CN1019885C - 分压式射频激励全金属波导激光器 - Google Patents

分压式射频激励全金属波导激光器 Download PDF

Info

Publication number
CN1019885C
CN1019885C CN 91103086 CN91103086A CN1019885C CN 1019885 C CN1019885 C CN 1019885C CN 91103086 CN91103086 CN 91103086 CN 91103086 A CN91103086 A CN 91103086A CN 1019885 C CN1019885 C CN 1019885C
Authority
CN
China
Prior art keywords
electrode
waveguide
radio frequency
division board
clam member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 91103086
Other languages
English (en)
Other versions
CN1055839A (zh
Inventor
辛建国
魏光辉
阎平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN 91103086 priority Critical patent/CN1019885C/zh
Publication of CN1055839A publication Critical patent/CN1055839A/zh
Application granted granted Critical
Publication of CN1019885C publication Critical patent/CN1019885C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Lasers (AREA)

Abstract

本发明涉及射频激励全金属波导激光器。它的电极、波导侧壁、隔离板、紧固压板均由真空金属材料制成,形成了金属波导输出。对电极、波导侧壁用铝合金材料,表面经阳极氧化处理形成了介质膜波导输出。由于波导的上下有厚度相同薄的绝缘垫形成了空气隙的对称分布。使其等效电容相等,实现了均分压射频放电。能和普通的射频源配套使用。由于它采用双向导热,冷却效果好。它的结构简单,加工工艺方便,使成本大大降低,能推广应用。

