiO2)(含硅氧化铝);Sulfur transfer catalyst: 10wt% NiO-7wt% MoO 3 -2wt% K 2 O-2wt% CuO/35wt% HZSM-5-44wt% (Al 2 O 3 -SiO 2 ) (silicon-containing alumina);
选择性加氢脱硫催化剂:3wt%CoO-14wt%MoO3-3wt%K2O-3wt%P2O5/67wt%Al2O3-5wt%SiO2-5wt%MgO:Selective hydrodesulfurization catalyst: 3wt%CoO-14wt% MoO3-3wt % K2O - 3wt % P2O5 / 67wt %Al2O3-5wt% SiO2-5wt %MgO :
补充脱硫-烃类异构/芳构催化剂:2.5wt%CoO-8wt%MoO3-3wt%P2O5/60wt%HZSM-5-23.5wt%Al2O3-3wt%TiO2;Supplementary desulfurization-hydrocarbon isomerization/aromatization catalyst: 2.5wt% CoO-8wt% MoO 3 -3wt% P 2 O 5 /60wt% HZSM-5-23.5wt% Al 2 O 3 -3wt% TiO 2 ;
上述催化剂的制备方法与实施例1相同。The preparation method of above-mentioned catalyst is identical with embodiment 1.
利用全馏分原料油2改质生产超低硫且高辛烷值汽油的过程:The process of producing ultra-low-sulfur and high-octane gasoline by upgrading whole-distillate feedstock 2:
原料油品采用全馏分原料油2,其性质参见表2,反应装置设置以及催化剂的处理等均与实施例1相同,具体反应条件如下:The raw material oil product adopts the whole distillate raw material oil 2, and its properties are referred to in Table 2, and the reaction device setting and the treatment of the catalyst etc. are all the same as in Example 1, and the specific reaction conditions are as follows:
硫转移反应条件为:反应压力1.6MPa,液体体积空速4h-1,反应温度140℃,氢油体积比300;The sulfur transfer reaction conditions are: reaction pressure 1.6MPa, liquid volume space velocity 4h -1 , reaction temperature 140°C, hydrogen-oil volume ratio 300;
汽油切割分馏温度为60℃;Gasoline cutting fractionation temperature is 60°C;
重馏分汽油的选择性加氢脱硫反应的反应条件为:反应压力2MPa,液体体积空速4h-1,反应温度240℃,氢油体积比400;The reaction conditions for selective hydrodesulfurization of heavy distillate gasoline are: reaction pressure 2MPa, liquid volume space velocity 4h -1 , reaction temperature 240℃, hydrogen-oil volume ratio 400;
重馏分汽油的补充脱硫-烃类异构/芳构反应的反应条件为:反应压力2MPa,液体体积空速2h-1,反应温度375℃,氢油体积比400。The reaction conditions for supplementary desulfurization of heavy distillate gasoline-hydrocarbon isomerization/aromatization reaction are: reaction pressure 2MPa, liquid volume space velocity 2h -1 , reaction temperature 375°C, hydrogen-oil volume ratio 400.
表2给出了改质反应产品的性质参数。Table 2 shows the property parameters of the modified reaction products.
表2全馏分原料油2和改质后轻、重馏分汽油调和产品的性质参数Table 2 The property parameters of whole distillate feed oil 2 and modified light and heavy distillate gasoline blending products
从表2可以看出,本发明的改质方法可以使劣质FCC汽油的硫含量由2210μg.g-1降低到8μg.g-1,烯烃含量由51.3v%降低到18.9v%,而且产品中异构烷烃和芳烃含量均有大幅增加,异构烷烃含量由19.5v%增加到30.5v%,芳烃含量由18.1v%增加到27.8v%,这使得在超深度脱硫、降烯烃含量的同时,研究法辛烷值仅减少0.1个单位,调和汽油产品收率为98.6wt%,产品质量符合国V清洁汽油标准的要求。As can be seen from Table 2, the upgrading method of the present invention can reduce the sulfur content of inferior FCC gasoline from 2210 μg.g -1 to 8 μg.g -1 , the olefin content from 51.3v% to 18.9v%, and the product The content of isoparaffin and aromatics has increased significantly, the content of isoparaffins has increased from 19.5v% to 30.5v%, and the content of aromatics has increased from 18.1v% to 27.8v%. The octane number of the research method is only reduced by 0.1 unit, the yield of the blended gasoline product is 98.6wt%, and the product quality meets the requirements of the National V clean gasoline standard.
