CN101980283A - A Dynamic Blind Element Compensation Method - Google Patents

A Dynamic Blind Element Compensation Method Download PDF

Info

Publication number
CN101980283A
CN101980283A CN 201010514996 CN201010514996A CN101980283A CN 101980283 A CN101980283 A CN 101980283A CN 201010514996 CN201010514996 CN 201010514996 CN 201010514996 A CN201010514996 A CN 201010514996A CN 101980283 A CN101980283 A CN 101980283A
Authority
CN
China
Prior art keywords
pixel
blind
value
point
pixels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 201010514996
Other languages
Chinese (zh)
Inventor
蒋亚东
刘子骥
辛勇明
王然
郑兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN 201010514996 priority Critical patent/CN101980283A/en
Publication of CN101980283A publication Critical patent/CN101980283A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

The invention discloses a method for dynamically compensating a blind pixel. The method comprises the following steps of: arranging pixel gray values of a 3*3 window matrix dot picture element from small to large according to the remarkable abnormity of the blind pixel in a local window; if the absolute value of the difference value between a medium value and other picture element gray value is greater than a preset threshold value, determining the picture element as the blind pixel; detecting all picture elements of an M*N array by using a medium gray value instead of a blind pixel gray value; and compensating all blind pixels. Therefore, a high-quality image is obtained in a display device.

Description

一种动态盲元补偿方法 A Dynamic Blind Element Compensation Method

技术领域technical field

本发明涉及非致冷红外探测技术领域,具体涉及红外图像处理中的优化的动态盲元补偿方法。The invention relates to the technical field of uncooled infrared detection, in particular to an optimized dynamic blind element compensation method in infrared image processing.

背景技术Background technique

红外焦平面阵列(Infrared Focal Plane Array,IRFPA)作为目前最新一代探测器已广泛应用于各军事、民用领域。由于制作工艺、材料等因素的影响,IRFPA器件不可避免地存在盲元问题,从而影响红外成像系统输出的图像的信噪比。盲元,或称失效元,是指IRFPA器件中响应过高或过低的单元。盲元的数量及分布严重的影响了红外成像系统的输出图像质量,盲元在图像中表现为亮点或暗点,在成像阶段对盲元进行检测和补偿,有助于改善图像的质量。As the latest generation of detectors, Infrared Focal Plane Array (IRFPA) has been widely used in various military and civilian fields. Due to the influence of manufacturing process, materials and other factors, the IRFPA device inevitably has the problem of blind elements, which affects the signal-to-noise ratio of the image output by the infrared imaging system. Blind cells, or invalid cells, refer to the cells whose response is too high or too low in the IRFPA device. The number and distribution of blind pixels seriously affect the output image quality of infrared imaging systems. Blind pixels appear as bright or dark spots in the image. Detection and compensation of blind pixels in the imaging stage can help improve image quality.

M×N的红外焦平面阵列探测器,像元响应率R(i,j)为IRFPA在一帧周期和一定动态范围条件下,像元对每单位辐照功率产生的输出信号电压,

Figure BSA00000312956500011
式中i=1~M,j=1~N,Vs(i,j)为第(i,j)像元对应于辐照功率P的响应电压,P为第(i,j)像元所对接受的辐照功率。For M×N infrared focal plane array detectors, the pixel responsivity R (i, j) is the output signal voltage generated by the pixel for each unit of irradiation power under the condition of one frame period and a certain dynamic range of IRFPA,
Figure BSA00000312956500011
In the formula, i=1~M, j=1~N, V s (i, j) is the response voltage of the (i, j)th pixel corresponding to the irradiation power P, and P is the (i, j)th pixel The received radiation power.

IRFPA各有效像元响应率的平均值,

Figure BSA00000312956500012
式中M和N分别是IRFPA像元的行数和列数;d和h分别是死像元数和过热像元数。实际测量中,d和h是经过多次迭代计算得到。The average value of the response rate of each effective pixel of IRFPA,
Figure BSA00000312956500012
In the formula, M and N are the number of rows and columns of IRFPA pixels, respectively; d and h are the number of dead pixels and overheated pixels, respectively. In actual measurement, d and h are calculated through multiple iterations.

