CN101997429B - Global switching power supply and its serial-parallel DC power conversion circuit - Google Patents
Global switching power supply and its serial-parallel DC power conversion circuit Download PDFInfo
- Publication number
- CN101997429B CN101997429B CN2009101693567A CN200910169356A CN101997429B CN 101997429 B CN101997429 B CN 101997429B CN 2009101693567 A CN2009101693567 A CN 2009101693567A CN 200910169356 A CN200910169356 A CN 200910169356A CN 101997429 B CN101997429 B CN 101997429B
- Authority
- CN
- China
- Prior art keywords
- switch
- power supply
- circuit
- voltage
- power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Rectifiers (AREA)
- Dc-Dc Converters (AREA)
Abstract
Description
技术领域 technical field
本发明关于一种直流对直流电源转换电路,尤指一种串并式直流电源转换电路。The invention relates to a DC-to-DC power conversion circuit, in particular to a series-parallel DC power conversion circuit.
背景技术 Background technique
交换式电源供应器依据所使用交流电源而有不同种类,目前概可分为90V~130V低压段交流电源及185V~265V高压段交流电源。目前台湾使用220V或110V交流电源,因此交换式电源供应器产品即概包含有单交流电源用的交换式电源供应器,或全域型交换式电源供应器;其中又以全域型交换式电源供应器较为普及。There are different types of switching power supply according to the AC power used. At present, it can be divided into 90V~130V low-voltage AC power supply and 185V-265V high-voltage AC power supply. Currently Taiwan uses 220V or 110V AC power supply, so switching power supply products include switching power supply for single AC power supply, or global switching power supply; among them, global switching power supply more popular.
请参阅图8所示,为一既有全域型交流电源供应器的电路图,包含有一全波整流器50、一升压型功率因数校正电路51及一直流电源转换电路52。其中该全波整流器50将交流电源整流(AC IN)成直流弦波,再由呈升压电路架构的功率因数校正电路51的功率因数校正控制器511通过第一主动开关(S1)调整其电压及电流相位,以输出较佳功率因数的直流电源,并将直流弦波的电压提升至约400伏特高压直流电源(VBULK)。之后,再将此一高压直流电源(VBULK)输入至该直流电源转换电路52,由该直流电源转换电路52的脉宽调变控制器521依据其直流电压输出端(Vo)的电压变化,通过第二主动开关(S2)调变其变压器522一次侧的电流大小,维持稳定的直流电压输出(Vo)。Please refer to FIG. 8 , which is a circuit diagram of an existing global AC power supply, including a full-wave rectifier 50 , a step-up power factor correction circuit 51 and a DC power conversion circuit 52 . The full-wave rectifier 50 rectifies the AC power supply (AC IN) into a DC sine wave, and then the power factor correction controller 511 of the power factor correction circuit 51 with a boost circuit structure adjusts its voltage through the first active switch (S1). and current phase to output DC power with better power factor, and boost the voltage of the DC sine wave to about 400 volts of high-voltage DC power (V BULK ). Afterwards, the high voltage DC power supply (V BULK ) is input to the DC power conversion circuit 52, and the pulse width modulation controller 521 of the DC power conversion circuit 52 changes according to the voltage of its DC voltage output terminal (Vo), The current of the primary side of the transformer 522 is adjusted by the second active switch (S2) to maintain a stable DC voltage output (Vo).
由以上交换式电源供应器的电路架构可知,该全波整流器50会将220V或110V的交流源整流成电压大小不同的直流弦波,但一经输入至该升压型功率因数校正电路51后,均会升压至400V高压直流电源(VBULK),令后级的直流电源转换电路能够将400V高压直流电源降压并稳压至12V或5V后输出至负载;若采用降压型功率因数校正电路,则均会降压至80V,配合使不同匝数比变压器的直流电源转换电路,即能够将80V中高压直流电源降压并稳压至12V或5V后输出至负载。From the above circuit structure of the switching power supply, it can be seen that the full-wave rectifier 50 will rectify the 220V or 110V AC source into DC sine waves with different voltages, but once input to the step-up power factor correction circuit 51, Both will be boosted to 400V high-voltage DC power supply (V BULK ), so that the DC power conversion circuit of the subsequent stage can step down and stabilize the 400V high-voltage DC power supply to 12V or 5V before outputting to the load; if step-down power factor correction is used The circuit will step down to 80V, and cooperate with the DC power conversion circuit of the transformer with different turns ratio, that is, the 80V medium and high voltage DC power can be stepped down and stabilized to 12V or 5V, and then output to the load.
以整体电源转换效率来看,当220V的交流电源输入至上述交换式电源供应器,该升压型功率因数校正电路51的功率因数校正控制器511会输出脉宽调变信号至第一主动开关(S1),令蓄能电容(C1)输出一400V直流电源予后级的直流电源转换电路52,此时计算整体的电源转换效率约为96%;然而当110V的交流电源输入时,该功率因数校正电路51的功率因数校正控制器511会调高该脉宽调变信号的脉宽,使蓄能电容(C1)同样输出400V直流电源,然而由于第一主动开关(S1)的导通时间变长,该第一主动开关(S1)的导通阻抗即消耗更多的电能,而降低整体转换效率至94%。In terms of overall power conversion efficiency, when 220V AC power is input to the switching power supply, the power factor correction controller 511 of the step-up power factor correction circuit 51 will output a pulse width modulation signal to the first active switch (S1), so that the energy storage capacitor (C1) outputs a 400V DC power supply to the DC power conversion circuit 52 of the subsequent stage. At this time, the calculation of the overall power conversion efficiency is about 96%; yet when the 110V AC power input, the power The power factor correction controller 511 of the factor correction circuit 51 will increase the pulse width of the pulse width modulation signal, so that the energy storage capacitor (C1) also outputs 400V DC power, but due to the conduction time of the first active switch (S1) As the length becomes longer, the on-resistance of the first active switch ( S1 ) consumes more power, and reduces the overall conversion efficiency to 94%.