上述两个实施例表明,本发明所提供的超低硫且高辛烷值汽油的高效组合生产方法可以使超高硫、高烯烃劣质料油改质为硫含量≤10μg.g-1、烯烃含量≤20v%、汽油研究法辛烷值(RON)损失≤1.0个单位的国V超清洁汽油产品,表明本发明方法对劣质汽油具有很好的加氢改质效果,将为我国炼油工业的进一步发展奠定基础。The above two examples show that the high-efficiency combined production method of ultra-low-sulfur and high-octane gasoline provided by the present invention can modify ultra-high-sulfur, high-olefin low-quality feed oil into sulfur content ≤ 10 μg.g -1 , olefin Content ≤ 20v%, gasoline research method octane number (RON) loss ≤ 1.0 units of national V ultra-clean gasoline products show that the method of the present invention has a good hydrogenation and upgrading effect on low-quality gasoline, and will be the first choice for China's oil refining industry Lay the foundation for further development.
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the scope of the present invention. Protection scope, within the spirit and principles of the present invention, any modification, equivalent replacement, improvement, etc., shall be included in the protection scope of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010584150.3A CN102010751B (en) | 2010-12-10 | 2010-12-10 | Efficient combined production method for gasoline with ultralow sulfur and high octane value |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010584150.3A CN102010751B (en) | 2010-12-10 | 2010-12-10 | Efficient combined production method for gasoline with ultralow sulfur and high octane value |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102010751A CN102010751A (en) | 2011-04-13 |
CN102010751B true CN102010751B (en) | 2014-06-18 |
Family
ID=43841084
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201010584150.3A Expired - Fee Related CN102010751B (en) | 2010-12-10 | 2010-12-10 | Efficient combined production method for gasoline with ultralow sulfur and high octane value |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102010751B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2816094B1 (en) * | 2013-06-19 | 2020-04-29 | IFP Energies nouvelles | Method for producing gasoline with low sulphur and mercaptan content |
CN104560166B (en) * | 2013-10-28 | 2016-05-25 | 中国石油化工股份有限公司 | A kind of petroleum hydrocarbon is produced the catalysis conversion method of high-knock rating gasoline |
CN104650963B (en) * | 2013-11-19 | 2016-06-08 | 中国石油天然气股份有限公司 | Start-up method of FCC gasoline hydrogenation catalyst |
WO2016029401A1 (en) * | 2014-08-28 | 2016-03-03 | 中国石油大学(北京) | Mercaptan removal catalyst for light hydrocarbons, preparation method therefor, and uses thereof |
CN107151564B (en) * | 2016-03-04 | 2019-09-17 | 中国石油大学(北京) | A kind of production method of super-low sulfur clean gasoline |
CN107151563B (en) * | 2016-03-04 | 2019-09-17 | 中国石油大学(北京) | Couple the clean gasoline production method of ultra-deep desulfurization and the conversion of alkene high-octane rating |
CN110157477A (en) * | 2018-08-09 | 2019-08-23 | 南京大学连云港高新技术研究院 | A method and device for desulfurizing high-sulfur and high-olefin gasoline to increase octane number |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5411658A (en) * | 1991-08-15 | 1995-05-02 | Mobil Oil Corporation | Gasoline upgrading process |
CN101508912A (en) * | 2009-03-19 | 2009-08-19 | 中国石油大学(北京) | Deep desulfurization-octane value recovery hydrogenation modification method for faulty gasoline |
CN101508911A (en) * | 2009-03-19 | 2009-08-19 | 中国石油大学(北京) | Hydrogenation modification method for faulty gasoline |
CN101885985A (en) * | 2010-07-02 | 2010-11-17 | 中国石油大学(北京) | A kind of production method of ultra-low sulfur and high-octane gasoline |