盲元包括死像元和过热像元,根据国标GB/T17444-1998《红外焦平面验收测试技术标准》中规定,死像元是响应率低于平均响应率1/10的像元,过热像元是响应率高于平均响应率10倍的像元。一般来说,IRFPA上正常探测单元所成像的响应在一定动态范围内是随着外界温度呈线性变化的,如图1中的曲线2;盲元则不同,其响应原理正常的动态范围,并且一般不随外界环境变化。此外,根据响应值大小,盲元包括死像元和过热像元,分别如图1的曲线1和曲线3。Blind pixels include dead pixels and overheated pixels. According to the national standard GB/T17444-1998 "Technical Standards for Infrared Focal Plane Acceptance Test", dead pixels are pixels whose response rate is lower than 1/10 of the average response rate, and overheated pixels A cell is a cell with a response rate 10 times higher than the average response rate. Generally speaking, the response imaged by the normal detection unit on the IRFPA changes linearly with the external temperature within a certain dynamic range, as shown in curve 2 in Figure 1; the blind unit is different, its response principle is the normal dynamic range, and Generally do not change with the external environment. In addition, according to the size of the response value, blind pixels include dead pixels and overheated pixels, as shown in curve 1 and curve 3 in Figure 1, respectively.

对盲元的处理包括盲元检测和盲元补偿两个方面。盲元检测是盲元补偿的前提和基础,检测不当则会给红外图像带来额外的噪声。盲元补偿是采用盲元周围的有效图像信息或前后帧的图像信息对盲元位置的信息进行预测和替代的过程,因此盲元补偿的思路有两个方向:第一,时间补偿,即利用序列图像的帧间相关性,从相邻帧获取补偿信息。其优点在于能够很好保持成像的边缘,缺点是对前后帧的依赖性强;第二,空间补偿,它是借助盲元周围的像素信息对其进行补偿。如线性插值补偿、中值滤波等。此类方法优点在于流程简单、可操作性强。The processing of blind cells includes two aspects of blind cell detection and blind cell compensation. Blind element detection is the premise and foundation of blind element compensation, and improper detection will bring additional noise to infrared images. Blind pixel compensation is the process of predicting and replacing the information of the blind pixel position using the effective image information around the blind pixel or the image information of the previous and subsequent frames. Therefore, the idea of blind pixel compensation has two directions: first, time compensation, that is, using Inter-frame correlation of sequential images, obtaining compensation information from adjacent frames. Its advantage is that it can keep the edge of the image very well, but its disadvantage is that it has a strong dependence on the front and back frames; second, spatial compensation, which uses the pixel information around the blind pixel to compensate it. Such as linear interpolation compensation, median filter, etc. The advantage of this method is that the process is simple and operable.

发明内容Contents of the invention

本发明所要解决的问题是:如何提供一种动态盲元补偿方法,该方法可操作性强,通用性好,能有效地检测出盲元,并对盲元进行补偿。The problem to be solved by the present invention is: how to provide a dynamic blind element compensation method, which has strong operability and good versatility, and can effectively detect and compensate blind elements.

本发明所提出的技术问题是这样解决的:提供一种动态盲元补偿方法,对于M×N的红外焦平面阵列,设S(i,j)是中心为(i,j),大小为3×3的窗口矩阵,其中i∈(1,M),j∈(1,N),窗口内各像元的像素灰度记为SK(i,j),k=1,2,...9,SK(i,j)从S1(i,j)开始到S9(i,j)由小到大排列,其中中值的像素灰度为S5(i,j),包括以下步骤:The technical problem proposed by the present invention is solved like this: provide a kind of dynamic blind element compensation method, for the infrared focal plane array of M * N, suppose S (i, j) be that the center is (i, j), and size is 3 ×3 window matrix, where i ∈ (1, M), j ∈ (1, N), the pixel grayscale of each pixel in the window is recorded as S K (i, j), k=1, 2, .. .9, S K (i, j) is arranged from S 1 (i, j) to S 9 (i, j) from small to large, and the pixel grayscale of the median value is S 5 (i, j), including The following steps:

步骤1:将3×3窗口矩阵S(i,j)沿图像数据进行行方向移动,即中心点(i,j)遍历从点(2,2)开始到(2,j)的所有点,j=2,3...N-2;Step 1: Move the 3×3 window matrix S(i, j) in the row direction along the image data, that is, the center point (i, j) traverses all points from point (2, 2) to (2, j), j=2,3...N-2;

步骤2:每次移动一个点,将S(i,j)内的所有像元的像素灰度值按从小到大排列,取中间值S5(i,j);Step 2: Move one point each time, arrange the pixel gray values of all pixels in S(i, j) from small to large, and take the middle value S 5 (i, j);

步骤3:计算出除中值外的其他像元灰度值Sk(i,j)与中值S5(i,j)的差值ΔSk(i,j),ΔSk(i,j)=|S5(i,j)-Sk(i,j)|;Step 3: Calculate the difference ΔS k (i, j) and ΔS k (i, j) between other pixel gray values S k (i, j) and the median S 5 (i, j) )=|S 5 (i, j)-S k (i, j)|;

步骤4:比较所有ΔSk(i,j)和预设阈值δ的大小,若ΔSk(i,j)>δ,则该点是盲元,用S5(i,j)代替该点像素灰度值Sk(i,j);Step 4: Compare all ΔS k (i, j) with the preset threshold δ, if ΔS k (i, j) > δ, then the point is a blind element, and replace the pixel of this point with S 5 (i, j) Gray value S k (i, j);

步骤5:返回步骤1,直到j=N-1,跳到下一行,开始遍历新的一行;Step 5: Return to step 1 until j=N-1, skip to the next row, and start traversing a new row;

步骤6:直到(i,j)遍历所有非边缘的点像元,Step 6: Traverse all non-edge point pixels until (i, j),

S={(i,j)|i∈[2,M-1],j∈[2,N-1]}。S = {(i, j) | i ∈ [2, M-1], j ∈ [2, N-1]}.

红外成像系统主要是对景物的实时动态成像,本发明是供一种优化的中值滤波盲元补偿技术,其算法简单,可对动态盲元进行检测和补偿。有益效果在于:算法简单,易于硬件实现,通用性好,能够有效地检测出盲元,并保持图像的边缘细节。能够实现盲元检测和盲元补偿的合一,不用标记盲元的位置,在快速地检测出盲元的同时,能有效地进行盲元补偿。是一种即时处理的动态的盲元补偿算法,利用场景运动过程中有效像元和盲元在局部窗口中的响应存在的显著差异性,既可以对红外焦平面阵列的固定盲元进行检测补偿,也可以检测和补偿图像的随机盲元。The infrared imaging system is mainly for real-time dynamic imaging of the scenery. The present invention provides an optimized median filtering blind element compensation technology, which has a simple algorithm and can detect and compensate dynamic blind elements. The beneficial effect lies in that the algorithm is simple, easy to realize by hardware, has good versatility, can effectively detect blind elements, and maintain image edge details. The combination of blind pixel detection and blind pixel compensation can be realized, and blind pixel compensation can be effectively performed while quickly detecting blind pixels without marking the position of blind pixels. It is a real-time processing dynamic blind element compensation algorithm, which can detect and compensate the fixed blind element of the infrared focal plane array by using the significant difference in the response of the effective pixel and the blind element in the local window during the scene movement. , can also detect and compensate random blind pixels of images.

附图说明Description of drawings

图1为红外焦平面阵列探测器像元响应曲线示意图,曲线1为死像元,曲线2为正常像元,曲线3为过热像元;Figure 1 is a schematic diagram of the pixel response curve of the infrared focal plane array detector, curve 1 is a dead pixel, curve 2 is a normal pixel, and curve 3 is an overheated pixel;

图2为3×3的窗口矩阵S(i,j)中各像元的像素灰度值从小到大排列的标记图,方框中k=1,2...9,依次代表像元的像素灰度值S1(i,j),S2(i,j)...S9(i,j),其中灰度中值始终标记为S5(i,j);Fig. 2 is a marker diagram of the pixel gray values of each pixel in the 3×3 window matrix S(i, j) arranged from small to large, and k=1, 2...9 in the box represent the pixels Pixel gray value S 1 (i, j), S 2 (i, j)...S 9 (i, j), where the gray median value is always marked as S 5 (i, j);

图3中间灰色的方框2为窗口矩阵S(i,j)的中心像元(i,j)在M×N像元中要遍历的像元点集合S={(i,j)|i∈[2,M-1],j∈[2,N-1]}。The gray box 2 in the middle of Fig. 3 is the pixel point set S={(i, j) | ∈ [2, M-1], j ∈ [2, N-1]}.

具体实施方式Detailed ways

下面结合附图对本发明作进一步描述:The present invention will be further described below in conjunction with accompanying drawing:

本发明的详细技术方案为:Detailed technical scheme of the present invention is:

对于M×N的红外焦平面阵列,设S(i,j)是中心为(i,j),大小为3×3的窗口矩阵,其中i∈(1,M),j∈(1,N),窗口内各像元的像素灰度记为Sk(i,j),k=1,2K 9。Sk(i,j)从S1(i,j)开始到S9(i,j)由小到大排列,其中中值的像素灰度为S5(i,j),如图2。For an M×N infrared focal plane array, let S(i, j) be a window matrix with a center at (i, j) and a size of 3×3, where i∈(1,M), j∈(1,N ), the pixel grayscale of each pixel in the window is denoted as S k (i, j), k=1, 2K 9 . S k (i, j) is arranged from small to large from S 1 (i, j) to S 9 (i, j), and the gray level of the median pixel is S 5 (i, j), as shown in Figure 2.

中值滤波盲元补偿算法过程如下:The process of median filter blind element compensation algorithm is as follows:

(1).将3×3窗口矩阵S(i,j)沿图像数据进行行方向移动,即中心点(i,j)从点(2,2)开始遍历所有点(2,j),j=2,3...N-2;(1). Move the 3×3 window matrix S(i, j) along the row direction of the image data, that is, the center point (i, j) traverses all points (2, j) from point (2, 2), j =2,3...N-2;

(2).每次移动一个点,将S(i,j)内的所有像元的像素灰度值按从小到大排列,如图2,取中间值S5(i,j);(2). Move one point each time, arrange the pixel gray values of all pixels in S(i, j) from small to large, as shown in Figure 2, take the middle value S 5 (i, j);

(3).计算出除中值外的其他像元灰度值Sk(i,j)与中值S5(i,j)的差值ΔSk(i,j),ΔSk(i,j)=|S5(i,j)-Sk(i,j)|(3). Calculate the difference ΔS k (i, j) and ΔS k (i, j) between other pixel gray values S k (i, j) and the median S 5 (i, j) except the median value j)=|S 5 (i, j)-S k (i, j)|

(4).比较所有ΔSk(i,j)和预设阈值δ的大小,若ΔSk(i,j)>δ,则该点是盲元,用S5(i,j)代替该点像素灰度值Sk(i,j)(4). Compare all ΔS k (i, j) with the preset threshold δ, if ΔS k (i, j) > δ, then the point is a blind element, and replace this point with S 5 (i, j) Pixel gray value S k (i, j)

(5).返回步骤(1),直到j=N-1,跳到下一行,开始遍历新的一行;(5). Return to step (1), until j=N-1, skip to the next row, and start traversing a new row;

(6).直到(i,j)遍历所有非边缘的点像元,S={(i,j)|i∈[2,M-1],j∈[2,N-1]},如图3。(6). Until (i, j) traverses all non-edge point pixels, S={(i, j)|i∈[2, M-1], j∈[2, N-1]}, such as image 3.

根据盲元的局部显著异常性,用中心为(i,j),大小为3×3的窗口矩阵S(i,j),遍历检测M×N红外焦平面所成图像的盲元。先将S(i,j)内所有像元的灰度值,从小到大排列,标记为S1(i,j),S2(i,j)...S9(i,j),中值为S5(i,j)。取中值和其他灰度值的差值,其差值的绝对值ΔSk(i,j)=|S5(i,j)-Sk(i,j)|,比较ΔSk(i,j)和预设阈值δ的大小,若ΔSk(i,j)>δ,则该点是盲元,用S5(i,j)代替该点像素灰度值Sk(i,j)。用窗口矩阵S(i,j)沿行方向检测补偿M×N像元阵列的所有盲元点。According to the local significant abnormality of the blind cells, use the window matrix S(i, j) whose center is (i, j) and whose size is 3×3, to traverse and detect the blind cells of the image formed by M×N infrared focal planes. First arrange the gray values of all pixels in S(i, j) from small to large, and mark them as S 1 (i, j), S 2 (i, j)...S 9 (i, j), The median value is S 5 (i,j). Take the difference between the median value and other gray values, the absolute value of the difference ΔS k (i, j)=|S 5 (i, j)-S k (i, j)|, compare ΔS k (i, j) j) and the size of the preset threshold δ, if ΔS k (i, j) > δ, then the point is a blind element, and S 5 (i, j) is used to replace the gray value of the point pixel S k (i, j) . Use the window matrix S(i, j) to detect and compensate all blind pixel points of the M×N pixel array along the row direction.

Claims (1)

1. dynamic blind element compensation method, for the infrared focal plane array of M * N, establish S (i, j) be the center be (i, j), size is 3 * 3 window matrix, wherein (1, M), (1, N), the pixel grey scale of each pixel is designated as S to j ∈ to i ∈ in the window k(i, j), k=1,2 ... 9, S k(i is j) from S 1(i j) begins to S 9(wherein the pixel grey scale of intermediate value is S for i, j) ascending arrangement 5(i j), is characterized in that, may further comprise the steps:
Step 1: with 3 * 3 window matrix S (i j) carries out line direction along view data and moves, promptly central point (i, j) traversal from point (2,2) begin to (2, j) all point, j=2,3...N-2;
Step 2: move a point, (i, j) grey scale pixel value of Nei all pixels is got intermediate value S by arranging from small to large with S at every turn 5(i, j);
Step 3: calculate other pixel gray-scale values S except that intermediate value k(i is j) with intermediate value S 5(i, difference DELTA S j) k(i, j), Δ S k(i, j)=| S 5(i, j)-S k(i, j) |;
Step 4: all Δ S relatively k(i, j) and the size of predetermined threshold value δ, if Δ S k(i, j)>δ, then this point is a blind element, uses S 5(i j) replaces this grey scale pixel value S k(i, j);
Step 5: return step 1,, jump to next line, begin to travel through new delegation up to j=N-1;
Step 6: up to (i j) travels through the some pixel at all non-edges,
S={(i,j)|i∈[2,M-1],j∈[2,N-1]}。
CN 201010514996 2010-10-21 2010-10-21 A Dynamic Blind Element Compensation Method Pending CN101980283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010514996 CN101980283A (en) 2010-10-21 2010-10-21 A Dynamic Blind Element Compensation Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010514996 CN101980283A (en) 2010-10-21 2010-10-21 A Dynamic Blind Element Compensation Method

Publications (1)

Publication Number Publication Date
CN101980283A true CN101980283A (en) 2011-02-23

Family

ID=43600784

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010514996 Pending CN101980283A (en) 2010-10-21 2010-10-21 A Dynamic Blind Element Compensation Method

Country Status (1)

Country Link
CN (1) CN101980283A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103017911A (en) * 2012-12-17 2013-04-03 无锡艾立德智能科技有限公司 Infrared blind pixel compensation circuit and operating method thereof
CN103268594A (en) * 2013-05-17 2013-08-28 山东神戎电子股份有限公司 Blind pixel replacing method of thermal infrared imager system
CN103459997A (en) * 2011-04-06 2013-12-18 丰田自动车株式会社 Thermal image smoothing method, surface temperature-measuring method, and surface temperature-measuring device
CN103793900A (en) * 2014-01-24 2014-05-14 南京信息工程大学 Infrared blind element compensation method based on blended self-adaption regression
CN104406700A (en) * 2014-11-25 2015-03-11 工业和信息化部电子第五研究所 Storage failure rate detecting method and storage reliability detecting method of infrared focal plane array chip
CN105928622A (en) * 2016-04-26 2016-09-07 成都市晶林科技有限公司 Infrared focal plane detector blind pixel correction method
CN106327474A (en) * 2016-08-25 2017-01-11 上海航天控制技术研究所 Automatic online blind pixel detection method
CN108513075A (en) * 2018-04-17 2018-09-07 烟台艾睿光电科技有限公司 A kind of image processing method, device, equipment, medium and infrared imaging device
CN109270591A (en) * 2018-10-16 2019-01-25 烟台艾睿光电科技有限公司 Infrared cartridge assemblies noise blind element lookup method, device and infrared cartridge assemblies
CN109709624A (en) * 2019-02-27 2019-05-03 中国科学院上海技术物理研究所 A method to determine the flash element of infrared detector based on LSTM model
CN109767441A (en) * 2019-01-15 2019-05-17 电子科技大学 A method for automatic detection of blind meta tags
CN111369449A (en) * 2020-02-21 2020-07-03 南京信息工程大学 Infrared Blind Element Compensation Method Based on Generative Adversarial Networks
CN112284539A (en) * 2020-09-25 2021-01-29 中国科学院上海技术物理研究所 Blind pixel compensation method for on-orbit short wave infrared imaging spectrometer
CN113038047A (en) * 2019-12-25 2021-06-25 中国电子科技集团公司第二十四研究所 Digital pixel readout circuit, pixel array and image sensor
CN116183037A (en) * 2023-03-01 2023-05-30 北京波谱华光科技有限公司 Scanning method for random appearance type blind pixels

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101241592A (en) * 2007-02-07 2008-08-13 南京理工大学 Real-time Restoration Method of Moving Target in High Frame Rate Infrared Image Sequence

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101241592A (en) * 2007-02-07 2008-08-13 南京理工大学 Real-time Restoration Method of Moving Target in High Frame Rate Infrared Image Sequence

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
《Journal of Beijing Institute of Technology》 20091231 Liu Chong-liang et al New Dynamic Algorithm for IRFPA Bad Pixel Detection and Compensation Based on Statistics 第464-465页2.1节及图1 1 第18卷, 第4期 2 *
《弹箭与制导学报》 20080229 张小龙 等 红外焦平面阵列盲元检测与补偿算法研究 全文 1 第28卷, 第1期 2 *
《激光与红外》 20070131 李言俊 等 一种新的红外焦平面阵列盲元检测方法 全文 1 第37卷, 第1期 2 *
《激光与红外》 20081231 陈大川 等 红外焦平面阵列盲元检测及补偿算法 全文 1 第38卷, 第12期 2 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103459997A (en) * 2011-04-06 2013-12-18 丰田自动车株式会社 Thermal image smoothing method, surface temperature-measuring method, and surface temperature-measuring device
CN103459997B (en) * 2011-04-06 2015-07-15 丰田自动车株式会社 Thermal image smoothing method, surface temperature-measuring method, and surface temperature-measuring device
CN103017911B (en) * 2012-12-17 2014-12-10 无锡艾立德智能科技有限公司 Infrared blind pixel compensation circuit and operating method thereof
CN103017911A (en) * 2012-12-17 2013-04-03 无锡艾立德智能科技有限公司 Infrared blind pixel compensation circuit and operating method thereof
CN103268594A (en) * 2013-05-17 2013-08-28 山东神戎电子股份有限公司 Blind pixel replacing method of thermal infrared imager system
CN103793900B (en) * 2014-01-24 2016-05-25 南京信息工程大学 A kind of infrared blind element compensation method returning based on mixed self-adapting
CN103793900A (en) * 2014-01-24 2014-05-14 南京信息工程大学 Infrared blind element compensation method based on blended self-adaption regression
CN104406700B (en) * 2014-11-25 2017-09-19 工业和信息化部电子第五研究所 Detection method of storage failure rate and reliability of infrared focal plane array chips
CN104406700A (en) * 2014-11-25 2015-03-11 工业和信息化部电子第五研究所 Storage failure rate detecting method and storage reliability detecting method of infrared focal plane array chip
WO2017185443A1 (en) * 2016-04-26 2017-11-02 成都市晶林科技有限公司 Blind pixel correction method for infrared focal plane detector
CN105928622A (en) * 2016-04-26 2016-09-07 成都市晶林科技有限公司 Infrared focal plane detector blind pixel correction method
CN106327474B (en) * 2016-08-25 2019-03-22 上海航天控制技术研究所 A kind of automatic on-line blind pixel detection method
CN106327474A (en) * 2016-08-25 2017-01-11 上海航天控制技术研究所 Automatic online blind pixel detection method
CN108513075A (en) * 2018-04-17 2018-09-07 烟台艾睿光电科技有限公司 A kind of image processing method, device, equipment, medium and infrared imaging device
CN108513075B (en) * 2018-04-17 2020-09-11 烟台艾睿光电科技有限公司 Image processing method, device, equipment, medium and infrared imaging device
CN109270591A (en) * 2018-10-16 2019-01-25 烟台艾睿光电科技有限公司 Infrared cartridge assemblies noise blind element lookup method, device and infrared cartridge assemblies
CN109767441A (en) * 2019-01-15 2019-05-17 电子科技大学 A method for automatic detection of blind meta tags
CN109709624A (en) * 2019-02-27 2019-05-03 中国科学院上海技术物理研究所 A method to determine the flash element of infrared detector based on LSTM model
CN113038047A (en) * 2019-12-25 2021-06-25 中国电子科技集团公司第二十四研究所 Digital pixel readout circuit, pixel array and image sensor
CN111369449A (en) * 2020-02-21 2020-07-03 南京信息工程大学 Infrared Blind Element Compensation Method Based on Generative Adversarial Networks
CN112284539A (en) * 2020-09-25 2021-01-29 中国科学院上海技术物理研究所 Blind pixel compensation method for on-orbit short wave infrared imaging spectrometer
CN116183037A (en) * 2023-03-01 2023-05-30 北京波谱华光科技有限公司 Scanning method for random appearance type blind pixels
CN116183037B (en) * 2023-03-01 2024-01-23 北京波谱华光科技有限公司 Scanning method for random appearance type blind pixels

Similar Documents

Publication Publication Date Title
CN101980283A (en) A Dynamic Blind Element Compensation Method
CN101666682B (en) Neural network non-uniformity correction method based on scene statistics
CN101431597B (en) Method for reading a two-dimensional matrix of pixels and device for implementing the method
CN102410880B (en) Infrared focal plane array blind pixel detection method based on integral time adjustment
US9787911B2 (en) Systems and methods for photometric normalization in array cameras
WO2015135394A1 (en) Image acquisition method and image acquisition apparatus
US9124832B2 (en) Dynamic, local edge preserving defect pixel correction for image sensors
US20140211048A1 (en) Dynamic, local edge preserving defect pixel correction for image sensors with spatially arranged exposures
CN102968765B (en) Method for correcting infrared focal plane heterogeneity based on sigma filter
CN102778296B (en) Total variation-based self-adaptation non-uniformity correction method for infrared focal plane
CN102300057A (en) Method for correcting response inconsistency of linear array CCD (Charge Coupled Device) image elements
CN103076096A (en) Infrared nonuniformity correcting algorithm based on mid-value histogram balance
CN111145115B (en) Non-uniform correction method based on scene adaptation and hardware implementation device thereof
CN111080561A (en) Time domain high-pass filtering method
US20110069204A1 (en) Method and apparatus for image correction
CN105869129A (en) Residual heterogeneous noise elimination method for aiming at thermal infrared image after heterogeneous correction
Sui et al. A novel non-uniformity evaluation metric of infrared imaging system
CN108375420B (en) Correction method based on segmented data and blocking piece data
CN111998961B (en) Infrared focal plane non-uniformity correction method based on pixel point temperature drift estimation
CN111932478A (en) Self-adaptive non-uniform correction method for uncooled infrared focal plane
CN115002360B (en) A non-uniformity correction method for infrared video based on robust estimation
CN105139354A (en) Blind element compensation method for infrared or terahertz image
US20220141404A1 (en) Cmos image sensor with image black level compensation and method
CN115019156A (en) Blind flash element detection and compensation method based on space-time characteristics
CN111076815B (en) A method for correcting non-uniformity of hyperspectral images

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20110223