以降压型功率因数校正电路的功率因数校正控制器来说,当220V的交流电源输入至上述交换式电源供应器,该降压型功率因数校正电路必须控制第一主动开关(S1)将电压调降至80V,而降低整体转换效率至94%,由此可知,既有全域型交换式电源供应器虽可使用220V或110V的交流电源,但采用升压型功率因数校正电路而插接至110V交流电源时,或采用降压型功率因数校正电路而插接至220V交流电源时,整体电路转换效率不佳,故必须寻求更佳的电路设计。Taking the power factor correction controller of the step-down power factor correction circuit as an example, when 220V AC power is input to the above-mentioned switching power supply, the step-down power factor correction circuit must control the first active switch (S1) to adjust the voltage It can be seen that although the existing global switching power supply can use 220V or 110V AC power supply, it uses a step-up power factor correction circuit to plug in to 110V When using an AC power supply, or using a step-down power factor correction circuit to plug into a 220V AC power supply, the conversion efficiency of the overall circuit is not good, so a better circuit design must be sought.
发明内容 Contents of the invention
本发明的目的在于,解决现有全域型(Full Range)交换式电源供应器电源转换效率的技术问题。The purpose of the present invention is to solve the technical problem of the power conversion efficiency of the existing Full Range switching power supply.
欲达上述目的,本发明提供一种全域型交换式电源供应器,包含有:To achieve the above purpose, the present invention provides a global switching power supply, including:
一整流器,连接至一交流电源,以将交流电源转换为直流弦波电源;a rectifier connected to an AC power source to convert the AC power source into a DC sine wave power source;
一信号检知单元,检知目前输入交流电源电压大小,并输出一检知信号;A signal detection unit, which detects the current input AC power voltage and outputs a detection signal;
一功率因数校正电路,其输入端连接至该整流器输出端及信号检知单元的输出端,并依据目前输入交流电源电压大小,调整其输出第一直流电源的电压大小;及A power factor correction circuit, the input end of which is connected to the output end of the rectifier and the output end of the signal detection unit, and adjusts the output voltage of the first DC power supply according to the current input AC power voltage; and
一串并式直流电源转换电路,其输入端连接至该功率因数校正电路的输出端及信号检知单元,以接收第一直流电源,并将其转换为第二直流电源后输出;其中该串并式直流电源转换电路依据第一直流电源及第二直流电源电压比调整其变压器一次侧线圈及二次侧线圈的匝数比,令变压器匝数比与第一直流电源及第二直流电源电压比成正比。A series-parallel DC power conversion circuit, the input end of which is connected to the output end of the power factor correction circuit and the signal detection unit, so as to receive the first DC power supply and convert it into a second DC power supply for output; wherein the The series-parallel DC power conversion circuit adjusts the turns ratio of the primary side coil and the secondary side coil of the transformer according to the voltage ratio of the first DC power supply and the second DC power supply, so that the turns ratio of the transformer is the same as that of the first DC power supply and the second DC power supply. proportional to the DC supply voltage ratio.
欲达上述目的,本发明还提供一种串并式直流电源转换电路,包含有:To achieve the above purpose, the present invention also provides a series-parallel DC power conversion circuit, including:
一变压器,包含有中间抽头的一次侧线圈及一二次侧线圈;A transformer including a center-tapped primary coil and a secondary coil;
一全桥开关电路,供连接至功率因数校正电路的输出端,并包含有二并联的第一及第二开关组,各主动开关组包含有二串接的一上臂主动开关及一下臂主动开关,又该第一及第二开关组的串联节点与变压器一次侧线圈二端连接;A full-bridge switch circuit for connecting to the output terminal of the power factor correction circuit, and includes two parallel first and second switch groups, and each active switch group includes two series-connected upper arm active switches and lower arm active switches , and the series nodes of the first and second switch groups are connected to the two terminals of the primary side coil of the transformer;
一切换开关,连接于变压器一次侧线圈中间抽头与接地端之间;及a changeover switch connected between the center tap of the primary coil of the transformer and the ground terminal; and
一脉宽调变控制器,连接至第一及第二开关组的二上臂主动开关及二下臂主动开关与切换开关的控制端;该脉宽调变控制器依据一前级功率因数校正电路的输出电压大小,进行一匝数调整程序,即藉由控制全桥开关电路的主动开关及切换开关的启闭状态,调整匹配的该输出电压的变压器匝数比,之后再进行直流转换程序。A pulse width modulation controller, connected to the control terminals of the two upper arm active switches and the two lower arm active switches and the switching switch of the first and second switch groups; the pulse width modulation controller is based on a pre-stage power factor correction circuit According to the size of the output voltage, a turn adjustment procedure is carried out, that is, by controlling the active switch and the on-off state of the switch of the full-bridge switching circuit, the turn ratio of the transformer matching the output voltage is adjusted, and then the DC conversion procedure is performed.