CN101885983A (en) * | 2010-07-02 | 2010-11-17 | 中国石油大学(北京) | High-efficiency coupled hydroupgrading process for the production of ultra-low sulfur and high-octane gasoline |
-
2010
- 2010-12-10 CN CN201010584150.3A patent/CN102010751B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5411658A (en) * | 1991-08-15 | 1995-05-02 | Mobil Oil Corporation | Gasoline upgrading process |
CN101508912A (en) * | 2009-03-19 | 2009-08-19 | 中国石油大学(北京) | Deep desulfurization-octane value recovery hydrogenation modification method for faulty gasoline |
CN101508911A (en) * | 2009-03-19 | 2009-08-19 | 中国石油大学(北京) | Hydrogenation modification method for faulty gasoline |
CN101885985A (en) * | 2010-07-02 | 2010-11-17 | 中国石油大学(北京) | A kind of production method of ultra-low sulfur and high-octane gasoline |
CN101885983A (en) * | 2010-07-02 | 2010-11-17 | 中国石油大学(北京) | High-efficiency coupled hydroupgrading process for the production of ultra-low sulfur and high-octane gasoline |
Also Published As
Publication number | Publication date |
---|---|
CN102010751A (en) | 2011-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101885985B (en) | Production method for ultra-low sulfur and high-octane number gasoline | |
CN101492608B (en) | Method for deep desulfurization olefin hydrocarbon reduction of inferior gasoline | |
CN102010751B (en) | Efficient combined production method for gasoline with ultralow sulfur and high octane value | |
CN101885983A (en) | High-efficiency coupled hydroupgrading process for the production of ultra-low sulfur and high-octane gasoline | |
CN101508912B (en) | Deep desulfurization-octane value recovery hydrogenation modification method for low grade gasoline | |
CN101508910B (en) | Ultra-deep desulfurization-octane value recovery hydrogenation modification method for faulty gasoline | |
CN101508908B (en) | Method for producing ultra-clean gasoline | |
CN101837299B (en) | Catalyst for catalytic gasoline hydrogenation modification and preparation method thereof | |
CN102311766A (en) | Class II active center hydrogenation catalyst start-up vulcanization method | |
CN109022020B (en) | Method for multi-component adsorption separation of diesel oil | |
CN100522361C (en) | Synthetized modification HZSM-5 zeolite catalyst and method for preparing the same and use thereof | |
CN1331991C (en) | Hydrogenation and quality improvement method for reducing sulfur and olefin content of inferior gasoline | |
CN101440306B (en) | Hydro-upgrading method for FCC gasoline | |
CN101508909B (en) | Selective hydrogenation desulfurization and highly-branched chain isomerous coupling modification method for faulty gasoline | |
CN101440305B (en) | Hydro-upgrading method for FCC gasoline | |
CN103146429B (en) | Method for hydrotreating liquefied gas | |
CN101508911B (en) | Hydrogenation modification method for faulty gasoline | |
CN103059964B (en) | Method for producing ultra-low sulfur gasoline | |
CN103059947B (en) | Method for production of super-clean gasoline from inferior gasoline | |
CN102465005A (en) | Method for starting second type active center hydrogenation catalyst | |
CN103450935B (en) | A kind of method of producing super low-sulfur oil | |
CN103059959B (en) | Technological method for producing low sulfur gasoline | |
CN111068767B (en) | Catalyst for producing clean gasoline and preparation and application thereof | |
CN101508913B (en) | Deep desulfurization-octane value recovery hydrogenation modification combined method for faulty full-distillation gasoline | |
CN114181737A (en) | Method for producing light aromatic hydrocarbon and clean gasoline component from inferior gasoline |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140618 |