CN102006000A - 非直接并网的功率绕组连接方式可变的风力发电机及方法 - Google Patents

非直接并网的功率绕组连接方式可变的风力发电机及方法 Download PDF

Info

Publication number
CN102006000A
CN102006000A CN 201010557160 CN201010557160A CN102006000A CN 102006000 A CN102006000 A CN 102006000A CN 201010557160 CN201010557160 CN 201010557160 CN 201010557160 A CN201010557160 A CN 201010557160A CN 102006000 A CN102006000 A CN 102006000A
Authority
CN
China
Prior art keywords
power winding
power
wind
control switch
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201010557160
Other languages
English (en)
Other versions
CN102006000B (zh
Inventor
施凯
黄文新
胡育文
卜飞飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN2010105571608A priority Critical patent/CN102006000B/zh
Publication of CN102006000A publication Critical patent/CN102006000A/zh
Application granted granted Critical
Publication of CN102006000B publication Critical patent/CN102006000B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公布了一种非直接并网的功率绕组连接方式可变的风力发电机及方法,该风力发电机无电刷滑环,能胜任直驱运行。所述发电机由风力发电机(1)、功率绕组(2)、控制开关(3)、控制器(4)组成。所述方法:控制器(4)根据当前风速、电机转速以及电机输出功率的大小,控制开关(3)及时合理地控制功率绕组实现“Y-△”之间的快速切换,提高低速时的整流输出电压,使发电机的功率绕组侧在宽风速范围内均能输出或者经BOOST变换器升压后输出满足逆变器要求的电压,增强了低风速下的风能利用能力,可以适用于任何一种三相交流发电机。