上述本发明串并式直流电源转换电路连接至前级功率因数校正电路的输出端,又该脉宽调变控制器可依据交流电源电压大小或该前级功率因数校正电路的输出电压大小,控制全桥开关电路的主动开关及切换开关的启闭状态,调整匹配的该输出电压的匝数比后,再选择适当的主动开关进行直流电源转换程序;意即,以升压型功率因数校正电路来说,当使用220V高压段交流电源电压而输出约400V高压直流电源至全桥开关电路时,即控制变压器一次侧线圈及二次侧线圈的匝数比与高压直流电源及低压直流电源电压比成正比;反之,当使用110V低压段交流电源电压而输出约200V高压直流电源至全桥开关电路时,则必须调降变压器的匝数比,使得变压器匝数比与高压直流电源及低压直流电源电压比成正比;如此一来,本发明直流对直流电源转换电路不论配合使用何种交流电源,均能输出稳定且固定低压直流电源电压。The above-mentioned series-parallel DC power conversion circuit of the present invention is connected to the output terminal of the pre-stage power factor correction circuit, and the pulse width modulation controller can control the The active switch of the full-bridge switching circuit and the on-off state of the toggle switch, after adjusting the matching turns ratio of the output voltage, then select the appropriate active switch to perform the DC power conversion procedure; that is, the step-up power factor correction circuit For example, when using 220V high-voltage section AC power supply voltage to output about 400V high-voltage DC power supply to the full-bridge switching circuit, that is, the ratio of the number of turns of the primary side coil and the secondary side coil of the control transformer to the voltage ratio of the high-voltage DC power supply and the low-voltage DC power supply On the contrary, when using 110V low-voltage AC power supply voltage and outputting about 200V high-voltage DC power supply to the full-bridge switching circuit, the turns ratio of the transformer must be lowered so that the transformer turns ratio is the same as that of the high-voltage DC power supply and the low-voltage DC power supply. The voltage ratio is proportional; in this way, the DC-to-DC power conversion circuit of the present invention can output a stable and fixed low-voltage DC power voltage no matter what kind of AC power is used in conjunction with it.
本发明的有益效果在于,提供一种新的全域型交换式电源供应器及其串并式直流电源转换电路,其中该串并式直流电源转换电路可依据前级功率因数校正电路输出不同电压的直流电源,改变其变压器匝数比,提高使用本发明的全域型交换式电源供应器的电源转换效率。因此,本发明直流对直流电源转换电路能相容于输出不同电压直流电源的前级功率因数校正电路使用,令全域型交换式电源供应器具有更佳的电源转换效率。The beneficial effect of the present invention is to provide a new global switching power supply and its serial-parallel DC power conversion circuit, wherein the serial-parallel DC power conversion circuit can output different voltages according to the previous power factor correction circuit For the DC power supply, the turns ratio of the transformer is changed to improve the power conversion efficiency of the global switching power supply of the present invention. Therefore, the DC-to-DC power conversion circuit of the present invention can be compatible with previous power factor correction circuits that output DC power with different voltages, so that the global switching power supply has better power conversion efficiency.
附图说明 Description of drawings
图1为本发明全域型交换式电源供应器的电路方块图。FIG. 1 is a circuit block diagram of the global switching power supply of the present invention.
图2为本发明第一较佳实施例使用的信号检知单元的详细电路图。Fig. 2 is a detailed circuit diagram of the signal detection unit used in the first preferred embodiment of the present invention.
图3为本发明全域型交换式电源供应器的第一较佳实施例的详细电路图。FIG. 3 is a detailed circuit diagram of the first preferred embodiment of the global switching power supply of the present invention.
图4A为图3用于高压段交流电源的电路动作图。FIG. 4A is a circuit action diagram of FIG. 3 for the AC power supply in the high-voltage section.
图4B为图3用于低压段交流电源的电路动作图。FIG. 4B is a circuit action diagram of FIG. 3 for the AC power supply in the low-voltage section.
图5为本发明全域型交换式电源供应器的第二较佳实施例的详细电路图。FIG. 5 is a detailed circuit diagram of the second preferred embodiment of the global switching power supply of the present invention.
图6为本发明第二较佳实施例使用的信号检知单元的详细电路图。FIG. 6 is a detailed circuit diagram of the signal detection unit used in the second preferred embodiment of the present invention.
图7A为图5用于高压段交流电源的电路动作图。FIG. 7A is a circuit action diagram of FIG. 5 for the AC power supply in the high-voltage section.
图7B为图5用于低压段交流电源的电路动作图。FIG. 7B is a circuit action diagram of FIG. 5 for the AC power supply in the low-voltage section.
图8为既有全域型交换式电源供应器的详细电路图。FIG. 8 is a detailed circuit diagram of an existing global switching power supply.
附图标记说明:Explanation of reference signs:
10-直流电源转换电路;11,11’-变压器;111,111’-一次侧线圈;111a,111a’-线圈;111b,11b’-线圈;112,112’-二次侧线圈;12-全桥开关电路;121-第一开关组;20,20a-功率因数校正电路;30-整流器;40-信号检知单元;41-比较器;50-全波整流器;51-功率因数校正电路;511-功率因数校正控制器;52-直流电源转换电路;521-脉宽调变控制器;522-变压器。10-DC power conversion circuit; 11, 11'-transformer; 111,111'-primary side coil; 111a, 111a'-coil; 111b, 11b'-coil; 112,112'-secondary side coil; 12-full Bridge switch circuit; 121-first switch group; 20, 20a-power factor correction circuit; 30-rectifier; 40-signal detection unit; 41-comparator; 50-full wave rectifier; 51-power factor correction circuit; 511 -Power factor correction controller; 52-DC power conversion circuit; 521-Pulse width modulation controller; 522-Transformer.
具体实施方式 Detailed ways
首先请参阅图1及图3所示,为一种本发明全域型交换式电源供应器,其包含有:First, please refer to Figure 1 and Figure 3, which is a global switching power supply of the present invention, which includes:
一整流器30,可共同连接至一交流电源,以将交流电源转换为直流弦波电源;a
一信号检知单元40,检知目前输入交流电源电压大小,并输出一检知信号;A
一功率因数校正电路20,其输入端连接至该整流器30输出端及信号检知单元40的输出端,依据目前输入交流电源电压大小,调整其输出第一直流电源(VBULK)的电压大小;于本实施例中,采用升压型功率因数校正电路;及A power
一串并式直流电源转换电路10,其输入端连接至该功率因数校正电路20的输出端及信号检知单元40,以接收第一直流电源(VBULK),并将其转换为第二直流电源(Vout)后输出;其中该串并式直流电源转换电路10依据第一直流电源(VBULK)及第二直流电源(Vout)电压比调整其变压器11一次侧线圈111及二次侧线圈112的匝数比,令变压器11匝数比与第一直流电源(VBULK)及第二直流电源(Vout)电压比成正比。A series-parallel DC
请配合参阅图2所示,为上述信号检知单元40的一较佳实施例的详细电路图,其包含有:Please refer to FIG. 2, which is a detailed circuit diagram of a preferred embodiment of the above-mentioned
一低通滤波器(R1,R2,C2),连接至该整流器10的输出端,以将直流弦波进一步滤波成一直流准位;a low-pass filter (R1, R2, C2), connected to the output terminal of the
一比较器41,其一输入端连接至低通滤波器(R1,R2,C2),另一输入端则连接一第一参考电压(Vref1),一经比对后即输出高低电位直流信号;A
一电子开关(Q),其控制端连接至该比较器41的输出端,又该电子开关(Q)串接一电阻(R13);及An electronic switch (Q), the control terminal of which is connected to the output terminal of the
一分压器,由二电阻(R11,R12)串接组成,其中下电阻(R12)与串接的电子开关(Q)及电阻(R13)并联,又该分压器的串联节点连接至对应功率因数校正电路20。A voltage divider is composed of two resistors (R11, R12) connected in series, wherein the lower resistor (R12) is connected in parallel with the electronic switch (Q) and resistor (R13) connected in series, and the series node of the voltage divider is connected to the corresponding power
再请配合参阅图3所示,为采用升压型功率因数校正电路20的交换式电源供应器的详细电路图,其包含有:Please also refer to FIG. 3, which is a detailed circuit diagram of a switching power supply using a step-up power
一储能电感(L),其一端连接至该全波整流器20的输出端;An energy storage inductor (L), one end of which is connected to the output end of the full-
一蓄能电容(Cbulk),连接于该储能电感(L)另一端与接地端之间,输出第一直流电源(VBULK)予该串并式直流电源转换电路10;An energy storage capacitor (C bulk ), connected between the other end of the energy storage inductor (L) and the ground end, outputs a first DC power supply (V BULK ) to the series-parallel DC
一电子开关(Q5),连接于该储能电感(L)与蓄能电容(Cbulk)节点与接地之间;及an electronic switch (Q5) connected between the nodes of the energy storage inductor (L) and energy storage capacitor (C bulk ) and ground; and
