CN101975900A - 一种基于有源功率的超导磁体失超检测系统 - Google Patents

一种基于有源功率的超导磁体失超检测系统 Download PDF

Info

Publication number
CN101975900A
CN101975900A CN 201010299122 CN201010299122A CN101975900A CN 101975900 A CN101975900 A CN 101975900A CN 201010299122 CN201010299122 CN 201010299122 CN 201010299122 A CN201010299122 A CN 201010299122A CN 101975900 A CN101975900 A CN 101975900A
Authority
CN
China
Prior art keywords
circuit
output signal
active power
voltage
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 201010299122
Other languages
English (en)
Inventor
周雪松
权博
马幼捷
宋代春
李圣明
陈浩
刘思佳
梁芳
田程文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Technology
Original Assignee
Tianjin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Technology filed Critical Tianjin University of Technology
Priority to CN 201010299122 priority Critical patent/CN101975900A/zh
Publication of CN101975900A publication Critical patent/CN101975900A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

一种基于有源功率的超导磁体失超检测系统。包括第一和第二超导线圈、电压传感器电路、差分运算放大器、绝对值电路、模拟乘法电路、低通滤波电路、比较电路和输出信号等。超导线圈上的电压经过电压传感器电路后作为差分运算放大电路的输人,由该电路对输入的电压信号取差值,并对其进行放大,输出信号为K(u1-u2),绝对值电路对输出信号取绝对值,再经过模拟乘法电路实现有源功率检测P=K(u1-u2)*i。信号P经过低通滤波器、比较电路后,根据检测到的P值的大小,将输出信号转换为高电平或低电平,当超导线圈未失超时,P值小于门阀电压,输出信号为高电平;当超导线圈失超时,P值大于门阀电压,输出信号为低电平,这样根据输出信号就可以判断超导是否失超。