Description

非直接并网的功率绕组连接方式可变的风力发电机及方法
技术领域
本发明所涉及的是一种在宽风速范围内均能满足逆变器输出电压要求的功率绕组“Y-△”连接可控的风力发电机及控制方法。
背景技术
煤炭、石油、天然气等化石能源的大量消耗和对环境的恶化,极大地推动了对新能源和可再生能源的开发和应用。风能作为一种的清洁能源,在存储量、分布区域和污染等方面具有先天的优势,越来越多地受到了世界各国的重视,已成为发展最快的绿色新能源。
现有主流的变速恒频风力发电系统中,采用最多的就是双馈电机和永磁同步电机两种机组。双馈发电机主要输出恒频三相交流电,必须通过齿轮箱增速达到高速工频,降低了风能的利用效率,而且受转差功率和励磁变换器容量的限制,电机工作的转速范围有限,转速范围在1:2左右,限制了双馈电机对低风速的风能利用。
如图4所示,永磁同步发电机风力发电系统示意图。直驱式永磁同步电机系统由于励磁不可控,电机功率绕组输出的电压是随着风速变化的,需要整流输出直流电后才能全功率逆变上网或供负载使用。为了能使逆变电路输出电压高于并网电压的交流电,必须在整流电路和逆变器之间施加DC-DC升压环节。如果要利用低风速时发出的电能,由于此时永磁发电机整流电压较低,DC-DC升压电路升压比必然会较高。而升压电路对功率器件的要求较高,并且BOOST变换器的升压比受到占空比的限制不宜过大,否则控制效果不佳,因此同样存在低速下不能充分利用风能的缺点,这样极大地影响了在风力资源不是很丰富、常年平均风速不太高的区域风电的应用发展。
发明内容
本发明目的是为了使风力发电机具备在低风速区的应用能力,克服在低风速区功率绕组输出电压低的不足,如图1所示,采用了一种新的功率绕组“Y-△”连接结构的风力发电机,利用控制开关控制其实现“Y-△”连接切换,减轻DC-DC升压变换器的负担,可缩小低速下的整流输出电压范围,使系统在宽风速范围内均能满足逆变器的输出要求。
本发明为实现上述目的,采用如下技术方案:
本发明一种非直接并网的功率绕组连接方式可变的风力发电机,其特征在于由风力发电机、功率绕组、控制开关、控制器组成;其中功率绕组为风力发电机的三相输出绕组,共留出6个抽头,由控制开关来改变连接方式,控制开关的输出端为3根抽头,当前风速、电机转速和电机输出功率的检测信号与控制器输入端相连,控制器的输出端接控制开关的输入端。
所述风力发电机的三相功率绕组抽出6根出头,由控制开关来控制实现功率绕组的“Y-△”连接,其中控制开关由两个三相交流接触器构成,第一三相交流接触器的一端接至功率绕组的三相输入端,另一端三相短接,可组成Y接法,第二个三相交流接触器的一端接功率绕组的三相输入端,另一端分别接功率绕组的另外三个三相输出端,保证三相交流接触器每相开关的一端接一相绕组的入端,另一端接另一相绕组的出端,这样首尾相连,组成△接法。在功率绕组的三个输入端接一套Y接法的三相电容,作为功率绕组“Y-△”之间切换的能量通道。
所述的一种非直接并网的功率绕组连接方式可变的风力发电机,其运行特征如下:
(1)在低风速区发电运行控制的特征:在低风速区,风力发电机转速较低,电机的功率绕组整流输出的电压较低,达不到逆变器的输出要求或经BOOST升压后达不到后续逆变器要求的指令电压,控制器根据检测到风速、发电机转速和电机输出功率,判断发出控制信号给控制开关,使控制开关动作将功率绕组实现Y连接,输出电压为△连接时的                                               
Figure 2010105571608100002DEST_PATH_IMAGE002
倍,有利于整流输出或通过BOOST变换器将电压升至逆变器要求的输出电压。
(2)高风速区发电运行控制的特征:在高风速区,风力发电机转速较高,电机的功率绕组整流输出的电压较高或经BOOST变换器升压后完全可以达到输出的指令电压,控制器根据检测到风速、发电机转速和电机输出功率,判断发出控制信号给控制开关,使控制开关动作将功率绕组实现△连接。
(3)为了实现高低风速区的平滑过渡,实现控制开关控制功率绕组“Y-△”连接的快速切换,同时又能避免系统状态的频繁变化,应注意低速到高速和高速到低速之间的切换条件有所区分,可通过设置一个滞环来实现,同时开关的瞬间应尽可能地迅速,做到先断开后闭合,避免绕组短接。
本发明提出的风力发电机与传统风力发电机相比,主要不同点在于:(1)三相功率绕组留出的是6个抽头,通过控制开关将其连接起来,其中的3个抽头作为输出,通过控制开关的控制实现功率绕组“Y-△”连接之间的灵活切换,以此提高系统低风速区下的整流输出电压,减轻DC-DC升压变换器的负担,扩大风能的利用。(2)在三相功率绕组的输入端接了一套Y连接的三相电容,作为“Y-△”切换时的能量通道,避免过大的冲击。
附图说明
图1:风力发电机结构示意图。
图2:电机功率绕组与控制开关连接示意图。
图3:电机功率绕组整流输出电压与风速关系示意图。
图4:永磁同步发电机风力发电系统示意图。
具体实施方式
下面结合附图对发明的技术方案进行详细说明:
由图1可知,本发明的一种非直接并网的功率绕组连接方式可变的风力发电机,其特征在于由风力发电机1、功率绕组2、控制开关3、控制器4组成;其中功率绕组2为风力发电机1的三相输出绕组,共留出6个抽头,由控制开关3来改变连接方式,控制开关3的输出端为3根抽头,当前风速、电机转速和电机输出功率的检测信号与控制器4输入端相连,控制器4的输出端接控制开关3的输入端。
所述风力发电机的三相功率绕组抽出6根出头,由控制开关(3)来控制实现功率绕组的“Y-△”连接,其中控制开关(3)由两个三相交流接触器KM1、KM2构成,第一三相交流接触器KM1的一端接至功率绕组的三相输入端,另一端三相短接,可组成Y接法,第二个三相交流接触器KM2的一端接功率绕组的三相输入端,另一端分别接功率绕组的另外三个三相输出端,保证三相交流接触器每相开关的一端接一相绕组的入端,另一端接另一相绕组的出端,这样首尾相连,组成△接法。在功率绕组的三个输入端接一套Y接法的三相电容,作为功率绕组“Y-△”之间切换的能量通道。
图2中每个三相交流接触器都包括三个开关,KM1(KM1-1,KM1-2,KM1-3)、KM2(KM2-1,KM2-2,KM2-3)。
由图3可知功率绕组整流输出电压与风速之间的大致关系,在切换风速将功率绕组从△连接变为Y连接,其输出电压瞬时会有个跌落,这样必须保证切换风速下功率绕组采用Y连接也能输出满足逆变器要求的电压,选取切换风速时应考虑到这一点。
本发明提出一种非直接并网的功率绕组连接方式可变的风力发电机,其工作原理描述如下:
当风速较小时,发电机的转速较低,系统无法提供过多励磁,功率绕组整流输出的直流电压或者经BOOST变换器升压后达不到逆变器的工作要求,控制器根据风速、电机转速和输出功率的大小来判断输出控制信号,控制开关工作,功率绕组为Y连接。尽管风速较低,但发电机的功率绕组整流输出电压为△连接方式的
Figure 97729DEST_PATH_IMAGE002
倍,经过这种连接方式的改变,整流输出电压或者经BOOST升压后仍可达到逆变器的输出要求。
当风速逐渐增大时,发电机的转速也逐渐变高,功率绕组整流输出电压渐渐升高,当功率绕组整流电压可以达到或者经BOOST变换器升压达到逆变器要求指令电压值,这时通过控制开关的动作,功率绕组变为△连接。
Y连接的三相电容在系统中起的作用主要是在绕组“Y-△”之间切换时避免绕组上的电压电流突变。绕组Y连接时,三相电容被KM1短接,△连接时,绕组被三相电容短接的。当电机功率绕组由Y向△过渡时,先断开KM1,绕组上的电压对三相电容进行充电,充至一定电压时再合上KM2,这样可以避免绕组上的电压突变。当由△向Y过渡时,断开KM2,功率绕组和三相电容还是组成Y连接,电容上存在一定的电压,此时再合上KM1,同样不会引起绕组电流电压突变,因为三相电容被KM1短接时产生的电流和为零。必须注意在“Y-△”连接切换过程中开关应该先断开后闭合,否则会引起功率绕组短接。
为了保持系统运行的稳定性,尤其在低风速时期避免风速变化不定时控制开关的频繁切换,控制器在根据风速、发电机转速以及输出功率的大小判断时,由低速到高速和由高速到低速的切换条件应有所不同,可设置一个大的控制滞环。
本发明适用于任何一种三相交流发电机,无论系统的励磁是否可调,均能使电机功率绕组的整流输出电压或者经BOOST升压后在宽风速范围内均能满足逆变器的工作要求。
本发明不同于现有的风力发电机的一个重要特点在于:功率绕组可由控制开关控制实现“Y-△”连接方式切换,△连接方式时由于相电压等于线电压,故Y连接的输出电压可为△方式的倍,即在低风速区功率绕组采用Y连接,整流输出的电压或经BOOST变换器升压后可满足逆变器工作要求,这样拓宽了风力发电机在低风速区的风能利用能力。在高风速区发电机的转速较高,功率绕组端输出的电压较高,此时功率绕组采用△连接,其整流输出电压或经BOOST变换器升压后也可满足逆变要求。因此使用这种功率绕组连接方式可变的风力发电机在宽风速范围内均可输出满足逆变器工作要求的电压。
综上所述,一种新型的双功率绕组结构的风力发电机,其运行特征如下:
(1)在低风速区发电运行控制的特征:在低风速区,风力发电机转速较低,电机的功率绕组整流输出的电压较低,达不到逆变器的输出要求或经BOOST升压后达不到后续逆变器要求的指令电压,控制器根据检测到风速、发电机转速和电机输出功率,判断发出控制信号给控制开关,使控制开关动作将功率绕组实现Y连接,输出电压为△连接时的
Figure 14869DEST_PATH_IMAGE002
倍,有利于整流输出或通过BOOST变换器将电压升至逆变器要求的输出电压。
(2)高风速区发电运行控制的特征:在高风速区,风力发电机转速较高,电机的功率绕组整流输出的电压较高或经BOOST变换器升压后完全可以达到输出的指令电压,控制器根据检测到风速、发电机转速和电机输出功率,判断发出控制信号给控制开关,使控制开关动作将功率绕组实现△连接。
(3)为了实现高低风速区的平滑过渡,实现控制开关控制功率绕组“Y-△”连接的快速切换,同时又能避免系统状态的频繁变化,应注意低速到高速和高速到低速之间的切换条件有所区分,可通过设置一个滞环来实现,同时开关的瞬间应尽可能地迅速,做到先断开后闭合,避免绕组短接。

Claims (3)

1.一种非直接并网的功率绕组连接方式可变的风力发电机,其特征在于由风力发电机(1)、功率绕组(2)、控制开关(3)和控制器(4)组成;其中功率绕组(2)为风力发电机(1)的三相功率绕组,共留出6个抽头,功率绕组(2)与控制开关(3)连接由控制开关(3)来改变连接方式;控制开关(3)的输出端为3根抽头;当前风速、电机转速和电机输出功率的检测信号与控制器(3)的输入端相连,控制器(4)的输出端接控制开关(3)的输入端。
2.根据权利要求1所述的非直接并网的功率绕组连接方式可变的风力发电机,其特征在于所述风力发电机的三相功率绕组抽出6根出头,由控制开关(3)来控制实现功率绕组的“Y-△”连接,其中控制开关(3)由两个三相交流接触器(KM1、KM2)构成;其中第一三相交流接触器(KM1)的一端接至功率绕组的三相输入端,另一端三相短接,组成Y接法;第二个三相交流接触器(KM2)的一端接功率绕组的三相输入端,另一端分别接功率绕组的另外三个三相输出端,组成△接法;在功率绕组的三个输入端接一套Y接法的三相电容,作为功率绕组“Y-△”之间切换的能量通道。
3.一种如权利要求1所述的非直接并网的功率绕组连接方式可变的风力发电机的控制方法,其特征在于:
在低风速区发电运行控制方法:控制器(4)根据检测到风速、发电机转速和电机输出功率,判断发出控制信号给控制开关,使控制开关动作将功率绕组实现Y连接;
在高风速区发电运行控制方法:控制器(4)根据检测到风速、发电机转速和电机输出功率,判断发出控制信号给控制开关,使控制开关动作将功率绕组实现△连接。
CN2010105571608A 2010-11-24 2010-11-24 非直接并网的功率绕组连接方式可变的风力发电机及方法 Expired - Fee Related CN102006000B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010105571608A CN102006000B (zh) 2010-11-24 2010-11-24 非直接并网的功率绕组连接方式可变的风力发电机及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010105571608A CN102006000B (zh) 2010-11-24 2010-11-24 非直接并网的功率绕组连接方式可变的风力发电机及方法

Publications (2)

Publication Number Publication Date
CN102006000A true CN102006000A (zh) 2011-04-06
CN102006000B CN102006000B (zh) 2012-11-21

Family

ID=43813127

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010105571608A Expired - Fee Related CN102006000B (zh) 2010-11-24 2010-11-24 非直接并网的功率绕组连接方式可变的风力发电机及方法

Country Status (1)

Country Link
CN (1) CN102006000B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104079130A (zh) * 2014-07-21 2014-10-01 威海戥同测试设备有限公司 多稳态级联感应发电机组
CN104158363A (zh) * 2014-08-12 2014-11-19 南车株洲电力机车研究所有限公司 双馈感应发电机模型
CN106058913A (zh) * 2016-05-27 2016-10-26 中车株洲电力机车研究所有限公司 一种风力发电机组及控制方法
TWI607925B (zh) * 2013-08-06 2017-12-11 Mobiletron Electronics Co Ltd Hybrid system and its operation method
CN107785926A (zh) * 2016-08-31 2018-03-09 北京天诚同创电气有限公司 风力发电机组的瞬时功率控制方法及装置
CN111355422A (zh) * 2020-04-16 2020-06-30 芜湖美智空调设备有限公司 驱动控制电路、驱动方法、装置、压缩机和空调设备
CN112290852A (zh) * 2020-02-21 2021-01-29 北京六十六号互动科技有限公司 电机的绕组接线状态切换方法和装置以及电机控制系统
CN112436767A (zh) * 2020-11-12 2021-03-02 漳州科华技术有限责任公司 一种电压控制方法、系统、装置及车载变换器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1770585A (zh) * 2004-10-25 2006-05-10 中国科学院电工研究所 一种变速恒频双馈发电机系统及其并网控制方法
CN101064460A (zh) * 2007-03-22 2007-10-31 南京航空航天大学 低压起动高压发电的三相异步电机直流起动发电系统
CN201323550Y (zh) * 2008-12-16 2009-10-07 华南理工大学 基于矩阵式变换器的无刷双馈风力发电机控制系统
CN101718260A (zh) * 2009-12-19 2010-06-02 山东鲁科风电设备有限公司 永磁直驱/半直驱风力发电机组自封闭刹车装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1770585A (zh) * 2004-10-25 2006-05-10 中国科学院电工研究所 一种变速恒频双馈发电机系统及其并网控制方法
CN101064460A (zh) * 2007-03-22 2007-10-31 南京航空航天大学 低压起动高压发电的三相异步电机直流起动发电系统
CN201323550Y (zh) * 2008-12-16 2009-10-07 华南理工大学 基于矩阵式变换器的无刷双馈风力发电机控制系统
CN101718260A (zh) * 2009-12-19 2010-06-02 山东鲁科风电设备有限公司 永磁直驱/半直驱风力发电机组自封闭刹车装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI607925B (zh) * 2013-08-06 2017-12-11 Mobiletron Electronics Co Ltd Hybrid system and its operation method
CN104079130A (zh) * 2014-07-21 2014-10-01 威海戥同测试设备有限公司 多稳态级联感应发电机组
CN104158363A (zh) * 2014-08-12 2014-11-19 南车株洲电力机车研究所有限公司 双馈感应发电机模型
CN106058913A (zh) * 2016-05-27 2016-10-26 中车株洲电力机车研究所有限公司 一种风力发电机组及控制方法
CN106058913B (zh) * 2016-05-27 2019-07-09 中车株洲电力机车研究所有限公司 一种风力发电机组及控制方法
CN107785926A (zh) * 2016-08-31 2018-03-09 北京天诚同创电气有限公司 风力发电机组的瞬时功率控制方法及装置
CN107785926B (zh) * 2016-08-31 2020-01-31 北京天诚同创电气有限公司 风力发电机组的瞬时功率控制方法及装置
CN112290852A (zh) * 2020-02-21 2021-01-29 北京六十六号互动科技有限公司 电机的绕组接线状态切换方法和装置以及电机控制系统
CN111355422A (zh) * 2020-04-16 2020-06-30 芜湖美智空调设备有限公司 驱动控制电路、驱动方法、装置、压缩机和空调设备
CN112436767A (zh) * 2020-11-12 2021-03-02 漳州科华技术有限责任公司 一种电压控制方法、系统、装置及车载变换器
CN112436767B (zh) * 2020-11-12 2023-01-10 漳州科华技术有限责任公司 一种电压控制方法、系统、装置及车载变换器

Also Published As

Publication number Publication date
CN102006000B (zh) 2012-11-21

Similar Documents

Publication Publication Date Title
CN102006000B (zh) 非直接并网的功率绕组连接方式可变的风力发电机及方法
US10530237B2 (en) Energy storage system for renewable energy source
EP2400619B1 (en) Low cost current source converters for power generation application
CN102709945B (zh) 一种鼠笼发电机直驱式可储能风力发电系统
CN101667802B (zh) 定子双绕组异步电机发电系统及宽风速范围内风力发电的方法
CN107147145A (zh) 一种基于三电平dc‑dc变换器的风储双极性直流微电网及控制方法
CN104539206B (zh) 海上大型直驱开关磁阻风力发电机功率变换器系统
CN204559455U (zh) 开关磁阻风力发电机控制系统
CN102185550B (zh) 双重单元风力发电并网系统及其控制方法
CN104660129A (zh) 开关磁阻风力发电机控制系统及控制方法
CN101550906B (zh) 直流电机变桨距系统及其控制方法
CN102386633A (zh) 兆瓦级直驱型鼠笼异步发电机交-直-交风力发电系统
CN104242345A (zh) 一种大功率直驱风电变流器电路拓扑结构及其应用
CN202455089U (zh) 兆瓦级直驱型鼠笼异步发电机交-直-交风力发电系统
CN103904639B (zh) 用于柔性直流输电系统的双馈型风电机组变流器控制方法
CN107070333B (zh) 一种开关磁阻风力发电机功率变换器及其控制方法
CN104779892A (zh) 基于y-△变换扩大交流电动机恒转矩变频调速范围的系统与方法
CN107359643A (zh) 一种定子永磁式双转子风力发电系统
CN218514098U (zh) 一种火电厂用储能系统
CN204361730U (zh) 风力、光伏、柴油发电三电源发供电系统
US10731628B1 (en) System and method for coordinated control of reactive power from a generator and a reactive power compensation device in a wind turbine system
CN111276959A (zh) 基于双馈风力发电系统的直流微电网功率协调控制方法
CN101388575B (zh) 一种低调速损耗的绕线式异步电动机及其调速装置
CN204258296U (zh) 开关磁阻风力发电机直流输出升压型电能变换系统
CN201234175Y (zh) 一种低调速损耗的绕线式异步电动机及其调速装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121121

Termination date: 20161124