Description

本发明涉及射频激励全金属波导激光器。
美国的Peter laakmann在一九八九年提出了一种全金属结构非波导射频激励CO2激光器,并用四电极结构形式实施。如图1所示。它的两侧壁金属电极接地,上下两电极相差180相移。这种全金属结构与全陶瓷结构和陶瓷与金属夹心结构相比,成本大大降低。它的结构加工性能好,导热性好。并因采用同种材料做结构受热膨胀应力波导变形小。但用四电极,采用相差180三线输出电源,与普通射频源不能配用,结构复杂。
本发明的目的就是为了避免上述技术不足之处而提供一种波导模输出,结构简单,且可与普通射频源配合使用的分压式射频激励两电极全金属波导激光器。
本发明简单原理如下:
在射频激励气体激光器中,是利用∝类型放电来激励增益的,即体电离起主要作用。射频放电着火点通常是把射频场内电子的产生与损耗平衡作为依据的。∝类型放电中,主要电子损耗机理是电力扩散到壁的损耗和电子的复合损耗,电子的产生是体电离产生。因而有:
∞ = hVc ke ε eff + π 2 D ke ε eff · a 2 ∝ = pA exp( - BP ε eff )
其中:∝:体电离系数。
h:一个电子与中性粒子碰撞时发生附着碰撞的几率。
Vc:单位时间内,电子与中性粒子碰撞次数。
D:扩散系数。
Ke:迁移率。
d:电极间距。
εeff:有效电场强度。
εm:射频场最大幅度。
ω:射频场频率。
P:气压。
A、B:常数。
ε eff = ε m 1 + ( ω V C ) 2
由此可得:
ε XP ( = BP Veff · a ) = hVc PAke · q Veff + π 2 D PAke · 1 Veff · d
在特定气压和射频频率下,着火有效电压Veff为相间距d的函数。上式中把侧壁对扩散损耗的影响归于D中。
上式在点:
B· P ·8π P (= BP Veff ·d ) + hVc P ·A ·ke - π 2 D P ·A · ke · 1 a 2 = 0
处有极小值。如图2所示,图2说明在射频放电时,着火电压在某一d处有极小值,在d很小时和d很大时,着火电压反而更高,气体不易击穿放电。
本发明正是利用这一原理实现了全金属波导结构的射频放电激励。其原理图如图3所示,上下两 电极间的波导通道构成了电容C,上电极和下电极与波导侧壁的空气隙构成了两个相等的电容C1,上电极和隔离板及隔离板和紧固压板间的空气隙构成了两个相等的电容C2,当射频源施加在电极上后,由于是容性结构,上电极和任何接地极之间有效电压为Veff,即为上电极和下电极之间的电压。但施加在空气隙间的电压由于两个串联的空气隙的等效电容相同,均分压为Veff/2。同时,由于空气隙极小(0.05~0.15mm),着火电压极高,而上下电极电压是空气隙之间电压的2倍,且极间距较大(1mm-8mm)。着火电压较低,所以,上下电极间波导空间着火放电形成增益区,可实现激光输出。
本发明是用以下的方法实施的:
它是全金属结构的射频激励激光器,由电极、射频源、紧固螺钉组成,它的电极、波导侧壁、隔离板、紧固压板均由真空金属材料制成,真空金属材料可用如铝合金、无氧铜、紫铜、不锈钢、钛、镍等材料组成金属波导。对上电极1、下电极2、波导侧壁3如果用铝合金材料制成,并在其表面经过阳极氧化处理,如草酸氧化和低温硫酸氧化处理,形成介质膜波导。本发明电极只用上电极1和下电极2两个电极,上电极1和下电极2之间有波导侧壁3,上电极1和紧固压板6之间有隔离板5,然后在波导侧壁3和上电极1之间,波导侧壁3和下电极2之间,在隔离板5与紧固压板6之间,隔离板5与上电极1之间沿纵向间断放置如每隔50~100mm均有相同厚度的绝缘垫4,绝缘垫4用真空绝缘材料制成,厚度为0.05~0.15mm,大小可为2×5~2×10mm2。在隔离板5和紧固压板6的中心均有一个使电极引线通过的孔,孔径均为极间距d的5倍以上,上电极1的电极引线穿过隔离板5和紧固压板6的孔加到射频源RF下电极接地,上电极1和下电极2之间的垂直距离为d在1~8mm范围。
附图说明:
图1、全金属结构非波导射频激励CO2激光器的示意图
图2、着火有效电压Veff和极间距离d的函数关系图
图3、本发明的原理图
图4、本发明简单结构示意图
1、上电极    2、下电极    3、波导侧壁    5、隔离板    6、紧固压板    7、波导口    10、空气隙
图5、本发明实施例结构示意图
1、上电极    2、下电极    3、波导侧壁    4、绝缘垫    5、隔离板    6、紧固压板    7、波导口    8、紧固螺钉    9、孔    10、空气隙
实施例:看图5
1.上电极、下电极、波导侧壁、隔离板、紧固压板都由真空金属材料,如铝合金、紫铜、无氧铀、不锈钢等制成,形成金属波导,其工作介质是气体及其混合物。如CO2、CO、HENE及激光混合气体。
2.上下电极之间和波导侧壁构成激光腔,上电极、下电极、波导侧壁都由铝合金材料制成的,如LF防锈铝、LD锻铝、LY硬铝等,并在铝合金表面经过阳极气化处理。如草酸阳极气化处理、低温硫酸阳极气化处理或镀以三氧铝等。形成介质波导隔离,紧固压板用真空金属材料制成。
以上两个实施例中绝缘垫由绝缘材料制成,如Al2O3瓷、BN陶瓷、聚四氟乙烯等帛制成,厚度为0.05-0.15mm,大小为2×5-2×10mm2。在上极和波导侧壁之间及下电极和波导侧壁之间沿纵向间断如每隔50-100mm放一块绝缘垫形成空气隙。并且因绝缘垫的厚度相同,这样形成了空气隙对称分布,上下电极和波导侧壁间的两空气隙上下的等效电容相等实现了均分压,电容的差值不大于5%。同样上电极和隔离板之间及隔离板和紧固压板之间的电容等效相等,差值不大于5%。
本发明由于空气隙较小,在低气压工作下,(几十乇~几百乇)仅为分子热运动自由程的几倍,所以导热效果也很好,并且采用金属材料本身就有良好的导热性,上电极可以通过上下两个方向的串联,双空气隙实现双向导热,所以冷却效果好。本发明由于只用两个电极的全金属波导和介质膜金属波导激光器,它的下电极接地,上电极与普通射频源相接使用,结构简单,对金属波导4×4mm2长度为300mm的输出功率达10ω,效率达10%,对介质膜波导输出功率达13ω,效率达13%,与一般全金属非波导激光器的输出功率和效率都比较高,全金属介质膜波导特性与95%以上Al2O3陶瓷波导器件相比要好。然后,它可采用铝合金挤压工艺,用成型材,比真空陶瓷激光器成 本大大降低。
参考文献:
专利号4805182,2/1989。
发明人Peter    Laakmann,Seattle,Wash
专利名称:RF-Excited,All-Metal    Gas    Laser

