CN102001835B - Method for preparing modified glass microspheres - Google Patents

Method for preparing modified glass microspheres Download PDF

Info

Publication number
CN102001835B
CN102001835B CN 201010294898 CN201010294898A CN102001835B CN 102001835 B CN102001835 B CN 102001835B CN 201010294898 CN201010294898 CN 201010294898 CN 201010294898 A CN201010294898 A CN 201010294898A CN 102001835 B CN102001835 B CN 102001835B
Authority
CN
China
Prior art keywords
glass microballon
modified glass
behind
obtains
titanium dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 201010294898
Other languages
Chinese (zh)
Other versions
CN102001835A (en
Inventor
刘文秀
姜春华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Irico Group Corp
Original Assignee
Irico Group Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Irico Group Corp filed Critical Irico Group Corp
Priority to CN 201010294898 priority Critical patent/CN102001835B/en
Publication of CN102001835A publication Critical patent/CN102001835A/en
Application granted granted Critical
Publication of CN102001835B publication Critical patent/CN102001835B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The invention discloses a method for preparing modified glass microspheres, which comprises the steps of: firstly, coprecipitating a titanium source and a basic hydrolysis reaction solution in water, reacting to obtain a white titanium hydroxide deposit; obtaining a titanium dioxide sol precursor after carrying out washing, peptizing and aging; then carrying out hydro-thermal treatment to obtain anatase phase titanium dioxide sol; mixing the anatase phase titanium dioxide sol with glass microspheres; mill-grinding, and cooling after thermal treatment to obtain the titanium dioxide modified glass microspheres for light scattering of a dye sensitization solar battery. The finished glass microsphere product prepared by using the method for preparing the modified glass microsphere is wrapped with well-crystallized anatase phase titanium dioxide particles on the surface; and the mill-ground glass microspheres have irregular shapes, and have maximum particle diameter of about 400nm and minimum particle diameter of about 200nm, which ensures the compactness of the glass microspheres subjected to film formation.

