CN101986723B - Test system and test method for pressure gradient microphone - Google Patents
Test system and test method for pressure gradient microphone Download PDFInfo
- Publication number
- CN101986723B CN101986723B CN201010528196.3A CN201010528196A CN101986723B CN 101986723 B CN101986723 B CN 101986723B CN 201010528196 A CN201010528196 A CN 201010528196A CN 101986723 B CN101986723 B CN 101986723B
- Authority
- CN
- China
- Prior art keywords
- microphone
- test
- sound
- test hole
- wave tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 183
- 238000010998 test method Methods 0.000 title description 5
- 238000012544 monitoring process Methods 0.000 claims abstract description 38
- 239000011358 absorbing material Substances 0.000 claims abstract description 6
- 230000008878 coupling Effects 0.000 claims description 11
- 238000010168 coupling process Methods 0.000 claims description 11
- 238000005859 coupling reaction Methods 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 5
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 4
- 229920005372 Plexiglas® Polymers 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 210000001503 joint Anatomy 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000010295 mobile communication Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000009413 insulation Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Images
Landscapes
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
Description
【技术领域】【Technical field】
本发明涉及一种压差麦克风测试系统及测试方法,尤其涉及一种用于测试压差麦克风的行波管测试系统及其测试方法。The invention relates to a test system and a test method for a pressure difference microphone, in particular to a traveling wave tube test system and a test method for testing a pressure difference microphone.
【背景技术】【Background technique】
近年来移动通信技术已经得到快速发展。消费者越来越多地使用移动通信设备,对移动通讯设备的要求已不仅满足于能够通话,而且要能够提供高质量的通话效果。尤其是移动多媒体技术的发展,移动电话的通话质量更显重要。压差麦克风作为移动电话的换能器之一,其性能的好坏直接影响通话质量。因此在压差麦克风使用前对其性能进行测试是非常重要的。Mobile communication technology has developed rapidly in recent years. Consumers are using mobile communication devices more and more, and their requirements for mobile communication devices are not only to be able to make calls, but also to be able to provide high-quality call effects. Especially with the development of mobile multimedia technology, the call quality of mobile phones is even more important. As one of the transducers of a mobile phone, the performance of the differential pressure microphone directly affects the call quality. Therefore, it is very important to test the performance of the differential pressure microphone before using it.
压差麦克风测试原理是使压差麦克风的振膜两面受声,从而使压差麦克风对压强差产生响应。相关的压差麦克风测试系统是在消声室内的自由场内对压差麦克风进行测试的,而且必须保证测试时设有一定的测试距离,测试距离大于1m。然而这种测试系统不适用于产线上的大批量测试。The principle of the differential pressure microphone test is to make the two sides of the diaphragm of the differential pressure microphone receive sound, so that the differential pressure microphone responds to the pressure difference. The relevant differential pressure microphone test system tests the differential pressure microphone in a free field in an anechoic chamber, and it must be ensured that a certain test distance is set during the test, and the test distance is greater than 1m. However, this test system is not suitable for mass testing on the production line.
因此,有必要提供一种新的压差麦克风测试系统解决上述问题。Therefore, it is necessary to provide a new differential pressure microphone testing system to solve the above problems.
【发明内容】【Content of invention】
本发明需解决的技术问题是提供一种能适用于产线上大批量测试且测试精度高的压差麦克风测试系统。The technical problem to be solved by the present invention is to provide a differential pressure microphone testing system that is suitable for mass testing on production lines and has high testing accuracy.
根据上述的技术问题,设计了一种压差麦克风测试系统,其目的是这样实现的:一种压差麦克风测试系统,包括声源和与所述声源相隔一定距离的监测麦克风和待测压差麦克风。其中,所述压差麦克风测试系统还包括内壁光滑的行波管,所述行波管一端与所述声源对接、另一端设有吸声尖劈,所述吸声尖劈内设有吸音材料。所述监测麦克风和待测压差麦克风插入于行波管内,所述声源发出的声压通过行波管到达所述监测麦克风和所述待测压差麦克风。According to the above technical problems, a differential pressure microphone test system has been designed, the purpose of which is to achieve: a differential pressure microphone test system, including a sound source and a monitoring microphone at a certain distance from the sound source and the pressure to be measured Poor microphone. Wherein, the differential pressure microphone test system also includes a traveling wave tube with a smooth inner wall, one end of the traveling wave tube is connected to the sound source, and the other end is provided with a sound-absorbing wedge, and a sound-absorbing wedge is provided inside the sound-absorbing wedge. Material. The monitoring microphone and the pressure difference microphone to be measured are inserted into the traveling wave tube, and the sound pressure emitted by the sound source reaches the monitoring microphone and the pressure difference microphone to be measured through the traveling wave tube.
优选的,所述行波管设有管壁,所述管壁上设有若干贯穿所述管壁的测试孔,所述监测麦克风和所述待测压差麦克风由所述测试孔插入于所述行波管内。Preferably, the traveling wave tube is provided with a tube wall, and the tube wall is provided with a plurality of test holes penetrating the tube wall, and the monitoring microphone and the pressure difference microphone to be measured are inserted into the test holes through the test holes. inside the traveling wave tube.
优选的,所述行波管用有机玻璃材料制成,其截面呈正方形。Preferably, the traveling wave tube is made of plexiglass material, and its cross section is square.
优选的,所述监测麦克风与所述吸声尖劈距离一个吸声尖劈的长度。Preferably, the distance between the monitoring microphone and the sound-absorbing wedge is one length of the sound-absorbing wedge.
优选的,所述声源为全频带扬声器,所述监测麦克风为压强型的标准1/2寸麦克风。Preferably, the sound source is a full-band speaker, and the monitoring microphone is a pressure-type standard 1/2-inch microphone.
优选的,所述压差麦克风测试系统还设有耦合腔,所述行波管通过接通所述耦合腔与所述声源对接,所述耦合腔与所述声源对接的一端其截面形状和所述声源形状一致、与所述行波管接通的一端其截面形状和所述行波管的形状一致。Preferably, the differential pressure microphone test system is also provided with a coupling cavity, the traveling wave tube is connected to the sound source by connecting the coupling cavity, and the cross-sectional shape of the end of the coupling cavity that is connected to the sound source is The shape of the sound source is consistent with that of the traveling wave tube, and the cross-sectional shape of the end connected to the traveling wave tube is consistent with the shape of the traveling wave tube.
优选的,所述测试孔包括若干用于测试待测压差麦克风的第一测试孔和与所述第一测试孔不在同一平面的第二测试孔,所述监测麦克风由所述第二测试孔插入于所述行波管内。Preferably, the test holes include a plurality of first test holes for testing the differential pressure microphone to be tested and a second test hole not on the same plane as the first test hole, and the monitoring microphone is controlled by the second test hole inserted into the traveling wave tube.
优选的,所述第一测试孔为圆台状,其设有3个且等距离相隔。Preferably, the first test holes are in the shape of a truncated cone, and there are three of them spaced equidistantly.
本发明还提供了一种基于上述压差麦克风测试系统的测试方法,其特征在于:该方法包括如下步骤:The present invention also provides a test method based on the above-mentioned differential pressure microphone test system, characterized in that: the method comprises the following steps:
提供一声源,所述声源为全频带扬声器;providing a sound source, said sound source being a full-range speaker;
提供一监测麦克风,其与所述声源相隔一定距离;providing a monitoring microphone at a distance from the sound source;
提供一行波管,其一端与所述声源相连、另一端设有吸音尖劈,所述吸音尖劈内设有吸音材料,所述行波管上设有若干第一测试孔和与所述第一测试孔不在同一平面的第二测试孔,所述第一测试孔包括第一测试孔甲、第一测试孔乙和第一测试孔丙;A traveling wave tube is provided, one end of which is connected to the sound source, and the other end is provided with a sound-absorbing wedge, and a sound-absorbing material is provided inside the sound-absorbing wedge, and the traveling wave tube is provided with a plurality of first test holes and the The first test hole is not in the second test hole of the same plane, and the first test hole includes the first test hole A, the first test hole B and the first test hole C;
提供若干待测压差麦克风;Provide several differential pressure microphones to be tested;
提供音频分析仪,其分别连接于所述声源、监测麦克风和待测压差麦克风;An audio analyzer is provided, which is respectively connected to the sound source, the monitoring microphone and the differential pressure microphone to be measured;
将所述监测麦克风和所述待测压差麦克风分别由第二测试孔和第一测试孔甲插入于行所述波管内,将未插入待测麦克风的所述第一测试孔乙和所述第一测试孔丙密封,再将所述声源发出的声压通过所述行波管到所述监测麦克风和所述待测压差麦克风,通过音频分析仪分析测试结果;Insert the monitoring microphone and the differential pressure microphone to be tested into the wave tube through the second test hole and the first test hole A respectively, and insert the first test hole B and the first test hole B that are not inserted into the microphone to be tested The first test hole C is sealed, and then the sound pressure emitted by the sound source passes through the traveling wave tube to the monitoring microphone and the pressure difference microphone to be measured, and the test result is analyzed by an audio analyzer;
同理,将所述待测压差麦克风换到第一测试孔乙或第一测试孔丙进行测试,分析比较测试结果,以待测压差麦克风的测试值最接近所需理论值的位置确定为最优的测试位置。In the same way, change the pressure difference microphone to be tested to the first test hole B or the first test hole C for testing, analyze and compare the test results, and determine the position where the test value of the pressure difference microphone to be tested is closest to the required theoretical value is the best test location.
优选的,所述待测压差麦克风进行工装,使其上部设置为柱形杆,中部为与所述第一测试孔相配合的圆台状塞子,下部为一细杆固定所述待测压差麦克风。Preferably, the pressure difference microphone to be measured is tooled so that the upper part is a cylindrical rod, the middle part is a conical plug matching the first test hole, and the lower part is a thin rod to fix the pressure difference to be measured microphone.
与相关技术相比,本发明的压差麦克风测试系统能用于产线上的大批量测试且测试精度高。Compared with the related art, the differential pressure microphone testing system of the present invention can be used for mass testing on the production line and has high testing accuracy.
【附图说明】【Description of drawings】
图1为本发明压差麦克风测试系统的立体结构图。FIG. 1 is a three-dimensional structure diagram of a differential pressure microphone testing system of the present invention.
图2为图1中沿A-A线部分剖示图。Fig. 2 is a partial sectional view along line A-A in Fig. 1 .
图3为本发明压差麦克风测试系统使用时的结构图,其已与音频分析仪连接。Fig. 3 is a structural diagram of the differential pressure microphone testing system of the present invention, which has been connected with an audio analyzer.
图4为本发明的待测压差麦克风的工装结构图。Fig. 4 is a structural diagram of the tooling of the pressure difference microphone to be tested in the present invention.
【具体实施方式】【Detailed ways】
下面结合附图和实施方式对本发明作进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and embodiments.
如图1-3所示,一种压差麦克风测试系统1,包括声源5和与声源5相隔一定距离的监测麦克风6和待测压差麦克风7。其中,压差麦克风测试系统1还包括内壁光滑的行波管3,行波管3一端与声源5对接、另一端设有圆锥形吸声尖劈2。吸声尖劈2的长度由声波的低频截止频率决定。吸声尖劈2内设有吸音材料。监测麦克风6和待测压差麦克风7插入于行波管3内,声源5发出的声压通过行波管3到达所述监测麦克风6和待测压差麦克风7。As shown in FIGS. 1-3 , a differential pressure microphone testing system 1 includes a
本实施方式中,行波管3设有管壁33,管壁33上设有若干贯穿管壁33的测试孔(未标号),监测麦克风6和待测压差麦克风7由测试孔插入于行波管3内。具体的,测试孔包括若干用于测试待测压差麦克风7的第一测试孔31和与第一测试孔31不在同一平面的第二测试孔32,待测压差麦克风7由第一测试孔31插入于行波管3内,监测麦克风6由第二测试孔32插入于行波管3内。优选的,第一测试孔31设有3个且等距离相隔,其形状为圆台状,这种设置会有较好的测试比较效果。当然,第一测试孔还可以设为其它数量,其之间的距离也不一定要等距。在本发明中,所谓圆台状是指在圆锥体的基础上去掉尖端,使其上表面的面积小于下表面的面积。In this embodiment, the
行波管3的内壁光滑是为了防止管壁33的粘滞阻尼对声波造成衰减,从而减少测试误差。为了使得行波管3的制作加工方便,行波管3采用有机玻璃材料制成截面为正方形的有机玻璃管。当然,行波管也可以用其它材料制成,其截面也可以是长方形、圆形或其它形状,这都是可行的。The reason for the smooth inner wall of the
具体的,本实施方式以测试频带范围200Hz-5000Hz为例进行说明,其实这只是压差麦克风正常的工作频带范围,超出此频带范围也是可行的。行波管3的管壁33设有一定厚度,其目的是可以更好的保证行波管3的隔声效果,防止外界噪声干扰。综合考虑隔声效果和加工成本等因素,行波管3的厚度设为1cm,其它厚度也是可以的。Specifically, this embodiment is described by taking the test frequency range of 200 Hz-5000 Hz as an example. In fact, this is only the normal working frequency range of the pressure difference microphone, and it is also feasible to exceed this frequency range. The
为了测试所需的条件,行波管3中声波设计为平面波,从而可近似为将待测麦克风置于无限远自由场中,这样可以满足测试所需的条件。而行波管3中除了平面波外,也有可能有高次模式波。对应一对下标值(m,n)存在一个简正模式,称为第(m,n)次简正模式。仅当f>fmn时高次波才存在,其中,f为声波频率,fmn称为第(m,n)模式的简正频率:In order to test the required conditions, the sound wave in the
其中,c0是声速,lx、ly分别为行波管3截面的长和宽。为保证行波管3中只有平面波,没有高次模式波,声波频率必须小于管子的截止频率,即:Wherein, c 0 is the speed of sound, and l x , ly y are the length and width of the section of the traveling
其中,f00为平面波频率,f为声波频率,lxy为行波管内径。因为截面为正方形行波管,则lx=ly=lxy,因此当满足公式(2)时,只有f00频率波存在,即平面波。Among them, f 00 is the plane wave frequency, f is the sound wave frequency, and l xy is the inner diameter of the traveling wave tube. Because the cross section is a square traveling wave tube, then l x = ly =l xy , so when the formula (2) is satisfied, only f 00 frequency waves exist, that is, plane waves.
声波的高频临界值主要决定行波管的粗细,值越高管子越细,管壁衰减增大,同时加工难度增大。当fh=5kHz,lx=ly=lxy时,结合公式(1)和(2)可得lxy<0.0343m,即需满足行波管3的内径小于3.43cm。其实,若高频临界值不同,所得出的lxy值也是不同的,但原理一样。The high-frequency critical value of the sound wave mainly determines the thickness of the traveling wave tube. The higher the value, the thinner the tube, the greater the attenuation of the tube wall, and the greater the processing difficulty. When fh=5kHz, l x = ly =l xy , combined with formulas (1) and (2), it can be obtained that l xy <0.0343m, that is, the inner diameter of the traveling
因此,根据测试频率范围计算,本实施方式把行波管3的内径设为3cm。实际上满足行波管的内径小于3.43cm都是可行的。当行波管3的内径设为3cm时,满足声波频率小于行波管3的截止频率,这样可以保证行波管3中只有平面波,没有高次谐波,进而增加了测试的准确度。Therefore, based on the calculation of the test frequency range, the inner diameter of the traveling
声源5选用频响曲线平直,失真小的全频带扬声器。因为全频带扬声器能够较容易的提供声压级波动小于0.2dB,失真小于1%的声场,这样的声场中测试精度更高。而且在不同的频带中全频带扬声器也可以较容易的提供满足所需频率的声场。当然,声源5也可以用其它扬声器或传声器等。所述监测麦克风6为压强型的标准1/2寸麦克风,用于监测声源5的声压级和总谐波失真率,校准声源5的声场。其实,使用标准麦克风作为监测麦克风6是为了更好的提高测试精度,其尺寸是根据本实施方式具体实例设置,在其它实施方式中原理相同,其尺寸并非一定为1/2寸。The
声波的低频临界值主要决定吸声尖劈2的长度。当低频fl=200Hz时,吸声尖劈2的长度λ是声波波长,故可得出la=0.43m。为了减少临界值处的测试误差,本实施方式中设置的吸声尖劈2长度为50cm。当然,并非其长度一定设为50cm。The low-frequency critical value of the sound wave mainly determines the length of the sound-absorbing wedge 2 . When the low frequency fl=200Hz, the length of sound-absorbing wedge 2 λ is the acoustic wavelength, Therefore, it can be obtained that l a =0.43m. In order to reduce the test error at the critical value, the length of the sound-absorbing wedge 2 set in this embodiment is 50 cm. Of course, the length is not necessarily set to 50 cm.
吸声尖劈2不能达到100%吸收声波,其前端必定存在对声波的反射,反射波会与声源5的声波相互干涉从而使声场不均匀、进而使得监测麦克风6对声场的反馈不准确。因此,监测麦克风6与吸声尖劈2距离一个吸声尖劈2的长度,这样可以减反射波对声场的影响。The sound-absorbing wedge 2 cannot absorb sound waves 100%, and there must be a reflection of the sound waves at its front end. The reflected waves will interfere with the sound waves of the
由于待测压差麦克风7存在近场效应,其灵敏度随距离变化而变化,从而引起测试误差。应当尽量减小近场效应引起的测试误差,需将声源与待测麦克风相隔距离设为远场范围,远场条件为k·r>>1,其中k是波数,r是待测压差麦克风7距离声源5的轴向距离,根据这个远场条件计算得到r>>0.27m。本实施方式中设置r为40cm,这也只是在满足条件后随机设置的距离。具体的,第一测试孔乙31b与待测压差麦克风7距离40cm。Due to the near-field effect of the
另外,本实施方式在第一测试孔乙31b的两边还分别开设有第一测试孔甲31a和第一测试孔丙31c。这样在同样条件下可以对测试结果做出比较,进一步减小测试误差。当然还可以设置更多第一测试孔31。优选的,第一测试孔甲31a、第一测试孔乙31b和第一测试孔丙31c之间等距间隔,相距20cm。In addition, in this embodiment, a first
由于吸声尖劈2、第一测试孔31等部件的设置,具体的,行波管3的设置长度不小于140cm。当然,吸声尖劈2、第一测试孔31等部件设置不同,其行波管的长度也是变化的,但原理都是一样。Due to the arrangement of components such as the sound-absorbing wedge 2 and the
压差麦克风测试系统1还设有耦合腔4,行波管3通过接通耦合腔4与声源5对接,耦合腔4与声源5对接的一端其截面形状和声源5的形状一致、与所述行波管3接通的一端其截面形状和所述行波管3的形状一致。比如,本实施方式中声源5选用长方形的全频带扬声器,行波管3为截面呈正方形,则耦合腔4与声源5对接的一端其截面为长方形、与行波管3接通的一端其截面为正方形。耦合腔4的截面连续变化,由长方形逐渐过渡成正方形,这样可以减小声波传播过程中的壁面反射,使声能透射系数达到最大,提高测试准确度。The differential pressure microphone test system 1 is also provided with a
如图2-3所标,本发明还提供了一种基于上述压差麦克风测试系统1的测试方法,其特征在于:该方法包括如下步骤:As shown in Figure 2-3, the present invention also provides a test method based on the above-mentioned differential pressure microphone test system 1, which is characterized in that: the method includes the following steps:
提供一声源5,声源5为全频带扬声器;A
提供一监测麦克风6,其与声源5相隔一定距离;Provide a monitoring microphone 6, which is separated from the
提供一行波管3,其一端与声源5相连、另一端设有吸音尖劈2,吸音尖劈2内设有吸音材料,行波管3上设有若干第一测试孔31和与第一测试孔31不在同一平面的第二测试孔32。第一测试孔31包括第一测试孔甲31a、第一测试孔乙31b、第一测试孔丙31c。A traveling
提供若干待测压差麦克风7;Provide several
提供音频分析仪8,其分别连接于声源5、监测麦克风6和待测压差麦克风7;An audio analyzer 8 is provided, which is respectively connected to the
将监测麦克风6和工装好的待测压差麦克风7分别由第二测试孔32和第一测试孔甲31a插入于行波管3内,将未插入待测麦克风7的第一测试孔乙31b和第一测试孔丙31c密封。再将声源5发出的声压通过行波管3到监测麦克风6和待测压差麦克风7,通过音频分析仪8分析测试结果。同理,将待测压差麦克风7换到第一测试孔乙31b或第一测试孔丙31c进行测试,分析比较测试结果,以待测压差麦克风7的测试值最接近所需理论值的位置确定为最优的测试位置。Insert the monitoring microphone 6 and the well-equipped
为了测试更方便,测试精度更高,如图4所示,将待测压差麦克风7进行工装,使工装上部设置直径为1/2寸的柱形杆71,当然,其尺寸和形状都可以根据需要设置不同。中部为与第一测试孔31相配合的圆台状塞子72,这种结构的塞子密封效果更好。下部为一细杆73固定待测压差麦克风7。具体的,将工装好的待测压差麦克风7插入于行波管3中,使其位于行波管3内中心位置并且使待测压差麦克风7的振膜(未图示)与行波管3的轴线垂直,这样可以保证声波是以0度入射角作用到待测麦克风7的振膜上,减小测试失真度。In order to test more conveniently and test accuracy is higher, as shown in Figure 4, the
与相关技术相比,本发明的压差麦克风测试系统因其体积小使用方便,且不用在消声室中使用,能用于产线上的大批量测试且测试精度高。Compared with related technologies, the differential pressure microphone testing system of the present invention is convenient to use due to its small size and does not need to be used in an anechoic chamber, and can be used for mass testing on production lines with high testing accuracy.
以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。What has been described above is only the embodiment of the present invention. It should be pointed out that for those of ordinary skill in the art, improvements can be made without departing from the creative concept of the present invention, but these all belong to the present invention. scope of protection.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010528196.3A CN101986723B (en) | 2010-11-01 | 2010-11-01 | Test system and test method for pressure gradient microphone |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010528196.3A CN101986723B (en) | 2010-11-01 | 2010-11-01 | Test system and test method for pressure gradient microphone |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101986723A CN101986723A (en) | 2011-03-16 |
CN101986723B true CN101986723B (en) | 2014-04-30 |
Family
ID=43711023
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201010528196.3A Expired - Fee Related CN101986723B (en) | 2010-11-01 | 2010-11-01 | Test system and test method for pressure gradient microphone |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101986723B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102395095A (en) * | 2011-12-06 | 2012-03-28 | 歌尔声学股份有限公司 | Test method of omnidirectional microphone and test equipment thereof |
TWI429298B (en) * | 2013-01-29 | 2014-03-01 | Hong Xiang Technology | Microphone calibration method |
CN109870505A (en) * | 2017-12-01 | 2019-06-11 | 中国飞机强度研究所 | It is a kind of using dynamic speaker as the portable travelling-wave tubes experimental rig of sound source |
CN109121062B (en) * | 2018-10-17 | 2023-01-13 | 杭州兆华电子股份有限公司 | High sound pressure microphone testing arrangement |
CN113615212B (en) * | 2019-07-15 | 2024-04-12 | 中科新悦(苏州)科技有限公司 | High-sound-pressure microphone calibration device, system and method |
CN113490122B (en) * | 2021-07-06 | 2025-06-06 | 天键电声股份有限公司 | A micro speaker test fixture for equivalent free field testing |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100904162B1 (en) * | 2009-01-13 | 2009-06-22 | 에버테크노 주식회사 | Component transfer device of microphone test system |
CN201403203Y (en) * | 2009-03-31 | 2010-02-10 | 比亚迪股份有限公司 | Microphone electro-acoustic testing system |
CN101651920A (en) * | 2009-06-19 | 2010-02-17 | 瑞声声学科技(深圳)有限公司 | Microphone distortion test system |
-
2010
- 2010-11-01 CN CN201010528196.3A patent/CN101986723B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100904162B1 (en) * | 2009-01-13 | 2009-06-22 | 에버테크노 주식회사 | Component transfer device of microphone test system |
CN201403203Y (en) * | 2009-03-31 | 2010-02-10 | 比亚迪股份有限公司 | Microphone electro-acoustic testing system |
CN101651920A (en) * | 2009-06-19 | 2010-02-17 | 瑞声声学科技(深圳)有限公司 | Microphone distortion test system |
Also Published As
Publication number | Publication date |
---|---|
CN101986723A (en) | 2011-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101986723B (en) | Test system and test method for pressure gradient microphone | |
CN101984680B (en) | Test device of pressure microphone and test method thereof | |
Aurégan et al. | Experimental evidence of an instability over an impedance wall in a duct with flow | |
JP5166122B2 (en) | Voice input device | |
CN101651920B (en) | Microphone Distortion Test System | |
JP5129024B2 (en) | Audio input device and audio conference system | |
CN101981942B (en) | Microphone unit, near-talk voice input device and information processing system | |
CN102547547A (en) | Microphone test tool, test system and test method | |
Chen et al. | Pressure amplification and directional acoustic sensing based on a gradient metamaterial coupled with space-coiling structure | |
US11689836B2 (en) | Earloop microphone | |
CN109443515A (en) | Test macro and method in a kind of small size hydrophone sensitivity air | |
US12035103B2 (en) | Speaker apparatus | |
US8135144B2 (en) | Microphone system, sound input apparatus and method for manufacturing the same | |
Zhang et al. | Multi-band asymmetric piezoelectric MEMS microphone inspired by the Ormia ochracea | |
CN103096234A (en) | Microphone testing device and method | |
CN103916810B (en) | A kind of time domain acoustic energy compared with control method and system | |
CN205491155U (en) | Microphone testing arrangement | |
Kruse et al. | An omnidirectional loudspeaker based on a ring-radiator | |
CN203167271U (en) | Microphone test device | |
US9136814B2 (en) | Method and system of equalization pre-preocessing for sound receivng system | |
CN213456592U (en) | Device for testing air permeability of tone tuning paper | |
Kaizuka et al. | Generalized radiation modes and microphone arrays for close-talking | |
Lei et al. | A Study on the Effect of Ventilation Materials on Sound Quality of In-ear Earphones | |
CN103391343B (en) | Bluetooth phone function test system and method of Bluetooth multimedia | |
CN113259819A (en) | Microphone (CN) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20170427 Address after: Singapore Ang Mo Kio 65 Street No. 10 techpoint Building 1 floor, No. 8 Co-patentee after: AAC Acoustic Technologies (Changzhou) Co.,Ltd. Patentee after: AAC TECHNOLOGIES Pte. Ltd. Address before: 518057 Nanshan District province high tech Industrial Park, Shenzhen, North West New Road, No. 18 Co-patentee before: AAC Acoustic Technologies (Changzhou) Co.,Ltd. Patentee before: AAC ACOUSTIC TECHNOLOGIES (SHENZHEN) Co.,Ltd. |
|
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140430 Termination date: 20211101 |