Claims (2)

1、一种金属结构的射频激励气体激光器,由电极、射频源、紧固螺钉组成,电极是金属材料制成,工作介质是气体及其混合物,其特征是电极、波导侧壁、隔离板、紧固压板均由真空金属材料制成,电极只用上电极和下电极两个电极,上下电极之间有两块波导侧壁以构成激励腔,上电极、下电极、波导侧壁用铝合金制成,并在其表面经过阳极氧化处理,(即草酸阳极氧化处理或低温硫酸阳极氧化处理或镀以三氧化铝),形成介质膜波导、在上电极和紧固压板之间有隔离板,在波导侧壁和上下电极之间,隔离板与紧固压板之间,隔离板与上电极之间,均有相同厚度的绝缘垫,隔离板和紧固压板的中心均有一个使电极引线通过的孔,上电极引线穿过隔离板和紧固压板的孔接到射频源RF,下电极接地,上电极和下电极之间的垂直距离d为1-8mm
2、按照权利要求书1所述的激光器,其特征是放置的绝缘垫4是沿波导侧壁3或隔离板5的纵向间断放置一块厚度为0.05-0.15mm,其材料用真空绝缘材料制成的绝缘垫。
CN 91103086 1991-05-15 1991-05-15 分压式射频激励全金属波导激光器 Expired - Fee Related CN1019885C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 91103086 CN1019885C (zh) 1991-05-15 1991-05-15 分压式射频激励全金属波导激光器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 91103086 CN1019885C (zh) 1991-05-15 1991-05-15 分压式射频激励全金属波导激光器

Publications (2)

Publication Number Publication Date
CN1055839A CN1055839A (zh) 1991-10-30
CN1019885C true CN1019885C (zh) 1993-02-03

Family

ID=4905881

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 91103086 Expired - Fee Related CN1019885C (zh) 1991-05-15 1991-05-15 分压式射频激励全金属波导激光器

Country Status (1)

Country Link
CN (1) CN1019885C (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1314173C (zh) * 2003-09-29 2007-05-02 北京礴德恒激光科技有限公司 一维全金属板条波导气体激光器

Also Published As

Publication number Publication date
CN1055839A (zh) 1991-10-30

Similar Documents

Publication Publication Date Title
US4169251A (en) Waveguide gas laser with high frequency transverse discharge excitation
EP0426993B1 (en) Improved preionization electrode for pulsed gas laser
He et al. Frequency dependence in RF discharge excited waveguide CO 2 lasers
Sauter et al. Studies of decaying plasmas produced in neon and helium-neon mixtures
CN1019885C (zh) 分压式射频激励全金属波导激光器
GB2098389A (en) Apparatus for producing laser radiation
US3740662A (en) Laser discharge tube
CA1172741A (en) Te laser amplifier
Lash et al. Laser‐ablation‐assisted‐plasma discharges of aluminum in a transverse‐magnetic field
Targ et al. Xenon‐Helium Laser at High Pressure and High Repetition Rate
Yatsiv Conductively cooled capacitively coupled rf excited CO2 lasers
Hellblom et al. Extraction of volume produced H− ions from a mirror electron cyclotron resonance source
Baby et al. High power N2 laser with a modified gas flow system and discharge geometry
Hirsch The concept of magnetic insulation
Park et al. Stable microplasmas in air generated with a silicon inverted pyramid plasma cathode
Oettinger et al. Electron drift velocity and Townsend coefficient in DME-based gas mixtures
Sarjeant High-pressure surface-discharge plasma switches
Nam et al. Operational characteristics of a PIE CO 2 laser
Serafetinides Improved excitation by double discharge and semiconductive preionisers-electrodes in tea UV and IR lasers
Kim et al. Linear Arrays of Microchannel Plasmas in Monolithic $\hbox {Al/Al} _ {2}\hbox {O} _ {3} $ Sheets
AU624323B2 (en) RF excited all metal gas laser
Lou The effect of specific input energy on the performance of an X-ray preionised XeCl discharge laser
CN1217455C (zh) 扩散冷却型板条气体激光器
Lou et al. Current density and pressure dependence of XeCl excimer fluorescence and laser emissions observed in a very small volume discharge
Hackam Effects of steady‐state electrical discharge on the separation of gas constituents in helium‐argon mixture

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee