CN102004256A - 基于空间谱全息存储的激光干涉测距系统 - Google Patents

基于空间谱全息存储的激光干涉测距系统 Download PDF

Info

Publication number
CN102004256A
CN102004256A CN 201010278605 CN201010278605A CN102004256A CN 102004256 A CN102004256 A CN 102004256A CN 201010278605 CN201010278605 CN 201010278605 CN 201010278605 A CN201010278605 A CN 201010278605A CN 102004256 A CN102004256 A CN 102004256A
Authority
CN
China
Prior art keywords
photonic crystal
spatial spectrum
laser
subsystem
holographic memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201010278605
Other languages
English (en)
Other versions
CN102004256B (zh
Inventor
何云涛
江月松
欧军
华厚强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN2010102786059A priority Critical patent/CN102004256B/zh
Publication of CN102004256A publication Critical patent/CN102004256A/zh
Application granted granted Critical
Publication of CN102004256B publication Critical patent/CN102004256B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明提出了一种新型的基于空间谱全息存储的激光干涉测距系统。在本发明中:同一激光器的光束被分成两束,一束作为参考光束,另一束通过望远镜作为探测光束;目标反射回波光束与参考光束的相干在光子晶体上的空间谱全息存储为衍射光栅;随后利用另一个线性调频的激光扫描光束照射光子晶体以读取衍射光栅中的目标距离信息,经过光子晶体的衍射光束中含有目标距离信息,衍射光束再经傅里叶变换后,最后被光子探测器探测出来;此时,探测器的输出的时域信号为光子晶体中所存在的干涉谱,因此可提取出目标反射回波的延时以实现测距。本发明系统降低了对硬件计算能力的要求,而光子晶体的高带宽处理还极大提高系统的距离分辨率。

Description

基于空间谱全息存储的激光干涉测距系统
技术领域
本发明主要涉及光子晶体上的空间谱全息存储处理技术的一种激光干涉测距技术,尤其是运用将回波光束与参考波束干涉的空间谱全息存储在光子晶体中,通过线性调频的读取光束获取和处理该空间谱的一种激光干涉测距系统。
背景技术
激光测距原理是利用激光器向目标发射激光脉冲束,通过测量激光脉冲束到达目标并由目标返回到接收望远镜的往返时间或相位,来计算出目标的距离。与传统的测距技术相比,激光测距技术具有测量精度高、准直性好、抗干扰能力强等一系列优点,已经被广泛应用于遥感、精密测量、工程建设、安全监测和智能控制等领域,起着极为重要的作用。
根据测量回波时间方式的不同,可可将激光测距系统分成两种类型:脉冲式和连续式。脉冲式激光测距方法较为简单,体积、重量都不大,目前军用的激光测距仪以脉冲式居多,由于获得稳定频率信号还有很大的困难,因此很难实现1m以下的距离分辨率。连续式激光测距系统一般是基于干涉测量技术的一种精度更高的测距系统,其距离分辨率一般都在1m以下,具有巨大的发展空间。但由于系统相对复杂,技术不是十分成熟,还没有广泛的在工程中采用。
激光干涉测量技术广泛应用于高精度测量领域,通过光束分离器把一束光分成两束,一路通过已知的距离形成参考光束,一路入射到测量目标反射后形成测量光束,干涉后通过探测器探测两束光干涉强度,干涉强度里面包含了与光程差相关的相位信息,通过测量相位就可以得到目标的距离信息。
空间谱全息存储技术主要是采用光子晶体在某些特定波段范围内的光谱烧孔效应来实现的:在某些光子晶体物质中存在着一组能级包含一个基态与一个受激态,在其间有一介稳态的能阶,当有入射光将电子由基态激发至受激态时,受激发的电子会在几个皮秒的时间内跃迁到亚稳态。在经过约长达几个毫秒后,电子才会回到基态并释放出波长与入射光波长相近的光子。而在该物质的吸收/穿透光谱上在特定的波长附近便会形成一个空区意味着该特定波长的光无法通过。当一束强的单频激光通过这种光子晶体时,它可以选择性地将一群与共振频率相对应的原子激发至饱和状态,这时若有另一束频率扫描的弱探测光通过该介质,则在它的吸收光谱的相应位置上将出现一个凹陷。
本发明中通过将难以处理的高带宽高频率的含有目标距离信息的干涉空间谱全息存储在光子晶体中,通过采用一束线性调频读取光束,将光子晶体中存储的空间谱信息以时域的形式读取处理,经过处理即可获得高精度的距离分辨率探测结果。
发明内容
本发明提出了一种新型的基于空间谱全息存储的激光干涉测距系统:具有高达数十GHz的工作带宽,但却可以用很低带宽的光子探测器来提取所需的目标距离信息;利用光子晶体进行光信息处理,可极大降低测距系统对硬件计算能力的要求;本发明系统具有很高的工作频率和工作带宽,因此相对传统脉冲激光测距,本发明具有更高的距离分辨率,可广泛应用于遥感、精密测量、工程建设、安全监测和智能控制等领域。在本发明中:发射端激光器发出的光束被分成两束,一束作为参考光束,另一束通过发射望远镜作为探测光束;探测光束照射目标后散射和反射的回波光束与参考光束相干的空间谱在光子晶体上全息存储为衍射光栅;随后利用另一个线性调频的激光频率扫描光束照射光子晶体以读取衍射光栅中包含的目标距离信息,即经光子晶体的衍射光束中含有目标距离信息;衍射光束最后通过零外差探测技术被光子探测器探测出来;此时,光子探测器的输出的时域信号为光子晶体中所存在的干涉谱,对探测的时域信号进行傅里叶变换后即可提取出目标反射回波的延时以实现测距。
本发明主要采光子晶体实现对空间谱全息存储的激光干涉测距系统,具体采用如下技术方案:
发明提出如图1所示的基于空间谱全息存储的激光干涉测距系统,其基本思想是利用光子晶体对来自目标的回波光束与参考光束干涉的空间谱全息存储,然后利用一束线性调频的频率扫描读取光束对存储在光子晶体中的空间谱以时域的形式读取出来,并利用零外差探测技术转换为电信号,并对其进行傅里叶变换以提取回波光束的延时,从而获得目标的探测距离。所述的基于空间谱全息存储的激光干涉测距系统包括激光发射与接收子系统,含有光子晶体的空间谱全息存储子系统,线性调频调制的激光扫描读取子系,以及光子探测处理子系统组成。
在本发明中,系统各个部分说明如下:
(1)激光发射与接收子系统包括大功率的发射端激光器,电光调制器,准直扩束器,多路分光器,发射望远镜和接收望远镜组成;发射端激光器的输出光束被电光调制器调制并经准直扩束器后,进入多路分光器被分为两束相干光:一束为参考光束,另一束为经发射望远镜照射目标的探测光束,且该探测光束经过目标散射的回波光束被接收望远镜获取;回波光束和参考光束一同输入到空间谱全息存储子系统中。
(2)空间谱全息存储子系统由聚焦透镜和光子晶体组成;聚焦透镜将回波光束和参考光束耦合到光子晶体中进行相干,干涉结果对应的空间谱被存储到光子晶体中。