一控制器(M1),其输出端连接至该电子开关(Q5)的控制端及对应的信号检知单元40的输出端,依据信号检知单元40调整对电子开关(Q5)控制端输出一脉宽调变信号,该控制器(M1)至少包含有一误差放大器(M11)、一第二参考电压端(Vref2)及一开关驱动单元(M12),其中该误差放大器(M11)一输入端连接至该参考电压端(Vref2),而另一输入端则连接至对应信号检知单元40的分压器(R11,R12)串联接点。A controller (M1), whose output terminal is connected to the control terminal of the electronic switch (Q5) and the output terminal of the corresponding
以下谨进一步说明上述升压型功率因数校正电路20的电路动作:The following will further illustrate the circuit action of the above-mentioned step-up power factor correction circuit 20:
当目前连接220V高压段交流电源,则该信号检知单元40的比较器41会输出一高电位以驱动该电子开关(Q)导通,令电阻(R13)与分压器的下电阻(R12)并联,因此上述控制器(M1)内的误差放大器(M11)与分压器(R11,R12)连接的电压准位即会下降,进而改变该开关驱动单元(M12)所输出予电子开关(Q)的脉宽调变信号,令各蓄能电容(Cbulk)上输出约400V第一直流电源(VBULK)。When the 220V high-voltage AC power supply is currently connected, the
当目前连接110V低压段交流电源时,则该信号检知单元40的比较器41会输出一低电位,而使得电子开关(Q)不再导通,因此电阻(R13)不再与分压器(R11,R12)的下电阻(R12)并联;此时,上述控制器(M1)内的误差放大器(M11)与分压器(R11,R12)连接的电压准位即会上升,进而改变该开关驱动单元(M12)所输出予电子动开关(Q)的脉宽调变信号,而于各蓄能电容(Cbulk)上输出约200V第一直流电源(VBULK)。When the 110V low-voltage segment AC power supply is connected at present, the
因此,本发明交换式电源供应器的功率因数校正电路20确实依据使用的交流电源电压不同,而输出不同电压大小的第一直流电源(VBULK)予后级的串并式直流电源转换电路10。Therefore, the power
至于本发明的串并式直流电源转换电路10进一步包含有:As for the serial-parallel DC
一变压器11,包含有中间抽头的一次侧线圈111及一二次侧线圈112,该一次侧线圈111包含有二线圈111a,111b;其中该二次侧线圈112通过一整流滤波电路(D1~D4,Cout)输出第二直流电源(Vout);A
一全桥开关电路12,包含有二并联的第一及第二开关组121,122,各第一及第二主动开关组121,122包含有二相串接的一上臂主动开关(Q1)(Q3)及一下臂主动开关(Q2)(Q4),又该第一及第二开关组121,122的串联节点与变压器11一次侧线圈111二端连接;其中各主动开关(Q1~Q4)可为MOSFET或IGBT,于本实施例中采用MOSFET,各MOSFET的栅极为其控制端;A full-
一切换开关(SW),连接于该变压器11一次侧线圈111中间抽头与接地端之间;于本实施例中该切换开关(SW)为一继电器;及A switch (SW), connected between the intermediate tap of the
一脉宽调变控制器13,连接至第一及第二开关组121,122的二上臂主动开关(Q1)(Q3)及二下臂主动开关(Q2)(Q4)与切换开关(SW)的控制端,又该脉宽调变控制器13的一输入端连接至该信号检知单元40中分压器(R11,R12)的串联接点,或连接至该信号检知单元40中低通滤波器(R1,R2,C2);其中该脉宽调变控制器13依据该信号检知单元40输出的检知信号判断前级功率因数校正电路20的输出电压大小,并进行一匝数调整程序,即藉由控制全桥开关电路12的主动开关(Q1~Q4)及切换开关(SW)的启闭状态,调整匹配的该第一直流电源(Vout)电压的变压器11一次侧线圈111及二次侧线圈112匝数比,之后再进行直流转换程序,即选择适当的主动开关(Q1~Q4)输出脉宽调变信号,将输入的第一直流电源(VBULK)藉由适当匝数比的变压器11转换出稳定且固定电压的第二直流电源(Vout)。A pulse
以下谨进一步说明上述脉宽调变控制器13依据前级功率因数校正电路20的输出电压大小,调整直流对直流电源转换电路13的变压器11一次侧线圈111及二次侧线圈112匝数比的等效电路图。The following will further explain how the above-mentioned pulse
首先请配合参阅图4A所示,令前级功率因数校正电路20为一升压电路,且于使用高压段交流电源时会于输出电容(Cbulk)输出一第一高压直流电源(VBULK)。以使用220V交流电源来说,该升压型功率因数校正电路20输出约400V的第一高压直流电源(VBULK),因此本发明的脉宽调变控制器13必须控制变压器11一次侧线圈111维持最大匝数(Na),即控制第二开关组122的上臂主动开关(Q3)呈关闭状态,而下臂主动开关(Q4)呈导通状态,并同时控制该切换开关(SW)为常开断路状态,令变压器11一次侧线圈111构成单一线圈,且其两端分别连接至第一开关组121串联节点及接地端之间,令其一次侧线圈111及二次侧线圈112匝数比(Na∶Nb)匹配前级升压型功率因数校正电路20输出约400V的第一高压直流电源(VBULK)。此时,该脉宽调变控制器13再输出二组脉宽宽度为50%的脉宽调变信号(PWM1,PWM2)予第一开关组121的上下臂主动开关控制端(G1)(G2),以交替启闭第一开关组121的上下臂主动开关(Q1)(Q2),由于一次侧线圈111二端进一步串接有电感电容(Cr1,Lr1)(Cr2,Lr2),因此于第一开关组121的上臂或下臂主动开关(Q1)(Q2)导通时,一次侧线圈111可与二组串接的电感电容(Cr1,Lr1)(Cr2,Lr2)构成一共振槽电路(Resonance Tank),令变压器11二次侧线圈112输出稳定且固定的第二直流电源(Vout)。First, please refer to FIG. 4A , the pre-stage power
