CN101997129B - Liquid flow battery - Google Patents
Liquid flow battery Download PDFInfo
- Publication number
- CN101997129B CN101997129B CN2009100134486A CN200910013448A CN101997129B CN 101997129 B CN101997129 B CN 101997129B CN 2009100134486 A CN2009100134486 A CN 2009100134486A CN 200910013448 A CN200910013448 A CN 200910013448A CN 101997129 B CN101997129 B CN 101997129B
- Authority
- CN
- China
- Prior art keywords
- negative electrode
- battery
- flow battery
- active material
- storage tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 55
- 239000003792 electrolyte Substances 0.000 claims abstract description 48
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 14
- 239000000243 solution Substances 0.000 claims abstract description 7
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims abstract description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 28
- 239000007773 negative electrode material Substances 0.000 claims description 11
- 239000007774 positive electrode material Substances 0.000 claims description 11
- 238000005341 cation exchange Methods 0.000 claims description 8
- 239000012528 membrane Substances 0.000 claims description 8
- 238000003411 electrode reaction Methods 0.000 claims description 7
- 239000002253 acid Substances 0.000 claims description 6
- 239000007864 aqueous solution Substances 0.000 claims description 6
- QHGNHLZPVBIIPX-UHFFFAOYSA-N tin(ii) oxide Chemical compound [Sn]=O QHGNHLZPVBIIPX-UHFFFAOYSA-N 0.000 claims description 6
- UUUGYDOQQLOJQA-UHFFFAOYSA-L vanadyl sulfate Chemical compound [V+2]=O.[O-]S([O-])(=O)=O UUUGYDOQQLOJQA-UHFFFAOYSA-L 0.000 claims description 6
- 230000002378 acidificating effect Effects 0.000 claims description 5
- 150000003606 tin compounds Chemical class 0.000 claims description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 4
- 229910021542 Vanadium(IV) oxide Inorganic materials 0.000 claims description 4
- GRUMUEUJTSXQOI-UHFFFAOYSA-N vanadium dioxide Chemical compound O=[V]=O GRUMUEUJTSXQOI-UHFFFAOYSA-N 0.000 claims description 4
- TXUICONDJPYNPY-UHFFFAOYSA-N (1,10,13-trimethyl-3-oxo-4,5,6,7,8,9,11,12,14,15,16,17-dodecahydrocyclopenta[a]phenanthren-17-yl) heptanoate Chemical compound C1CC2CC(=O)C=C(C)C2(C)C2C1C1CCC(OC(=O)CCCCCC)C1(C)CC2 TXUICONDJPYNPY-UHFFFAOYSA-N 0.000 claims description 3
- GEZAUFNYMZVOFV-UHFFFAOYSA-J 2-[(2-oxo-1,3,2$l^{5},4$l^{2}-dioxaphosphastannetan-2-yl)oxy]-1,3,2$l^{5},4$l^{2}-dioxaphosphastannetane 2-oxide Chemical compound [Sn+2].[Sn+2].[O-]P([O-])(=O)OP([O-])([O-])=O GEZAUFNYMZVOFV-UHFFFAOYSA-J 0.000 claims description 3
- 229910021626 Tin(II) chloride Inorganic materials 0.000 claims description 3
- 239000001119 stannous chloride Substances 0.000 claims description 3
- 235000011150 stannous chloride Nutrition 0.000 claims description 3
- RCIVOBGSMSSVTR-UHFFFAOYSA-L stannous sulfate Chemical compound [SnH2+2].[O-]S([O-])(=O)=O RCIVOBGSMSSVTR-UHFFFAOYSA-L 0.000 claims description 3
- DZXKSFDSPBRJPS-UHFFFAOYSA-N tin(2+);sulfide Chemical compound [S-2].[Sn+2] DZXKSFDSPBRJPS-UHFFFAOYSA-N 0.000 claims description 3
- CVNKFOIOZXAFBO-UHFFFAOYSA-J tin(4+);tetrahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[Sn+4] CVNKFOIOZXAFBO-UHFFFAOYSA-J 0.000 claims description 3
- 229910000375 tin(II) sulfate Inorganic materials 0.000 claims description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 claims description 2
- 229910017604 nitric acid Inorganic materials 0.000 claims description 2
- ANOBYBYXJXCGBS-UHFFFAOYSA-L stannous fluoride Chemical compound F[Sn]F ANOBYBYXJXCGBS-UHFFFAOYSA-L 0.000 claims description 2
- 229960002799 stannous fluoride Drugs 0.000 claims description 2
- 150000003682 vanadium compounds Chemical class 0.000 claims description 2
- 239000012530 fluid Substances 0.000 claims 6
- 238000005868 electrolysis reaction Methods 0.000 claims 4
- 239000011149 active material Substances 0.000 claims 2
- 230000004888 barrier function Effects 0.000 claims 2
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 claims 2
- -1 alkyl sulfonic acid Chemical compound 0.000 claims 1
- 230000005611 electricity Effects 0.000 claims 1
- 239000000203 mixture Substances 0.000 claims 1
- 238000007599 discharging Methods 0.000 abstract description 15
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 abstract description 10
- 239000003929 acidic solution Substances 0.000 abstract description 8
- 238000000034 method Methods 0.000 abstract description 4
- 238000004146 energy storage Methods 0.000 abstract description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 11
- 239000007772 electrode material Substances 0.000 description 7
- 229910002804 graphite Inorganic materials 0.000 description 7
- 239000010439 graphite Substances 0.000 description 7
- 229910001432 tin ion Inorganic materials 0.000 description 7
- 229940041260 vanadyl sulfate Drugs 0.000 description 5
- 229910000352 vanadyl sulfate Inorganic materials 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000008151 electrolyte solution Substances 0.000 description 4
- 229910001456 vanadium ion Inorganic materials 0.000 description 4
- 239000002131 composite material Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 150000008052 alkyl sulfonates Chemical class 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000012864 cross contamination Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明涉及液流电池领域,特别涉及一种新型液流电池:钒/锡电池,该电池可应用于大规模的储能系统。该液流电池的单电池主要设有正极、正极储液罐、负极、负极储液罐,正、负极由隔膜隔开,正极储液罐内装有正极电解液,正极电解液为含钒的酸性溶液,正极储液罐通过管道经由液泵接入正极构成回路;负极储液罐内装有负极电解液,负极为含锡的酸性溶液,负极储液罐通过管道经由液泵接入负极构成回路。在充放电过程中,正负极电解液在液泵推动下分别将电解液泵入电池内,保证电解液在储液罐和电池之间不断流动。本发明液流电池提高了电池电动势,克服电池比能量低的缺点,具有制造工艺简单、成本低、循环寿命高等优点。The invention relates to the field of flow batteries, in particular to a novel flow battery: a vanadium/tin battery, which can be applied to a large-scale energy storage system. The single cell of the flow battery is mainly equipped with a positive electrode, a positive electrode liquid storage tank, a negative electrode, and a negative electrode liquid storage tank. The positive electrode and the negative electrode are separated by a diaphragm, and the positive electrode liquid storage tank contains a positive electrode electrolyte. Solution, the positive electrode liquid storage tank is connected to the positive electrode through the pipeline through the liquid pump to form a circuit; the negative electrode liquid storage tank is equipped with the negative electrode electrolyte, the negative electrode is an acidic solution containing tin, and the negative electrode liquid storage tank is connected to the negative electrode through the pipeline through the liquid pump to form a circuit. During the charging and discharging process, the positive and negative electrolytes are respectively pumped into the battery under the push of the liquid pump to ensure the continuous flow of the electrolyte between the liquid storage tank and the battery. The liquid flow battery of the invention improves the electromotive force of the battery, overcomes the disadvantage of low specific energy of the battery, and has the advantages of simple manufacturing process, low cost, high cycle life, and the like.
Description
技术领域 technical field
本发明涉及液流电池领域,特别涉及一种新型液流电池:钒/锡电池,该电池可应用于大规模的储能系统。The invention relates to the field of flow batteries, in particular to a novel flow battery: a vanadium/tin battery, which can be applied to a large-scale energy storage system.
背景技术 Background technique
氧化还原液流电池是一种将能量储存于溶液中的电化学系统,该电化学系统的容量由电解液存储体积及电解液浓度决定,而电池功率由电堆大小决定。液流电池的突出优点主要有:寿命长,可靠性高,无污染排放和噪音,建设周期短,运行和维持费较低,是一种高效的大规模储存电能装置。A redox flow battery is an electrochemical system that stores energy in a solution. The capacity of the electrochemical system is determined by the storage volume and concentration of the electrolyte, while the power of the battery is determined by the size of the stack. The outstanding advantages of liquid flow batteries are: long life, high reliability, no pollution emissions and noise, short construction period, low operation and maintenance costs, and it is an efficient large-scale storage of electrical energy devices.