(3)激光扫描读取子系统包括读取端激光器、电光调制器,准直扩束器和多路分光器;读取端激光器发出的激光束经过电光调制器后成为线性调频调制的读取光束,该读取光束经过聚焦透镜耦合到光子晶体中以读取存储在光子晶体中回波光束与参考光束干涉的空间谱,通过读取光束频率的线性扫描可将所述空间谱以时域信号的形式读取出来,包含在光子晶体输出的衍射光束的时域波形中;该衍射光束与另一束零外差相干的探测参考光束一起进入光子探测处理子系统。
(4)光子探测处理子系统由光路合成器,反射镜,光子探测器,信号处理器组成;根据零外差探测技术,激光扫描读取子系统输出的衍射光束和探测参考光束经反射镜和光路合成器后,在空间合成一路合成光束,所述合成光束最终通过光子探测器探测,获得所述衍射光束的时域波形,也即回波光束与参考光束干涉的空间谱波形,在信号处理器中利用傅里叶变换技术对光子探测器的输出进行处理即可获得目标的探测距离。
(5)所述光子晶体是一种具有瞬时光谱烧孔特性的光子晶体:光子晶体在被回波光束和参考光束的干涉结果实施光谱烧孔后,以指数形式迅速恢复。
(6)所述光子晶体具有高达10GHz以上的带宽的存储能力,而在光子探测器探测时可通过仅仅为数兆赫兹的光子探测器来实现空间谱探测。
(7)光子晶体用于高频宽带的干涉谱信号的存储与读取的过程如图2所示。图2(1)表明了光子晶体的原始吸收频谱曲线图,在一定的频率范围内存在一系列独立吸收频谱点,具有很强的吸收。由于其间隔很小,因此通过一个扫频激光器照射光子晶体,可被用于实现对在该频率范围内的宽带信号的窄带采样功能;图2(2)显示了一幅输入的宽带调制光束的频谱图;图2(3)是光子晶体被光谱烧孔后的吸收频谱图,光子晶体的频谱吸收包络曲线记录了输入信号的频谱;图2(4)是一强度微弱的线性调频激光光束通过光子晶体后得到的谱图,由于不同频率处的透射强度与输入信号在该频率处的分量对应,因此通过线性调频的激光束扫描后,用探测器得到的时域波形就是输入信号的频谱,通过积分即可得到完整的宽带信号。
(8)在光子晶体中,设空间谱全息存储过程中的回波光束和参考波束的方向矢量分别为
Figure BSA00000265310400041
Figure BSA00000265310400042
读取过程中的读取波束和最终的含有目标距离信息的衍射光束的方向矢量为
Figure BSA00000265310400043
Figure BSA00000265310400044
则四者具有如下关系
Figure BSA00000265310400045
为了方便探测,仅仅保留
Figure BSA00000265310400046
方向上有衍射出光,并最终通过零外差探测出该方向上的衍射光束。
本发明的主要特色:运用光子晶体的光谱烧孔技术,实现光子晶体对空间谱的全息存储和读取技术,最终实现激光干涉测距目的的一种新型测距系统。
本发明的效益与应用前景:(1)可应用于遥感、精密测量、工程建设、安全监测和智能控制等领域,实现高精度绝对距离测量的目的;(2)本发明中光子晶体的空间谱全息存储技术还可以用于其它超宽带微波信息处理。
附图说明
图1为本发明基于空间谱全息存储的激光干涉测距系统图
图2为光子晶体全息存储与读取过程图
图3为光子晶体中各光束矢量方向关系图
具体实施方式
如图1所示,发射端激光器1可采用大功率的连续波光纤激光器,所发出的光束进入电光调制器2被射频信号RF1所调制,电光调制器2根据RF1的频率选择。为了提高距离分辨率,实施方案中采用2GHz的宽带射频信号。电光调制器2输出的光束经扩束准直器4和多路分光器5后,其中一束光进入发射望远镜6,并在发射望远镜6中光束再次被扩束和准直以照射目标。从目标散射回来的光束经接收望远镜7收集后,即是回波光束。回波光束与所述多路分光器5输出的另一束光——参考光束,一起经过聚焦透镜8,被聚焦到光子晶体9上面,并再光子晶体上刻蚀一个随着时间以指数消退的和回波光束与参考光束干涉的空间谱所对应的衍射光栅,从而实现了空间谱全息存储。本实施方案中,光子晶体9为一种Tm+3:YAG晶体,在经过液态N2致冷形成的4.2K的低温环境下,其吸收谱线图如图4所示。
当回波光束与参考光束干涉的空间谱全息存储在光子晶体9的时候,从另一个读取端激光器3发射一束用于读取全息存储在光子晶体中的目标距离信息的读取光束。所述的读取端激光器3是被线性调频信号调制后输出的线性调频的频率扫描读取光束,该光束经扩束准直器4和多路分光器5后,通过聚焦透镜8后聚焦到光子晶体9上面,通过光束的频率线性扫描读取出所述干涉的空间谱,并转换为时域信号。
最后,对经光子晶体9后所包含目标距离信息的衍射光束进行探测,所采用的方式零外差探测。其中所述衍射光束的方向是如图3中所示,其具体方向按照如下公式计算获得。在零外差探测中,读取光束经过多路分光器5后的另一光束为探测参考光束,经过反射镜10进入光路合成器11中,与衍射光束合成,一起进入光子探测器12中完成零外差探测。光子探测器所输出的含有干涉的空间谱信息的时域信号直接进入信号处理器13中,在信号处理器,首先对光子探测器12输出的信号进行数字化,然后利用快速傅里叶变换算法,对时域信号进行傅里叶变换即可提取计算目标距离所需的延时数据,从而实现对目标的测距。