请配合参阅图4B所示,当上述升压型功率因数校正电路(20)使用低压段(如110V)交流电源,其输出电容(Cbulk)则输出约200V的第一中压直流电源(VBULK),此时本发明的脉宽调变控制器13控制该切换开关(SW)为常闭短路状态,再输出二组反相的50%脉宽调变信号予二上臂主动开关(Q1)(Q3),以及二下臂主动(Q2)(Q4)开关,意即二上臂主动开关(Q1)(Q3)为一组同步开关组,而二下臂主动开关(Q2)(Q4)为另一同步开关组。如此,该变压器一次侧线圈111的中间接头会接地而独立成二个通过二上臂主动开关(Q1)(Q3)或二下臂主动开关(Q2)(Q4)呈并联的线圈(111a)(111b),以降低变压器11的一次侧线圈111与二次侧线圈112的匝数比(Na/2∶Nb),由于一次侧线圈111二端进一步串接有电感电容(Cr1,Lr1)(Cr2,Lr2),因此当二上臂主动开关(Q1)(Q3)同时导通时二并联线圈111a,111b会与电感电容(Cr1,Lr1)(Cr2,Lr2)构成共振槽电路,同理当二下臂主动开关(Q2)(Q4)同时导通时二并联线圈111a,111b会与电感电容(Cr1,Lr1)(Cr2,Lr2)构成共振槽电路,令变压器11匝数比与第一中压直流电源(VBULK)及第二直流电源电压(Vout)比成正比。Please refer to FIG. 4B , when the above-mentioned step-up power factor correction circuit (20) uses a low-voltage segment (such as 110V) AC power supply, its output capacitor (C bulk ) outputs a first medium-voltage DC power supply (V BULK ), at this time the pulse
由上述说明可知,该脉宽调变控制器13应用于升压功率因数校正电路20时,其调整匝数程序的控制逻辑如下表所示:From the above description, it can be seen that when the
请参阅图5及图6所示,本发明电源供应器采用降压型功率因数校正电路20a的另一较佳实施例,其中该降压型功率因数校正电路20a包含有:Please refer to FIG. 5 and FIG. 6, the power supply of the present invention adopts another preferred embodiment of a step-down power
一电子开关(Q5),其一端与该整流器30的输出端连接;An electronic switch (Q5), one end of which is connected to the output end of the
一储能电感(L),其一端连接至该电子开关(Q5)的另一端;An energy storage inductor (L), one end of which is connected to the other end of the electronic switch (Q5);
一二极管(D),其阴极连接至该电子开关(Q5)与储能电感(L)串联节点,其阳极则连接至接地端;A diode (D), the cathode of which is connected to the series node of the electronic switch (Q5) and the energy storage inductance (L), and the anode of which is connected to the ground terminal;
一蓄能电容(Cbulk),连接于该储能电感(L1)另一端与接地端之间,输出第一直流电源(VBULK)予该串并式直流电源转换电路10;an energy storage capacitor (C bulk ), connected between the other end of the energy storage inductor (L1) and the ground end, and outputs a first DC power supply (V BULK ) to the series-parallel DC
一控制器(M1’),其输出端连接至该电子开关(Q5)的控制端及对应的信号检知单元40的输出端,依据信号检知单元40调整对电子开关(Q5)控制端输出一脉宽调变信号,又该控制器(M1’)至少包含有一误差放大器(M11)、一第二参考电压端(Vref2)及一开关驱动单元(M12),其中该误差放大器(M11)一输入端连接至该参考电压端(Vref2),而另一输入端则连接至对应信号检知单元40的分压器串联接点。A controller (M1'), whose output terminal is connected to the control terminal of the electronic switch (Q5) and the output terminal of the corresponding
以下谨进一步说明上述降压型功率因数校正电路的电路动作:The circuit action of the above step-down power factor correction circuit will be further described below:
当目前连接220V高压段交流电源,则该信号检知单元40的比较器41会输出一高电位以驱动该电子开关(Q)导通,令电阻(R13)与分压器的下电阻(R12)并联,因此上述控制器(M1’)内的误差放大器(M11)与分压器(R11,R12)连接的电压准位即会下降,进而改变该开关驱动单元(M12)所输出予电子开关(Q)的脉宽调变信号,令各蓄能电容(Cbulk)上输出约160V第二高压直流电源(VBULK)。When the 220V high-voltage AC power supply is currently connected, the
当目前连接110V低压段交流电源时,则该信号检知单元40的比较器41会输出一低电位,而使得电子开关(Q)不再导通,因此电阻(R13)不再与分压器(R11,R12)的下电阻(R12)并联;此时,上述控制器(M1’)内的误差放大器(M11)与分压器(R11,R12)连接的电压准位即会上升,进而改变该开关驱动单元(M12)所输出予电子动开关(Q)的脉宽调变信号,而于各蓄能电容(Cbulk)上输出约80V第二中压直流电源(VBULK)。When the 110V low-voltage segment AC power supply is connected at present, the
因此,本发明交换式电源供应器的降压型功率因数校正电路20a确实依据使用的交流电源电压不同,而输出不同电压大小的第一直流电源予后级的串并式直流电源转换电路。Therefore, the step-down power
请配合参阅图7A所示,进一步说明采用降压型前级功率因数校正电路的串并式直流对直流电源电路10的电路动作:Please refer to FIG. 7A to further explain the circuit action of the series-parallel DC-to-DC
当该降压型功率因数校正电路20a使用220V交流电源时,会输出一约160V第二高压直流电源(VBULK),因此本发明的脉宽调变控制器13必须控制变压器11’一次侧线圈111’维持最大匝数(Nc),即控制第二开关组122的上臂主动开关(Q3)呈关闭状态,而下臂主动开关(Q4)呈导通状态,并同时控制该切换开关(SW)为常开断路状态,令变压器11’一次侧线圈111’构成单一线圈,且其两端分别连接至第一开关组121’串联节点及接地端之间,令其匝数比(Nc∶Nd)匹配前级降压型功率因数校正电路20输出约160V的第二高压直流电源(VBULK)。此时,该脉宽调变控制器13再输出二组脉宽宽度为50%的脉宽调变信号予第一开关组121’的上下臂主动开关控制端(G1)(G2),以交替启闭第一开关组121的上下臂主动开关(Q1)(Q2),由于一次侧线圈111’二端进一步串接有电感电容(Cr1,Lr1)(Cr2,Lr2),因此于第一开关组121的上臂或下臂主动开关(Q1)(Q2)导通时,一次侧线圈111可与二组串接的电感电容(Cr1,Lr1)(Cr2,Lr2)构成一共振槽电路(Resonance Tank),令变压器11’二次侧线圈121’输出稳定且固定的第二直流电源(Vout)。When the step-down power
请配合参阅图7B所示,当上述降压型功率因数校正电路使用110V低压段交流电源,其输出电容(CBULK)则输出约80V的第二中压直流电源(VBULK),此时本发明的脉宽调变控制器13控制该切换开关(SW)为常闭短路状态,再输出二组反相的50%脉宽调变信号予二上臂主动开关(Q1)(Q3),以及二下臂主动开关(Q2)(Q4),意即二上臂主动开关(Q1)(Q3)为一组同步开关组,而二下臂主动开关(Q2)(Q4)为另一同步开关组。如此,该变压器11’一次侧线圈111’的中间接头会接地而独立成二个通过二上臂主动开关(Q1)(Q3)或二下臂主动开关(Q2)(Q4)呈并联的线圈111a’,111b’,以降低变压器11’的一次侧线圈111’与二次侧线圈112’的匝数比(Nc/2∶Nd)即降低,由于一次侧线圈二端进一步串接有电感电容(Cr1,Lr1)(Cr2,Lr2),因此当二上臂主动开关(Q1)(Q3)同时导通时二并联线圈会与电感电容(Cr1,Lr1)(Cr2,Lr2)构成共振槽电路,同理当二下臂主动开关(Q2)(Q4)同时导通时二并联线圈111a’,111b’会与电感电容(Cr1,Lr1)(Cr2,Lr2)构成共振槽电路,令变压器11’一次侧线圈111’与二次侧线圈112’匝数比与第二中压直流电源(VBULK)及第二直流电源(Vout)电压比成正比。Please refer to Figure 7B. When the step-down power factor correction circuit uses a 110V low-voltage AC power supply, its output capacitor (C BULK ) outputs a second medium-voltage DC power supply (V BULK ) of about 80V. The inventive pulse
由上述说明可知,该脉宽调变控制器13应用于降压功率因数校正电路20a时,其调整匝数程序的控制逻辑如下表所示:From the above description, it can be seen that when the
由上述所举的二个实施例可知,本发明能依据前级功率因数校正电路输出直流电源大小,调整匹配该直流电源与低压直流电源比例的变压器匝数比,使得本发明应用于全域型交换式电源供应器,可配合不同高压段或低压段交流电源的使用,主动调整合适的变压器匝数比,有效提高交换式电源供应器的整体电源转换效率。It can be known from the above two embodiments that the present invention can adjust the transformer turns ratio matching the ratio of the DC power supply to the low-voltage DC power supply according to the size of the output DC power supply of the pre-stage power factor correction circuit, so that the present invention can be applied to global switching The switching power supply can cooperate with the use of different high-voltage or low-voltage AC power supplies, actively adjust the appropriate transformer turns ratio, and effectively improve the overall power conversion efficiency of the switching power supply.
以上对本发明的描述是说明性的,而非限制性的,本专业技术人员理解,在权利要求限定的精神与范围之内可对其进行许多修改、变化或等效,但是它们都将落入本发明的保护范围内。The above description of the present invention is illustrative rather than restrictive. Those skilled in the art understand that many modifications, changes or equivalents can be made to it within the spirit and scope of the claims, but they will all fall into Within the protection scope of the present invention.
Claims (14)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW098112442A TWI382640B (en) | 2009-04-15 | 2009-04-15 | Global switched power supply and its serial - to - parallel DC - to - DC power conversion circuit |
CN2009101693567A CN101997429B (en) | 2009-04-15 | 2009-08-25 | Global switching power supply and its serial-parallel DC power conversion circuit |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW098112442A TWI382640B (en) | 2009-04-15 | 2009-04-15 | Global switched power supply and its serial - to - parallel DC - to - DC power conversion circuit |
CN2009101693567A CN101997429B (en) | 2009-04-15 | 2009-08-25 | Global switching power supply and its serial-parallel DC power conversion circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101997429A CN101997429A (en) | 2011-03-30 |
CN101997429B true CN101997429B (en) | 2012-11-14 |
Family
ID=50156487
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009101693567A Expired - Fee Related CN101997429B (en) | 2009-04-15 | 2009-08-25 | Global switching power supply and its serial-parallel DC power conversion circuit |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN101997429B (en) |
TW (1) | TWI382640B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI437410B (en) | 2011-09-30 | 2014-05-11 | Ind Tech Res Inst | Buck power factor correcting systems |
TW201427259A (en) * | 2012-12-19 | 2014-07-01 | Chyng Hong Electronic Co Ltd | Power circuit of AC power supply |
CN105811775B (en) * | 2016-03-10 | 2018-04-17 | 盐城工学院 | A kind of and tandem compound isolated converter transformer voltage ratio design method |
CN106329938B (en) * | 2016-09-12 | 2019-10-18 | Oppo广东移动通信有限公司 | Switching power supply and control method thereof |
CN109039111A (en) * | 2018-07-16 | 2018-12-18 | 深圳市安健科技股份有限公司 | A kind of boost rectifying circuit |
CN113394972A (en) * | 2020-03-12 | 2021-09-14 | Oppo广东移动通信有限公司 | Power supply conversion circuit |
CN116614004B (en) * | 2023-07-21 | 2024-01-16 | 深圳平创半导体有限公司 | Winding switching method and device applied to LLC high-frequency transformer |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1149352A (en) * | 1994-05-27 | 1997-05-07 | 井本成勋 | Electric adjuster |
CN1192281A (en) * | 1995-08-01 | 1998-09-02 | 埃内科有限公司 | Method and device for continuous adjustment and regulation of a transformer turns ratio, and transformer provided with such a device |
US6433321B1 (en) * | 2001-03-12 | 2002-08-13 | Samsung Electronics, Co. Ltd. | Microwave oven with high-power output switching means |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5483436A (en) * | 1993-08-30 | 1996-01-09 | General Electric Company | Gate drive power supply operable from a source of unregulated DC electric power |
US6246599B1 (en) * | 2000-08-25 | 2001-06-12 | Delta Electronics, Inc. | Constant frequency resonant inverters with a pair of resonant inductors |
US6583999B1 (en) * | 2002-01-25 | 2003-06-24 | Appletec Ltd. | Low output voltage, high current, half-bridge, series-resonant, multiphase, DC-DC power supply |
DE10218456A1 (en) * | 2002-04-25 | 2003-11-06 | Abb Patent Gmbh | Switching power supply arrangement |
US6970366B2 (en) * | 2003-04-03 | 2005-11-29 | Power-One As | Phase-shifted resonant converter having reduced output ripple |
-
2009
- 2009-04-15 TW TW098112442A patent/TWI382640B/en not_active IP Right Cessation
- 2009-08-25 CN CN2009101693567A patent/CN101997429B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1149352A (en) * | 1994-05-27 | 1997-05-07 | 井本成勋 | Electric adjuster |
CN1192281A (en) * | 1995-08-01 | 1998-09-02 | 埃内科有限公司 | Method and device for continuous adjustment and regulation of a transformer turns ratio, and transformer provided with such a device |
US6433321B1 (en) * | 2001-03-12 | 2002-08-13 | Samsung Electronics, Co. Ltd. | Microwave oven with high-power output switching means |
Non-Patent Citations (2)
Title |
---|
JP特开平11-262258A 1999.09.24 |
JP特开平9-281148A 1997.10.31 |
Also Published As
Publication number | Publication date |
---|---|
TW201037952A (en) | 2010-10-16 |
CN101997429A (en) | 2011-03-30 |
TWI382640B (en) | 2013-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10581334B2 (en) | DC-DC converter and control method | |
CN108028605B (en) | Converter with hold-up operation | |
US8102678B2 (en) | High power factor isolated buck-type power factor correction converter | |
CN101588135B (en) | resonant power factor correction converter | |
US8531854B2 (en) | Power factor correction converter and power factor correction conversion device | |
CN103746419B (en) | Vehicle-mounted charger circuit | |
CN101997429B (en) | Global switching power supply and its serial-parallel DC power conversion circuit | |
CN101465598A (en) | AC/DC converter | |
CN101645660A (en) | AC/DC power converter with time delay maintaining function | |
CN105932880A (en) | Magnetizing Current Based Control Of Resonant Converters | |
US11396241B2 (en) | Power converter controlled capacitor circuits and methods | |
EP2975753B1 (en) | A three-level converter | |
CN202261028U (en) | Multiphase and misphase parallel two-stage converter | |
Leu et al. | A novel current-fed boost converter with ripple reduction for high-voltage conversion applications | |
US8665610B2 (en) | Modified zero voltage transition (ZVT) full bridge converter and photovoltaic (PV) array using the same | |
EP4113813A1 (en) | Power electronic apparatus for converting input ac into dc | |
CN202652062U (en) | PFC circuit and PFC transformer | |
CN111313679A (en) | Power supply system and charging equipment | |
CN112350583B (en) | Current type push-pull bridge type soft switch bidirectional direct current converter | |
CN202663314U (en) | AC (alternating current)-DC (direct current) switching power supply converter | |
CN104218809A (en) | A circuit device integrating power factor correction and DC-DC conversion | |
CN109391138A (en) | A kind of offset-type regulated power supply | |
Wang et al. | Control Strategies of Active Power Decoupling Integrated Active Clamp Flyback Converter | |
CN222547367U (en) | A three-phase single-stage isolated three-interleaved AC/DC converter | |
CN116614003B (en) | Isolated bidirectional DC/DC conversion circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20121114 Termination date: 20160825 |