1982年D-G.Oei提出用SnCl2作液流电池负极活性物质,V2O5作为液流电池的正极活性物质,研究了电池的一些性能变化。但是由于V2O5微溶于水,在酸性溶液中的溶解度较小,导致电解液浓度较低,电池比能量受到电解液浓度的限制。同时,正极电极反应VO2 +/VO2+标准电极电势是1.00V,负极电极反应Sn4+/Sn2+标准电极电势是0.154V,组成电池电动势是0.846V。In 1982, DG.Oei proposed to use SnCl 2 as the negative electrode active material of the flow battery, and V 2 O 5 as the positive electrode active material of the flow battery, and studied some performance changes of the battery. However, because V 2 O 5 is slightly soluble in water, the solubility in acidic solution is small, resulting in a low electrolyte concentration, and the specific energy of the battery is limited by the concentration of the electrolyte. At the same time, the positive electrode reaction VO 2 + /VO 2+ standard electrode potential is 1.00V, the negative electrode reaction Sn 4+ /Sn 2+ standard electrode potential is 0.154V, and the electromotive force of the battery is 0.846V.
发明内容 Contents of the invention
本发明的目在于提出一种新型液流电池:钒/锡电池,该液流电池正极活性物质发生的电极反应VO2 +/VO2+,负极活性物质发生的电极反应为Sn2+/Sn,因为Sn2+/Sn标准电极电势是-0.136V,组成电池的电动势为1.136V,提高了电池电动势。同时,正极活性物质采用溶解度较大的四价钒V(IV)化合物,克服电池比能量低的缺点。另外,作为电极活性物质的锡化合物对环境没有污染且含量丰富,成本较低。The purpose of the present invention is to propose a new type of flow battery: vanadium/tin battery, the electrode reaction VO 2 + /VO 2+ generated by the positive active material of the liquid flow battery, and the electrode reaction generated by the negative active material is Sn 2+ /Sn , because the Sn 2+ /Sn standard electrode potential is -0.136V, the electromotive force of the battery is 1.136V, which increases the electromotive force of the battery. At the same time, the positive electrode active material adopts tetravalent vanadium V(IV) compound with high solubility to overcome the disadvantage of low specific energy of the battery. In addition, the tin compound as an electrode active material has no pollution to the environment and is rich in content, and the cost is low.
本发明的技术方案如下:Technical scheme of the present invention is as follows:
一种新型液流电池:钒/锡电池,该液流电池的单电池主要设有正极、正极储液罐、负极、负极储液罐,正、负极由隔膜隔开,正极储液罐内装有正极电解液,正极电解液为含钒的酸性溶液,正极储液罐通过管道经由液泵接入正极构成回路;负极储液罐内装有负极电解液,负极为含锡的酸性溶液,负极储液罐通过管道经由液泵接入负极构成回路。在充放电过程中,正负极电解液在液泵推动下分别将电解液泵入电池内,保证电解液在储液罐和电池之间不断流动。A new type of flow battery: vanadium/tin battery. The single battery of the flow battery is mainly equipped with a positive electrode, a positive electrode liquid storage tank, a negative electrode, and a negative electrode liquid storage tank. The positive and negative electrodes are separated by a diaphragm, and the positive electrode liquid storage tank is equipped with Positive electrode electrolyte, the positive electrode electrolyte is an acidic solution containing vanadium, the positive electrode storage tank is connected to the positive electrode through a pipeline through a liquid pump to form a circuit; the negative electrode liquid storage tank is equipped with negative electrode electrolyte, the negative electrode is an acidic solution containing tin, and the negative electrode storage The tank is connected to the negative electrode through the pipeline through the liquid pump to form a circuit. During the charging and discharging process, the positive and negative electrolytes are respectively pumped into the battery under the push of the liquid pump to ensure the continuous flow of the electrolyte between the liquid storage tank and the battery.
含锡的酸性溶液中,主要是以氧化亚锡、氢氧化亚锡、氯化亚锡、硫化亚锡、焦磷酸亚锡、硫酸亚锡、烷基磺酸亚锡或氟化亚锡作为单电池的负极活性物质,负极活性物质水溶液的浓度范围为0.01mol/L~2mol/L。In the acidic solution containing tin, mainly use stannous oxide, stannous hydroxide, stannous chloride, stannous sulfide, stannous pyrophosphate, stannous sulfate, stannous alkylsulfonate or stannous fluoride as the single The negative electrode active material of the battery, the concentration range of the negative electrode active material aqueous solution is 0.01mol/L-2mol/L.
含钒的酸性溶液中,主要是以二氧化钒或硫酸氧钒作为单电池的正极活性物质,正极活性物质水溶液的浓度范围为0.01mol/L~4mol/L。In the acidic solution containing vanadium, vanadium dioxide or vanadyl sulfate is mainly used as the positive electrode active material of the unit cell, and the concentration range of the positive electrode active material aqueous solution is 0.01mol/L-4mol/L.
电解液是酸性电解液,该电解液中酸的主要成分是以下一种或一种以上:硫酸、盐酸、硝酸、磷酸、碳酸,电解液的浓度范围为0.1mol/L~5mol/L。The electrolytic solution is an acidic electrolytic solution, and the main components of the acid in the electrolytic solution are one or more of the following: sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, carbonic acid, and the concentration range of the electrolytic solution is 0.1mol/L~5mol/L.
隔膜可以防止正负极电解液的交叉污染,同时又可以通过质子,隔膜可以采用常规的阳离子交换膜。The diaphragm can prevent the cross-contamination of the positive and negative electrolytes, and at the same time can pass protons. The diaphragm can use a conventional cation exchange membrane.
本发明中,单电池正负极电极材料为常规的多孔状碳毡类材料,如石墨毡、炭布、复合炭毡或碳纤维复合材料。In the present invention, the positive and negative electrode materials of the single cell are conventional porous carbon felt materials, such as graphite felt, carbon cloth, composite carbon felt or carbon fiber composite material.
本发明的优点:Advantages of the present invention:
1、本发明以四价钒化合物为液流电池正极活性物质,二价锡为液流电池负极活性物质,电池经充放电测试,具有循环寿命长,可深度放电的优点,电池效率比同样条件下的全钒液流电池效率高。1. In the present invention, the tetravalent vanadium compound is used as the positive electrode active material of the flow battery, and the divalent tin is used as the negative electrode active material of the flow battery. After the battery is charged and discharged, it has the advantages of long cycle life and deep discharge, and the battery efficiency is higher than that under the same conditions. The all-vanadium redox flow battery has high efficiency.
2、本发明中液流电池负极活性物质为二价锡化合物,二价锡化合物在发生氧化还原反应中转移两个电子,电池比容量比转移一个电子高。同时,锡化合物是一种环境友好性物质且价格低廉,不会对环境造成污染,完全符合液流电池绿色环保的特征。2. The negative electrode active material of the liquid flow battery in the present invention is a divalent tin compound, and the divalent tin compound transfers two electrons in the oxidation-reduction reaction, and the specific capacity of the battery is higher than that of transferring one electron. At the same time, the tin compound is an environmentally friendly substance with low price and will not pollute the environment, which is completely in line with the green characteristics of the flow battery.
3、本发明液流电池具有制造工艺简单、成本低、循环寿命高等优点。3. The liquid flow battery of the present invention has the advantages of simple manufacturing process, low cost, and high cycle life.
附图说明 Description of drawings
图1为本发明单电池结构图。Fig. 1 is a structural diagram of a single battery of the present invention.
图2为本发明单电池系统示意图。Fig. 2 is a schematic diagram of the single battery system of the present invention.
图1-图2中,1双极板I;2电极I;3电极框I;4隔膜;5电极框II;6双极板II;7单电池;8储液罐I;9泵I;10正极;11负极;12电极II;13泵II;14储液罐II。In Figure 1-Figure 2, 1 bipolar plate I; 2 electrode I; 3 electrode frame I; 4 diaphragm; 5 electrode frame II; 6 bipolar plate II; 7 single cell; 8 liquid storage tank I; 9 pump I; 10 positive pole; 11 negative pole; 12 electrode II; 13 pump II; 14 liquid storage tank II.
具体实施方式 Detailed ways
如图1所示,本发明新型液流电池的单电池7主要包括:双极板I 1、电极I 2、电极框I 3、隔膜4、电极框II 5、双极板II 6等,电极I 2和电极II分别安装于电极框I 3和电极框II 5内,电极框I 3和电极框II 5内侧通过隔膜4隔开,电极框I 3和电极框II 5外侧分别安装双极板I 1和双极板II6。本发明中,单电池正、负极双极板为常规的导电复合材料、导电碳板或金属板。As shown in Figure 1, the
如图2所示,本发明新型液流电池的单电池系统主要包括电极I 2、隔膜4、储液罐I 8、泵I 9、正极10、负极11、电极II 12、泵II 13、储液罐II 14等,具体结构如下:As shown in Figure 2, the single cell system of the novel flow battery of the present invention mainly includes electrode I 2,
储液罐I 8为正极储液罐,储液罐I 8出口端通过管路与正极10底部连通,在该管路上设有泵I 9,储液罐I 8入口端通过管路与正极10顶部连通,在储液罐I 8内装有正极电解液,正极电解液为含钒的酸性溶液,储液罐I 8通过管道经由液泵接入电池内部构成回路,在储液罐I 8内发生的电极反应为VO2 ++2H++e→VO2++H2O;The liquid storage tank I 8 is a positive electrode liquid storage tank, the outlet of the liquid storage tank I 8 communicates with the bottom of the
储液罐II 14为负极储液罐,储液罐II 14出口端通过管路与负极11底部连通,在该管路上设有泵II 13,储液罐II 14入口端通过管路与负极11顶部连通,在储液罐II 14内装有负极电解液,负极为含锡的酸性溶液,储液罐II 14通过管道经由液泵接入电池内部构成回路,在储液罐II 14内发生的电极反应为Sn2++2e→Sn;The liquid storage tank II 14 is a negative electrode liquid storage tank, the outlet of the liquid storage tank II 14 communicates with the bottom of the
正极10与负极11内分别装有电极I 2、电极II 12,正极10与负极11之间通过隔膜4隔开,在充放电过程中,正、负极电解液在液泵推动下分别将电解液泵入电池内,保证电解液在储液罐和电池之间不断流动;本发明中,多组单电池可串联成电堆。
实施例1Example 1
向单电池负极储液罐中加入1mol/L二价锡离子(氧化亚锡)和2mol/L硫酸电解液作为负极电解液,向单电池正极储液罐中加入2mol/L四价钒离子(硫酸氧钒)和2mol/L硫酸电解液作为正极电解液。石墨毡为电极材料,阳离子交换膜为隔膜,对电池进行充放电测试。其中,充放电电流密度为50mA/cm2,充电电压为1.5V,放电电压为1.1V。经过多次充放电测试,平均电压效率为在88%,平均库仑效率94.85%,平均能量效率83.24%。高于同样条件下全钒液流电池的效率。Add 1mol/L divalent tin ion (stannous oxide) and 2mol/L sulfuric acid electrolyte as negative electrode electrolyte in single cell negative electrode liquid storage tank, add 2mol/L tetravalent vanadium ion ( vanadyl sulfate) and 2mol/L sulfuric acid electrolyte as positive electrolyte. Graphite felt is used as the electrode material, and the cation exchange membrane is used as the diaphragm, and the battery is charged and discharged. Wherein, the charging and discharging current density is 50mA/cm 2 , the charging voltage is 1.5V, and the discharging voltage is 1.1V. After multiple charge and discharge tests, the average voltage efficiency is 88%, the average coulombic efficiency is 94.85%, and the average energy efficiency is 83.24%. Higher than the efficiency of all-vanadium redox flow battery under the same conditions.
实施例2Example 2
向单电池负极储液罐中加入1mol/L二价锡离子(氢氧化亚锡)和2mol/L硫酸电解液作为负极电解液,向单电池正极储液罐中加入2mol/L四价钒离子(硫酸氧钒)和2mol/L硫酸电解液作为正极电解液。石墨毡为电极材料,阳离子交换膜为隔膜,对电池进行充放电测试。其中,充放电电流密度为100mA/cm2,充电电压为1.5V,放电电压为1.1V。经过多次充放电测试,平均电压效率为在83.7%,平均库仑效率94.4%,平均能量效率79.1%。Add 1mol/L divalent tin ion (stannous hydroxide) and 2mol/L sulfuric acid electrolyte to the single-cell negative electrode liquid storage tank as the negative electrode electrolyte, and add 2mol/L tetravalent vanadium ions to the single-cell positive electrode liquid storage tank (vanadyl sulfate) and 2mol/L sulfuric acid electrolyte as positive electrolyte. Graphite felt is used as the electrode material, and the cation exchange membrane is used as the diaphragm, and the battery is charged and discharged. Wherein, the charging and discharging current density is 100mA/cm 2 , the charging voltage is 1.5V, and the discharging voltage is 1.1V. After multiple charge and discharge tests, the average voltage efficiency is 83.7%, the average coulombic efficiency is 94.4%, and the average energy efficiency is 79.1%.
实施例3Example 3
向单电池负极储液罐中加入1mol/L二价锡离子(氯化亚锡)和2mol/L硫酸电解液作为负极电解液,向单电池正极储液罐中加入2mol/L四价钒离子(二氧化钒)和2mol/L硫酸电解液作为正极电解液。石墨毡为电极材料,阳离子交换膜为隔膜,对电池进行充放电测试。其中,充放电电流密度为160mA/cm2,充电电压为1.5V,放电电压为1.1V。经过多次充放电测试,平均电压效率为在75.6%,平均库仑效率92.5%,平均能量效率69.9%。Add 1mol/L divalent tin ion (stannous chloride) and 2mol/L sulfuric acid electrolyte to the single-cell negative electrode liquid storage tank as the negative electrode electrolyte, and add 2mol/L tetravalent vanadium ions to the single-cell positive electrode liquid storage tank (vanadium dioxide) and 2mol/L sulfuric acid electrolyte as positive electrolyte. Graphite felt is used as the electrode material, and the cation exchange membrane is used as the diaphragm, and the battery is charged and discharged. Wherein, the charging and discharging current density is 160mA/cm 2 , the charging voltage is 1.5V, and the discharging voltage is 1.1V. After multiple charge and discharge tests, the average voltage efficiency is 75.6%, the average coulombic efficiency is 92.5%, and the average energy efficiency is 69.9%.
实施例4Example 4
向单电池负极储液罐中加入0.5mol/L二价锡离子(硫化亚锡)和2.5mol/L硫酸电解液作为负极电解液,向单电池正极储液罐中加入1mol/L四价钒离子(硫酸氧钒)和2.5mol/L硫酸电解液作为正极电解液。石墨毡为电极材料,阳离子交换膜为隔膜,对电池进行充放电测试。其中,充放电电流密度为50mA/cm2,充电电压为1.5V,放电电压为1.1V。经过多次充放电测试,平均电压效率为在87.8%,平均库仑效率95.7%,平均能量效率84.1%。Add 0.5mol/L divalent tin ion (stannous sulfide) and 2.5mol/L sulfuric acid electrolyte to the negative electrode liquid storage tank of the single cell as the negative electrode electrolyte, and add 1mol/L tetravalent vanadium to the positive electrode liquid storage tank of the single cell Ion (vanadyl sulfate) and 2.5mol/L sulfuric acid electrolyte as positive electrolyte. Graphite felt is used as the electrode material, and the cation exchange membrane is used as the diaphragm, and the battery is charged and discharged. Wherein, the charging and discharging current density is 50mA/cm 2 , the charging voltage is 1.5V, and the discharging voltage is 1.1V. After multiple charge and discharge tests, the average voltage efficiency is 87.8%, the average coulombic efficiency is 95.7%, and the average energy efficiency is 84.1%.
实施例5Example 5
向单电池负极储液罐中加入0.5mol/L二价锡离子(焦磷酸亚锡)和2.5mol/L硫酸电解液作为负极电解液,向单电池正极储液罐中加入1mol/L四价钒离子(二氧化钒)和2.5mol/L硫酸电解液作为正极电解液。石墨毡为电极材料,阳离子交换膜为隔膜,对电池进行充放电测试。其中,充放电电流密度为100mA/cm2,充电电压为1.5V,放电电压为1.1V。经过多次充放电测试,平均电压效率为在85.2%,平均库仑效率92.6%,平均能量效率78.9%。Add 0.5mol/L divalent tin ion (stannous pyrophosphate) and 2.5mol/L sulfuric acid electrolyte to the negative electrode liquid storage tank of the single battery as the negative electrode electrolyte, and add 1mol/L tetravalent tin ion to the positive electrode liquid storage tank of the single battery Vanadium ions (vanadium dioxide) and 2.5mol/L sulfuric acid electrolyte are used as positive electrolyte. Graphite felt is used as the electrode material, and the cation exchange membrane is used as the diaphragm, and the battery is charged and discharged. Wherein, the charging and discharging current density is 100mA/cm 2 , the charging voltage is 1.5V, and the discharging voltage is 1.1V. After multiple charge and discharge tests, the average voltage efficiency is 85.2%, the average coulombic efficiency is 92.6%, and the average energy efficiency is 78.9%.
实施例6Example 6
向单电池负极储液罐中加入0.5mol/L二价锡离子(硫酸亚锡)和2.5mol/L硫酸电解液作为负极电解液,向单电池正极储液罐中加入1mol/L四价钒离子(硫酸氧钒)和2.5mol/L硫酸电解液作为正极电解液。石墨毡为电极材料,阳离子交换膜为隔膜,对电池进行充放电测试。其中,充放电电流密度为160mA/cm2,充电电压为1.5V,放电电压为1.1V。经过多次充放电测试,平均电压效率为在77.5%,平均库仑效率92.1%,平均能量效率71.4%。Add 0.5mol/L divalent tin ion (stannous sulfate) and 2.5mol/L sulfuric acid electrolyte to the negative electrode liquid storage tank of the single cell as the negative electrode electrolyte, and add 1mol/L tetravalent vanadium to the positive electrode liquid storage tank of the single cell Ion (vanadyl sulfate) and 2.5mol/L sulfuric acid electrolyte as positive electrolyte. Graphite felt is used as the electrode material, and the cation exchange membrane is used as the diaphragm, and the battery is charged and discharged. Wherein, the charging and discharging current density is 160mA/cm 2 , the charging voltage is 1.5V, and the discharging voltage is 1.1V. After multiple charge and discharge tests, the average voltage efficiency is 77.5%, the average coulombic efficiency is 92.1%, and the average energy efficiency is 71.4%.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009100134486A CN101997129B (en) | 2009-08-27 | 2009-08-27 | Liquid flow battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009100134486A CN101997129B (en) | 2009-08-27 | 2009-08-27 | Liquid flow battery |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101997129A CN101997129A (en) | 2011-03-30 |
CN101997129B true CN101997129B (en) | 2013-09-18 |
Family
ID=43786961
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009100134486A Expired - Fee Related CN101997129B (en) | 2009-08-27 | 2009-08-27 | Liquid flow battery |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101997129B (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102244286B (en) * | 2011-06-07 | 2014-10-15 | 中国东方电气集团有限公司 | Flow battery system and repair device thereof |
CN102856573A (en) * | 2011-06-30 | 2013-01-02 | 中国科学院大连化学物理研究所 | Zinc-vanadium redox flow energy storage battery |
CN102447132A (en) * | 2011-10-24 | 2012-05-09 | 吉林省晋吉锂电池有限公司 | Semisolid flow lithium ion battery |
CN102709579B (en) * | 2012-04-05 | 2015-08-19 | 天津滨海储能技术有限公司 | The preparation method of vanadium liquid |
CN103928720A (en) * | 2013-03-26 | 2014-07-16 | 摩尔动力(北京)技术股份有限公司 | Method for prolonging working time length of liquid change storage battery |
CN104518233A (en) * | 2013-09-29 | 2015-04-15 | 中国科学院大连化学物理研究所 | Chlorine-containing all-vanadium redox flow battery anode electrolyte |
JP2017054631A (en) * | 2015-09-08 | 2017-03-16 | 昭和電工株式会社 | Electrolytic solution for redox flow battery, and redox flow battery |
CN106299437A (en) * | 2016-11-11 | 2017-01-04 | 攀钢集团攀枝花钢铁研究院有限公司 | Vanadium cell and electrolyte liquid thereof and the method improving its electro-chemical activity |
CN106328975A (en) * | 2016-11-11 | 2017-01-11 | 攀钢集团攀枝花钢铁研究院有限公司 | Full-vanadium oxidation reduction flow battery |
JP7149280B2 (en) * | 2017-09-14 | 2022-10-06 | 東洋エンジニアリング株式会社 | redox flow battery |
CN108199069B (en) * | 2018-01-17 | 2020-09-29 | 大连博融新材料有限公司 | Electrolyte for redox flow battery and preparation method thereof |
CN109103484A (en) * | 2018-08-29 | 2018-12-28 | 深圳大学 | A kind of flow battery and preparation method thereof |
CN110649304B (en) * | 2019-09-25 | 2024-08-16 | 何国珍 | Tin-iodic acid rechargeable battery |
CN110993999A (en) * | 2019-11-26 | 2020-04-10 | 中国科学院金属研究所 | A kind of electrolyte containing additive for iron-chromium flow battery and its application |
CN113707925A (en) * | 2021-08-24 | 2021-11-26 | 复旦大学 | Tin-manganese aqueous flow battery |
CN117254074B (en) * | 2023-11-20 | 2024-02-09 | 华中科技大学 | An alkaline tin negative electrolyte and an alkaline tin-iron flow battery |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3996064A (en) * | 1975-08-22 | 1976-12-07 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Electrically rechargeable REDOX flow cell |
CN1694282A (en) * | 2005-04-22 | 2005-11-09 | 攀钢集团攀枝花钢铁研究院 | Electrode for all-vanadium redox flow battery and preparation method thereof |
CN201514973U (en) * | 2009-08-27 | 2010-06-23 | 中国科学院金属研究所 | A flow battery |
-
2009
- 2009-08-27 CN CN2009100134486A patent/CN101997129B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3996064A (en) * | 1975-08-22 | 1976-12-07 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Electrically rechargeable REDOX flow cell |
CN1694282A (en) * | 2005-04-22 | 2005-11-09 | 攀钢集团攀枝花钢铁研究院 | Electrode for all-vanadium redox flow battery and preparation method thereof |
CN201514973U (en) * | 2009-08-27 | 2010-06-23 | 中国科学院金属研究所 | A flow battery |
Non-Patent Citations (2)
Title |
---|
D-G.OEI.Chemically regenerative redox fuel cells.《JOURNAL OF APPLIED ELECTROCHEMISTRY》.1982,第12卷(第1期),87-100. |
D-G.OEI.Chemically regenerative redox fuel cells.《JOURNAL OF APPLIED ELECTROCHEMISTRY》.1982,第12卷(第1期),87-100. * |
Also Published As
Publication number | Publication date |
---|---|
CN101997129A (en) | 2011-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101997129B (en) | Liquid flow battery | |
CN102479968B (en) | Zinc / polyhalide energy storage cell | |
CN103000924B (en) | Organic phase dual flow battery | |
CN207587857U (en) | A kind of zinc-nickel single flow battery | |
CN105680082A (en) | Long-lifetime zinc-bromine flow battery structure and electrolyte | |
CN118016944B (en) | Water system iron-cerium flow battery | |
CN112786938B (en) | Acid-base Hybrid High Voltage Aqueous Zinc Batteries and Zinc Flow Batteries with Dual Dissolution Deposition Reactions | |
CN201514973U (en) | A flow battery | |
CN106549179B (en) | An organic system lithium quinone flow battery | |
CN110867587A (en) | A high-power and long-life neutral aqueous hybrid flow battery based on pyridylphenazine | |
CN100438190C (en) | All-vanadium ion flow battery electrolyte and preparation method thereof | |
CN106532093A (en) | Quinone metal redox couple flow cell system | |
CN102227029B (en) | High-concentration vanadium electrolyte and preparation method thereof | |
CN112952212A (en) | Aqueous manganese dioxide-metal secondary battery | |
CN105280943B (en) | A kind of full manganese flow battery | |
CN102694143A (en) | Air/vanadium redox flow battery | |
CN108390110A (en) | A kind of lead-manganese secondary battery | |
WO2016078492A1 (en) | Quinone polyhalide flow battery | |
CN105322186B (en) | A kind of method for reducing all-vanadium flow battery activation polarization | |
CN107565151B (en) | Regeneration method of electrode activity of all-vanadium redox flow battery | |
CN104300169A (en) | Alkaline zinc vanadium flow battery | |
CN106129443B (en) | A kind of novel keggin type cobalt wolframic acid flow battery | |
CN106450400A (en) | All-vanadium redox flow battery | |
CN110071317A (en) | A kind of tin bromine flow battery | |
CN104716385A (en) | Vanadium manganese hybrid flow battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130918 Termination date: 20150827 |
|
EXPY | Termination of patent right or utility model |