Claims (7)

1.一种新型的基于空间谱全息存储的激光干涉测距系统,其特征是:所述的基于空间谱全息存储的激光干涉测距系统包括激光发射与接收子系统,空间谱全息存储子系统,激光扫描读取子系统,以及光子探测处理子系统组成。所述各子系统协调工作:激光发射与接收子系统负责发射探测光束照射目标和接收来自目标散射的回波光束,并将回波光束和与之相干的参考光束一起输入到光子晶体空间谱全息记录子系统中;空间谱全息记录子系统将回波光束和参考光束干涉所对应的空间谱全息存储在光子晶体中;激光扫描读取子系负责产生线性调频调制的读取光束以读取存储在光子晶体中干涉的空间谱,并以时域信号的形式输出为衍射光束,该衍射光束与另一束零外差相干的探测参考光束最终一同进入光子探测处理子系统;光子探测处理子系统通过零外差探测技术获得衍射光束的时域波形,即回波光束与参考光束干涉的空间谱,最后通过处理即可获得目标的距离信息,完成距离探测。
2.根据权利要求1所述基于空间谱全息存储的激光干涉测距系统,激光发射与接收子系统包括大功率的发射端激光器,电光调制器,准直扩束器,多路分光器,发射望远镜和接收望远镜组成;发射端激光器的输出光束被电光调制器调制并经准直扩束器后,进入多路分光器被分为两束相干光:一束为参考光束,另一束为经发射望远镜照射目标的探测光束,且该探测光束经过目标散射的回波光束被接收望远镜获取;回波光束和参考光束一同输入到空间谱全息存储子系统中。
3.根据权利要求1所述基于空间谱全息存储的激光干涉测距系统,空间谱全息存储子系统由聚焦透镜和光子晶体组成;聚焦透镜将回波光束和参考光束耦合到光子晶体中进行相干,干涉结果对应的空间谱被存储到光子晶体中。
4.根据权利要求1或3所述基于空间谱全息存储的激光干涉测距系统,激光扫描读取子系统包括读取端激光器、准直扩束器和多路分光器;读取端激光器发出的激光束经过电光调制器后成为线性调频调制的读取光束,该读取光束经过聚焦透镜耦合到光子晶体中以读取存储在光子晶体中回波光束与参考光束干涉的空间谱,通过读取光束频率的线性扫描可将所述空间谱以时域信号的形式读取出来,包含在光子晶体输出的衍射光束的时域波形中;该衍射光束与另一束零外差相干的探测参考光束一起进入光子探测处理子系统。
5.根据权利要求1或4所述基于空间谱全息存储的激光干涉测距系统,光子探测处理子系统由光路合成器,反射镜,光子探测器,信号处理器组成;根据零外差探测技术,激光扫描读取子系统输出的衍射光束和探测参考光束经反射镜和光路合成器后,在空间合成一路合成光束,所述合成光束最终通过光子探测器探测,获得所述衍射光束的时域波形,也即回波光束与参考光束干涉的空间谱波形,在信号处理器中利用傅里叶变换技术对光子探测器的输出进行处理即可获得目标的探测距离。
6.根据权利要求1或3所述基于空间谱全息存储的激光干涉测距系统,所述光子晶体是一种具有瞬时光谱烧孔特性的光子晶体:光子晶体在被回波光束和参考光束的干涉结果实施光谱烧孔后,以指数形式迅速恢复。
7.根据权利要求1或5所述基于空间谱全息存储的激光干涉测距系统,所述光子晶体具有高达10GHz以上的带宽的存储能力,而在光子探测器探测时可通过仅仅为数兆赫兹的光子探测器来实现空间谱探测。
CN2010102786059A 2010-09-09 2010-09-09 基于空间谱全息存储的激光干涉测距系统 Expired - Fee Related CN102004256B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010102786059A CN102004256B (zh) 2010-09-09 2010-09-09 基于空间谱全息存储的激光干涉测距系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010102786059A CN102004256B (zh) 2010-09-09 2010-09-09 基于空间谱全息存储的激光干涉测距系统

Publications (2)

Publication Number Publication Date
CN102004256A true CN102004256A (zh) 2011-04-06
CN102004256B CN102004256B (zh) 2012-07-04

Family

ID=43811775

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102786059A Expired - Fee Related CN102004256B (zh) 2010-09-09 2010-09-09 基于空间谱全息存储的激光干涉测距系统

Country Status (1)

Country Link
CN (1) CN102004256B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107576964A (zh) * 2017-08-25 2018-01-12 西安理工大学 线性变频信号的回波时间测量方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4717916A (en) * 1986-05-16 1988-01-05 Holodyne Ltd., 1986 High resolution imaging doppler interferometer
US6163336A (en) * 1994-12-13 2000-12-19 Richards; Angus Duncan Tracking system for stereoscopic display systems
WO2002059646A1 (fr) * 2001-01-26 2002-08-01 Wany Sa Procede et dispositif de detection d'obstacle et de mesure de distance par rayonnement infrarouge
WO2002065153A1 (en) * 2001-02-09 2002-08-22 Commonwealth Scientific And Industrial Research Organisation Lidar system and method
WO2007111469A1 (en) * 2006-03-28 2007-10-04 Lg Chem, Ltd. Method of forming nanopattern and substrate having pattern formed using the method
WO2008056577A1 (fr) * 2006-11-10 2008-05-15 Sumitomo Electric Industries, Ltd. Film de carbone hydrogéné contenant si-o, dispositif optique incluant celui-ci, et procédé de fabrication du film hydrogéné contenant si-o et du dispositif optique
US20090080318A1 (en) * 2007-09-26 2009-03-26 Kabushiki Kaisha Toshiba Optical information recording/reproducing apparatus, diffraction-grating fabricating apparatus, optical information recording medium, and positioning control method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4717916A (en) * 1986-05-16 1988-01-05 Holodyne Ltd., 1986 High resolution imaging doppler interferometer
US6163336A (en) * 1994-12-13 2000-12-19 Richards; Angus Duncan Tracking system for stereoscopic display systems
WO2002059646A1 (fr) * 2001-01-26 2002-08-01 Wany Sa Procede et dispositif de detection d'obstacle et de mesure de distance par rayonnement infrarouge
WO2002065153A1 (en) * 2001-02-09 2002-08-22 Commonwealth Scientific And Industrial Research Organisation Lidar system and method
WO2007111469A1 (en) * 2006-03-28 2007-10-04 Lg Chem, Ltd. Method of forming nanopattern and substrate having pattern formed using the method
WO2008056577A1 (fr) * 2006-11-10 2008-05-15 Sumitomo Electric Industries, Ltd. Film de carbone hydrogéné contenant si-o, dispositif optique incluant celui-ci, et procédé de fabrication du film hydrogéné contenant si-o et du dispositif optique
US20090080318A1 (en) * 2007-09-26 2009-03-26 Kabushiki Kaisha Toshiba Optical information recording/reproducing apparatus, diffraction-grating fabricating apparatus, optical information recording medium, and positioning control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107576964A (zh) * 2017-08-25 2018-01-12 西安理工大学 线性变频信号的回波时间测量方法

Also Published As

Publication number Publication date
CN102004256B (zh) 2012-07-04

Similar Documents

Publication Publication Date Title
CN101408623B (zh) 宽带综合孔径上变频成像系统
CN103348235B (zh) 异物检测装置和异物检测方法
CN103712689B (zh) 基于光学频率梳的连续激光器光谱线宽测量装置
CN109143263B (zh) 一种混合型测风激光雷达
US5847817A (en) Method for extending range and sensitivity of a fiber optic micro-doppler ladar system and apparatus therefor
CN110082778B (zh) 基于单光子探测的相干测风激光雷达
CN105423943B (zh) 高速三维显微成像系统及方法
CN206114903U (zh) 一种高分辨率测量远程目标的相干激光雷达系统
CN203909297U (zh) 基于高速单光子探测的激光测距仪
CN106226778A (zh) 一种高分辨率测量远程目标的相干激光雷达系统
CN106772438A (zh) 一种全天时准确测量大气温度和气溶胶参数的激光雷达系统
CN102495411A (zh) 亚毫米级线性调谐激光测距系统及信号处理方法
CN103777207A (zh) 一种三波长实时定标激光雷达
CN104655185B (zh) 一种基于强度调制探测光的相干布里渊光时域分析传感系统
CN202522516U (zh) 一种光学透过率测试装置
CN109959944A (zh) 基于宽谱光源的测风激光雷达
CN102680118A (zh) 一种激光器频率稳定度的测量方法和装置
CN103900681A (zh) 一种扫描激光振动测量系统
CN103837742B (zh) 基于微波光子处理的微波频谱分析仪
CN111796297B (zh) 基于铒玻璃激光器的并行调频连续波激光测距装置
CN103163529A (zh) 基于赝热光二阶关联性的测距系统
CN102213763A (zh) 基于锁模激光器的相干多普勒测风激光雷达测距系统及测距方法
CN209590271U (zh) 一种空间长度的测量装置
CN106842227A (zh) 基于零折射率超材料的精密光学测距方法
Bobrovnikov et al. A Multi-Aperture Transceiver System of a Lidar with Narrow Field of View and Minimal Dead Zone

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120704

Termination date: 20120909