Description

A kind of preparation method of modified glass microballon
Technical field
The invention belongs to technical field of solar batteries, relate to a kind of dye sensitization solar battery scattering of light and use the modified glass microballon, especially a kind of dye sensitization solar battery scattering of light is with the preparation method of modified glass microballon.
Background technology
Titanium oxide is as a kind of important semiconductor material; In dye sensitization solar battery and photochemical catalysis association area extensive application; Improve the photoelectric properties of dye sensitization solar battery, raising light anode is one of a kind of valid approach [1] [Kuang, D. to the utilization ratio of sunshine; Wang, P.; Ito, S.; Zakeeruddin, S.M.; Gratzel, M.J.Am.Chem.Soc., 2006,128:7732-7745].Study [2,3] [2] [Barb é C.J., Arendse F. both at home and abroad; Comte P., Jirousek M., Lenzmann F.; ShkloverV.; M., J.Am.Ceram.Soc.1997,80; 3157-3171]; [3] [
Figure GDA0000145212280000012
M.Chem.Lett, 2005,34 (1): 8-13] show that big particle diameter titanium oxide light scattering layer can effectively improve the photoelectric properties of battery.But it is less that each seminar prepares the research of aspect, and what high-caliber research was mainly used is the titanium dioxide powder of the 400nm of Japanese RiHui catalyst synthesis Co., Ltd.The related application of the glass microballon that uses in conjunction with present light reflecting material, the combination light reflecting material of this paper novelty and big particle diameter scattering layer have proposed a kind of preparation method of modified glass microballon of brand-new suitable used by dye sensitization solar battery with titanium dioxide powder.
Summary of the invention
The objective of the invention is to overcome the shortcoming of above-mentioned prior art; A kind of preparation method of modified glass microballon is provided; This method is carried out ball milling through preparation TiO 2 sol and the glass microballon of choosing special requirement; The titania modified glass microballon surface that obtains is at last attached by well-crystallized's anatase phase titanium dioxide particle bag, guarantee the compactness after its film forming.
The objective of the invention is to solve through following technical scheme:
The preparation method of this modified glass microballon is characterized in that, may further comprise the steps:
1) with titanium source and the co-precipitation of basic hydrolysis liquid in water, reaction obtains white titanium hydroxide deposition, washing is deposited in the white titanium hydroxide that obtains under 30~80 ℃ then, presses Ti 4+: organic acid: the mol ratio of ydrogen peroxide 50 is 1: (2~10): peptization is carried out in (2~10), obtains the TiO 2 sol presoma behind still aging 10~16h;
2) the TiO 2 sol presoma that obtains is being obtained the xanchromatic anatase titanic oxide sol behind hydrothermal treatment consists 4~24h under 70~250 ℃ of conditions;
3) will sieve the back particle diameter between the glass microballon of 300~700nm according to 1~10g/ml and step 2) TiO 2 sol mix; Place agate jar then; Take out naturally cooling behind 240~260 ℃ of thermal treatment 1~3h behind ball milling 20~24h, promptly obtain being suitable for the titania modified glass microballon that the dye sensitization solar battery scattering of light is used.
Above-mentioned steps 1) in, described titanium source is one or more mixing in titanyl sulfate, titanium sulfate and the titanium tetrachloride; Described basic hydrolysis liquid is NaOH, KOH, NaHCO 3, ammoniacal liquor or NH 4HCO 3Described organic acid is oxalic acid, Hydrocerol A, tartrate, phenylformic acid, hexanodioic acid or acetic acid.
Above-mentioned steps 3) in, the specific refractory power of said glass microballon is 1.8~2.6.
The present invention has following beneficial effect:
Utilize its surface of glass microballon finished product of the preparation method preparation of modified glass microballon of the present invention to attach by well-crystallized's anatase phase titanium dioxide particle bag; And the glass microballon out-of-shape behind the ball milling; Particle is maximum is about 400nm; Little can arrive about 200nm, and this has guaranteed the compactness after its film forming.
Description of drawings
Fig. 1 is the TEM collection of illustrative plates of glass microballon after the modification that obtains;
Fig. 2 is the high power TEM collection of illustrative plates of glass microballon after the modification that obtains.
Embodiment
Below in conjunction with embodiment the present invention is done and to describe in further detail:
Embodiment 1
1) at first after the mixed that under 15-20 ℃ by titanium ion concentration is 2mol/L, leaves standstill clarification in 12 hours with 0.1mol titanyl sulfate and water; The ammoniacal liquor co-precipitation titration of filtering back and 1mol/L is to the 200ml deionized water; When the pH value equals till 7; The white precipitate that obtains, centrifuge washing is extremely with Ba (NO 3) 2Solution detects the SO less than remnants 4 2-Till the ion, under 60 ℃, press Ti then 4+: oxalic acid: the mol ratio of ydrogen peroxide 50 is to dissolve at 1: 5: 5, with ammoniacal liquor the pH value of this solution is adjusted to 7-8 then, leaves standstill after 12 hours and promptly obtains the TiO 2 sol presoma;
2) then the TiO 2 sol presoma is obtained the xanchromatic anatase titanic oxide sol in water heating kettle behind 90 ℃ of following hydrothermal treatment consists 20h;
3) be that the glass microballon of 350nm is according to 1g/ml and step 2 with median size at last) anatase titanic oxide sol mix; Wherein the specific refractory power of glass microballon is 1.8~2.6; Place agate jar then; Take out naturally cooling behind 250 ℃ of thermal treatment 2h behind the ball milling 24h, promptly obtain being suitable for the titania modified glass microballon that the dye sensitization solar battery scattering of light is used.
Embodiment 2
1) at first with the TiCl of 0.1mol 4NaHCO with the 1mol/L of 400ml 3The white precipitate that obtains in the co-precipitation titration 100ml deionized water, centrifuge washing 3 times under 50 ℃, is pressed Ti then 4+:, Hydrocerol A: the mol ratio of ydrogen peroxide 50 is to dissolve at 1: 5: 6, with ammoniacal liquor the pH value of this solution is adjusted to 7-8 then, leaves standstill after 12 hours and promptly obtains the TiO 2 sol presoma;
2) then the TiO 2 sol presoma is obtained the xanchromatic anatase titanic oxide sol in water heating kettle behind 250 ℃ of following hydrothermal treatment consists 4h;
3) be that the glass microballon of 350nm mixes with anatase titanic oxide sol according to 10g/ml with median size at last; Place agate jar then; Take out naturally cooling behind 250 ℃ of thermal treatment 2h behind the ball milling 24h, promptly obtain being suitable for the titania modified glass microballon that the dye sensitization solar battery scattering of light is used.
Embodiment 3
1) white precipitate that at first obtains in the NaOH co-precipitation titration 200ml deionized water with the lmol/L of the titanium sulfate of 0.1mol and 400ml, centrifuge washing 3 times under 80 ℃, is pressed Ti then 4+:, tartrate: the mol ratio of ydrogen peroxide 50 is to dissolve at 1: 10: 10, with ammoniacal liquor the pH value of this solution is adjusted to 7-8 then, leaves standstill after 12 hours and promptly obtains the TiO 2 sol presoma;
2) then the TiO 2 sol presoma is obtained the xanchromatic anatase titanic oxide sol in water heating kettle behind 160 ℃ of following hydrothermal treatment consists 6h;
3) at last the glass microballon of particle diameter between 300~700nm mixed with anatase titanic oxide sol according to 5g/ml; Place agate jar then; Take out naturally cooling behind 250 ℃ of thermal treatment 2h behind the ball milling 24h, promptly obtain being suitable for the titania modified glass microballon that the dye sensitization solar battery scattering of light is used.
Embodiment 4:
1) at first with the titanium sulfate of 0.1mol and the NH of 200ml 4HCO 3The white precipitate that obtains in the shallow lake titration 100ml deionized water; Centrifuge washing 3 times; Then under 50 ℃; By Ti4+:, phenylformic acid: the mol ratio of ydrogen peroxide 50 is to dissolve at 1: 5: 6, with ammoniacal liquor the pH value of this solution is adjusted to 7-8 then, leaves standstill after 12 hours and promptly obtains the TiO 2 sol presoma;
2) then the TiO 2 sol presoma is obtained the xanchromatic anatase titanic oxide sol in water heating kettle behind 70 ℃ of following hydrothermal treatment consists 24h;
3) at last the glass microballon of particle diameter between 300~700nm mixed with anatase titanic oxide sol according to 7g/ml; Place agate jar then; Take out naturally cooling behind 250 ℃ of thermal treatment 2h behind the ball milling 24h, promptly obtain being suitable for the titania modified glass microballon that the dye sensitization solar battery scattering of light is used.
Embodiment 5:
1) white precipitate that at first obtains in the KOH shallow lake titration 100ml deionized water with the titanyl sulfate of 0.1mol and 200ml, centrifuge washing 3 times under 50 ℃, is pressed Ti then 4+:, hexanodioic acid: the mol ratio of ydrogen peroxide 50 is to dissolve at 1: 2: 2, with ammoniacal liquor the pH value of this solution is adjusted to 7-8 then, leaves standstill after 12 hours and promptly obtains the TiO 2 sol presoma;
2) then the TiO 2 sol presoma is obtained the xanchromatic anatase titanic oxide sol in water heating kettle behind 120 ℃ of following hydrothermal treatment consists 8h;
3) will sieve at last the back particle diameter between 300~700nm glass microballon mix with anatase titanic oxide sol according to 4g/ml; Place agate jar then; Take out naturally cooling behind 250 ℃ of thermal treatment 2h behind the ball milling 24h, promptly obtain being suitable for the titania modified glass microballon that the dye sensitization solar battery scattering of light is used.
Embodiment 6:
1) white precipitate that at first obtains in KOH titration to the 100ml deionized water with the titanium tetrachloride of 0.1mol and 200ml, centrifuge washing 3 times under 50 ℃, is pressed Ti then 4+:, acetic acid: the mol ratio of ydrogen peroxide 50 is to dissolve at 1: 4: 6, with ammoniacal liquor the pH value of this solution is adjusted to 7-8 then, leaves standstill after 16 hours and promptly obtains the TiO 2 sol presoma;
2) then the TiO 2 sol presoma is obtained the xanchromatic anatase titanic oxide sol in water heating kettle behind 120 ℃ of following hydrothermal treatment consists 8h;
3) the back median size of will sieving at last is that the glass microballon of 350nm mixes with anatase titanic oxide sol according to 2g/ml; Place agate jar then; Take out naturally cooling behind 250 ℃ of thermal treatment 2h behind the ball milling 24h, promptly obtain being suitable for the titania modified glass microballon that the dye sensitization solar battery scattering of light is used.
Embodiment 7
1) with titanium source and the co-precipitation of basic hydrolysis liquid in water, reaction obtains white titanium hydroxide deposition, washing is deposited in the white titanium hydroxide that obtains under 30 ℃ then, presses Ti 4+: organic acid: the mol ratio of ydrogen peroxide 50 is to carry out peptization at 1: 5: 5, obtains the TiO 2 sol presoma behind the still aging 10h; Wherein titanyl sulfate is selected in the titanium source, and basic hydrolysis liquid is selected NaOH, and organic acid is selected oxalic acid;
2) the TiO 2 sol presoma that obtains is being obtained the xanchromatic anatase titanic oxide sol behind the hydrothermal treatment consists 24h under 100 ℃ of conditions;
3) will sieve the back particle diameter between the glass microballon of 300~700nm according to 5g/ml and step 2) anatase titanic oxide sol mix, wherein the specific refractory power of glass microballon is 1.8~2.6.Place agate jar then, take out naturally cooling behind 240 ℃ of thermal treatment 3h behind the ball milling 20h, promptly obtain being suitable for the titania modified glass microballon that the dye sensitization solar battery scattering of light is used.
Embodiment 8
1) with titanium source and the co-precipitation of basic hydrolysis liquid in water, reaction obtains white titanium hydroxide deposition, washing is deposited in the white titanium hydroxide that obtains under 30 ℃ then, presses Ti 4+: organic acid: the mol ratio of ydrogen peroxide 50 is to carry out peptization at 1: 5: 5, obtains the TiO 2 sol presoma behind the still aging 10h; Wherein titanyl sulfate is selected in the titanium source, and basic hydrolysis liquid is selected NaOH, and organic acid is selected oxalic acid;
2) the TiO 2 sol presoma that obtains is being obtained the xanchromatic anatase titanic oxide sol behind the hydrothermal treatment consists 24h under 100 ℃ of conditions;
3) will sieve the back particle diameter between the glass microballon of 300~700nm according to 5g/ml and step 2) anatase titanic oxide sol mix, wherein the specific refractory power of glass microballon is 1.8~2.6.Place agate jar then, take out naturally cooling behind 260 ℃ of thermal treatment 1h behind the ball milling 20h, promptly obtain being suitable for the titania modified glass microballon that the dye sensitization solar battery scattering of light is used.
The TEM collection of illustrative plates of glass microballon is as shown in Figure 1 after the modification that obtains of the present invention, and by seeing among the figure behind the ball milling that the microballon shape is not a rule very, particle is maximum is about 400nm, and little can arrive about 200nm, and this has also guaranteed the compactness after its film forming.Utilize after the modification that method of the present invention obtains the high power TEM collection of illustrative plates of glass microballon as shown in Figure 2, attach by the anatase phase titanium dioxide particle bag of the visible powder surface of figure by the well-crystallized.

Claims (3)

1. the preparation method of a modified glass microballon is characterized in that, may further comprise the steps:
1) with titanium source and the co-precipitation of basic hydrolysis liquid in water, reaction obtains white titanium hydroxide deposition, washing is deposited in the white titanium hydroxide that obtains under 30~80 ℃ then, presses Ti 4+: organic acid: the mol ratio of ydrogen peroxide 50 is 1: (2~10): peptization is carried out in (2~10), obtains the TiO 2 sol presoma behind still aging 10~16h;
2) the TiO 2 sol presoma that obtains is being obtained the xanchromatic anatase titanic oxide sol behind hydrothermal treatment consists 4~24h under 70~250 ℃ of conditions;
3) will sieve the back particle diameter between the glass microballon of 300~700nm according to 1~10g/ml and step 2) anatase titanic oxide sol mix; Place agate jar then; Take out naturally cooling behind 240~260 ℃ of thermal treatment 1~3h behind ball milling 20~24h, promptly obtain being suitable for the titania modified glass microballon that the dye sensitization solar battery scattering of light is used.
2. the preparation method of modified glass microballon according to claim 1 is characterized in that, in the step 1), described titanium source is one or more mixing in titanyl sulfate, titanium sulfate and the titanium tetrachloride; Described basic hydrolysis liquid is NaOH, KOH, NaHCO 3, ammoniacal liquor or NH 4HCO 3Described organic acid is oxalic acid, Hydrocerol A, tartrate, phenylformic acid, hexanodioic acid or acetic acid.
3. the preparation method of modified glass microballon according to claim 1 is characterized in that, in the step 3), the specific refractory power of said glass microballon is 1.8~2.6.
CN 201010294898 2010-09-28 2010-09-28 Method for preparing modified glass microspheres Expired - Fee Related CN102001835B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010294898 CN102001835B (en) 2010-09-28 2010-09-28 Method for preparing modified glass microspheres

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010294898 CN102001835B (en) 2010-09-28 2010-09-28 Method for preparing modified glass microspheres

Publications (2)

Publication Number Publication Date
CN102001835A CN102001835A (en) 2011-04-06
CN102001835B true CN102001835B (en) 2012-11-28

Family

ID=43809580

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010294898 Expired - Fee Related CN102001835B (en) 2010-09-28 2010-09-28 Method for preparing modified glass microspheres

Country Status (1)

Country Link
CN (1) CN102001835B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103915260B (en) * 2012-12-26 2018-07-20 凯惠科技发展(上海)有限公司 Flexible titanium radical dye sensitization solar battery module, production method and power supply
CN103566977B (en) * 2013-10-30 2015-09-30 西安工程大学 A kind of dye-sensitized nano ferric oxide coated hollow glass micropearl method
CN105914042B (en) * 2016-06-29 2018-11-09 深圳供电局有限公司 Electrical cabinet with temperature adjusting function
CN106128770B (en) * 2016-06-29 2018-09-25 泰州神威新材料科技有限公司 A kind of parking lot generating equipment based on solar energy equipment
CN106195884B (en) * 2016-06-29 2019-01-22 海盐金隆照明科技有限公司 A kind of solar illumination apparatus
CN106195885B (en) * 2016-06-29 2019-02-05 成都光无界科技股份有限公司 A kind of Solar lamp
CN105931850B (en) * 2016-06-29 2018-08-21 陕西华逸东方展览装饰设计工程有限公司 A kind of energy-saving luminous construction wall
CN106128771B (en) * 2016-06-29 2018-09-25 深圳市深大南方实业发展有限公司 It is a kind of based on the building lighting equipment for realizing continuous work round the clock

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101062800A (en) * 2007-04-19 2007-10-31 浙江大学 Photocatalysis sewage treatment equipment
CN201033747Y (en) * 2007-04-19 2008-03-12 浙江大学 Photocatalysis sewage treatment equipment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3896580B2 (en) * 1998-06-26 2007-03-22 日本電気硝子株式会社 Glass beads for retroreflector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101062800A (en) * 2007-04-19 2007-10-31 浙江大学 Photocatalysis sewage treatment equipment
CN201033747Y (en) * 2007-04-19 2008-03-12 浙江大学 Photocatalysis sewage treatment equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特开2000-7378A 2000.01.11

Also Published As

Publication number Publication date
CN102001835A (en) 2011-04-06

Similar Documents

Publication Publication Date Title
CN102001835B (en) Method for preparing modified glass microspheres
CN102086044B (en) Method for preparing hollow spherical stannic oxide nano powder
CN101891247A (en) Method for preparing anatase titanium dioxide sol used for solar batteries
CN105817253B (en) The preparation method of graphite phase carbon nitride nanometer sheet/Nano tube array of titanium dioxide catalysis material
CN101215001B (en) Method for preparing rutile-type titanium dioxide micro-sphere
CN104607178A (en) Preparation method of bismuth tungstate-titanium dioxide heterojunction composite photocatalysis material
CN105502286B (en) A kind of porous nano NiFe2O4Preparation method
CN101302036A (en) Preparation of doped titanium dioxide nano-tube
CN105664950B (en) A kind of porous nano ZnFe2O4Preparation method
CN103318956A (en) Titanium dioxide nanowire preparation method
CN105645459A (en) Surface modified urchin-shaped ZnO/TiO2 composite material and preparation method thereof
CN106362742A (en) Ag/ZnO nano-composite, preparation method thereof and application of composite
CN103880072A (en) Preparation method of pinecone-shaped TiO2 nanomaterial
CN104525233A (en) G-carbon nitride-titanium dioxide-silver nanosheet composite, biomimetic synthesis method and application thereof
CN107626331B (en) Mn (manganese)3O4/BiOCl heterojunction photocatalyst and preparation method thereof
CN102995120B (en) Nanometer TiO2 monocrystalline material, preparation method and application thereof
CN102730755B (en) Rodlike N-Ag codoped TiO2 and preparation method thereof
CN101696032B (en) Method for preparing chromium and nitrogen co-doping nano-titanium dioxide powders
CN103331155A (en) Visible light-sensitive semiconductor composite photocatalytic material and preparation method thereof
CN103877964A (en) Preparation method of heterojunction between perovskite-phase lead titanate monocrystal nanowire and anatase-phase titanium dioxide
CN104649319A (en) Method for preparing TiO2(B) nano-sponge
CN103011273B (en) Nano flaky spherical anatase titanium dioxide and preparation method thereof
CN105439197B (en) Preparation method of urchin-like rutile type nano titanium oxide
CN101973581B (en) Preparation method of titanium dioxide powder with big particle diameter
CN101948318B (en) Nanometer powder of titanium oxide coated by zinc oxide and preparation method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121128

Termination date: 20150928

EXPY Termination of patent right or utility model