Description

一种基于有源功率的超导磁体失超检测系统
【技术领域】
本发明涉及一种基于光声技术的超导磁体失超检测系统及检测方法,属于电工技术领域。
【背景技术】
由于我国经济的告诉发展和电力资源的分布不平衡性,使得我国电力系统具有庞大、复杂、互联等特点的系统。一系列的挑战和问题随之出现。如:增加电缆传输容量、降低电网损耗、电力负荷的复杂性、电网的安全问题日益突出、对电能质量的提高等等。超导技术和电力技术的结合,形成超导电力技术,可以从根本上应对上述挑战、解决上述难题。采用超导电力技术,提高单机容量和电网的输送容量,降低电网的损耗,限制故障短路电流、提高电网的安全性和改善电力系统动态特性改善电能的质量、提高电力系统运行的稳定性和可靠性、降低电压等级、提高电网的安全性、降低电网的占地面积和电网的造价及电网的改造成本,并使超大规模电网的实现成为可能。
超导电力技术的核心是超导磁体的稳定性化设计,其主要考虑如何防止超导体出现常态区,或者一旦出现常态区时,如何设法使常态区不致扩散,并最终恢复超导态运行。因为超导磁体的失超总是从某一点开始,雪崩式地迅速扩散至整个磁体,最终将磁体损坏。因此,灵敏的失超检测是很有必要的。
对于超导磁体的失超检测有过多种探索,包括冷却媒体的温升、压力、流速检测、电压检测、超声波检测等多种方法。冷却媒体的温升、压力、流速的变化必然依存于失超后磁体上产生的热量,存在一个时间滞后问题;超声波检测法灵敏度较高,对电流和温度变化都很敏感,能在超导电缆出现局部热量积累或绝缘损坏而尚未发生失超时观测到传递函数的变化,预先采取一定的措施将失超损失减到最低。但该方法容易受外部电磁场干扰,而且需附加一套超声波发生接收装置,在现场实现较困难。电压检测法和桥式电路检测法都存在噪声干扰的问题。
【发明内容】
为克服现有技术的不足,本发明提供了一种基于有源功率的超导磁体失超检测系统,可以很好的解决桥式电路存在的问题。它对交流和直流电路同样适用,且不受噪声干扰的影响。
本发明提供的基于有源功率的超导磁体失超检测系统依次包括第一和第二超导线圈、电压传感器电路、差分运算放大器、绝对值电路、模拟乘法电路、低通滤波电路、比较电路和输出信号;第一和第二超导线圈上的电压经过电压传感器电路后作为差分运算放大电路的输人,由差分运算放大电路对输入的电压信号取差值,并对其进行放大,差分运算放大电路将输出信号K(u1-u2)输入绝对值电路,绝对值电路对输出信号K(u1-u2)取绝对值,经过模拟乘法电路实现有源功率检测P=K(u1-u2)*i,K的大小由电路中的具体参数来确定;根据改进后的有源功率检测法,附加二阶巴特沃斯低通滤波器,有源功率信号P经过低通滤波器并使它在通带范围内具有最平坦的幅频响应,在截止频率附近具有较陡的幅频特性;比较电路根据检测到的P值的大小,将输出信号转换为高电平或低电平,当超导线圈未失超时,P值小于门阀电压,输出信号为高电平;当超导线圈失超时,P值大于门阀电压,输出信号为低电平,这样根据输出信号就可以判断超导是否失超。
所述的电压传感器电路的构造是:第一超导线圈与第一限流电阻串联后连接第一霍尔电压传感器,第一霍尔电压传感器的输出经第三取样电阻连接电路的输出端,第二超导线圈与第二限流电阻串联后连接第二霍尔电压传感器,第二霍尔电压传感器的输出经第四取样电阻连接电路的另一输出端,将此量输出端作为差分运算放大电路的输入端。经过绝对值电路,不仅能够获得与被测电压成正比的电压信号,而且可以对输入信号中的电磁干扰进行隔离,提高检测精度。
框图所述中的差分放大电路和模拟乘法电路构成一个差分放大及模拟乘法电路,实现了模块化设计。本发明中,差分运放选用精密低功耗仪表放大器INA128,R5和R6为限流电阻,R7为增益电阻,其输出为(1+5OKΩ/R5)(u1-u2)。运放A1和A2组成绝对值电路,对前级电路的输出信号取绝对值,该运放宜选用低功耗、高速度的集成运算放大器。模拟乘法器选用精度高、线性度好的集成芯片RC4200,端口Port1为与超导线圈串联的分流器上的电流,经过模拟乘法电路实现有源功率检测,P=(u1-u2)*i。
本发明的优点和积极效果:
本发明提供了一种基于有源功率的新检测方法,该方法能准确、快速、及时地检测超导磁体每次失超信号,保证了失超保护装置及时准确的动作,进而保证了超导磁体的安全稳定运行。与电压信号检测法相比,该方法无需在每匝线圈上都安装电压传感器,提高了检测灵敏度。与桥路电路检测法相比,该方法能够很好的不受噪声干扰的影响,能很好的应用于交直流系统,克服了桥路电路检测法用于交流电路时,外接电阻损耗能量的缺点。该输出信号可以与数字信号处理(DSP)技术结合,经过软件编程控制保护回路的及时动作,为超导磁体提供一套快速实时的数字式失超保护装置。
【附图说明】
图1为本发明的失超信号检测系统框图。
图2为本发明与数字信号处理(DSP)技术相结合的硬件结构框图
图3为本发明的电压传感器电路。
图4为本发明的差分放大及模拟乘法电路。
图5为有源功率检测法,其中,
图5-1有源功率检测法的原理图;
图5-2为改进后的有源功率检测法原理框图。
【具体实施方式】
下面结合附图对本发明做进一步描述:
本发明如图1所示。图1给出了失超信号检测系统框图,该系统由超导线圈、电压传感器电路、差分运算放大器、绝对值电路、模拟乘法电路、低通滤波电路、比较电路和输出信号八部分组成。其工作过程是:超导线圈L1和L2上的电压经过电压传感器电路后作为差分运算放大电路的输人,该电路对输入的电压信号取差值,并可对其进行放大,输出信号为K(u1-u2),绝对值电路对其取绝对值,经过模拟乘法电路实现有源功率检测P=K(u1-u2)*i,K的大小由电路中的具体参数来确定。根据改进后的有源功率检测法,附加低通滤波电路,选用二阶巴特沃斯低通滤波器,使其在通带范围内具有最平坦的幅频响应,在截止频率附近具有较陡的幅频特性。比较电路根据检测到的P值的大小,将输出信号转换为高电平或低电平,当超导线圈未失超时,P值小于门阀电压,输出信号为高电平;当超导线圈失超时,P值大于门阀电压,输出信号为低电平,这样根据输出信号就可以判断超导是否失超。
图3是本发明的电压传感器电路。图中L1和L2为超导线圈,R1和R2为限流电阻,R3和R4为取样电阻,为了获得良好的线性度,U1和U2采用霍尔电压传感器。这样经过隔离电路,不仅能够获得与被测电压成正比的电压信号,而且可以对输入信号中的电磁干扰进行隔离,提高检测精度。
图4是本发明的差分放大及模拟乘法电路。本发明中,差分运放选用精密低功耗仪表放大器INA128,R3和R4为限流电阻,R5为增益电阻,其输出为(1+5OKΩ/R5)(u1-u2)。运放A1和A2组成绝对值电路,对前级电路的输出信号取绝对值,该运放宜选用低功耗、高速度的集成运算放大器。模拟乘法器选用精度高、线性度好的集成芯片RC4200,端口Port1为与超导线圈串联的分流器上的电流,经过模拟乘法电路实现有源功率检测,P=(u1-u2)*i。
图2是本发明与数字信号处理(DSP)技术相结合的硬件结构框图。采用了模块化设计的思想,整个硬件装置分为失超信号检测装置、数模转换及数据处理模块、锁相环模块、控制模块和接口模块组成。其中信号调理模块由放大电路和滤波电路组成;由于所选用的DSP芯片功能强大,因此包括AD数模转换模块和数据处理模块也包括了许多外围存储器件;接口模块主要由各种外围接口的控制电路组成;锁相环模块和控制模块是提升系统性能的控制电路。
以上所述可以看出,本发明除了能准确、快速、及时地检测超导磁体的失超信号,保证了失超保护装置的及时动作,从而保证超导磁体的安全稳定运行外,能完全反映超导磁体失超后的电压变化情况,对输入信号中的电磁干扰进行隔离,提高检测精度。而且该输出信号可以与数字信号处理(DSP)技术结合,经过软件编程控制保护回路的及时动作,为超导储能磁体提供一套快速实时的数字式失超保护装置。

Claims (3)

1.一种基于有源功率的超导磁体失超检测系统,其特征在于该系统依次包括第一和第二超导线圈、电压传感器电路、差分运算放大器、绝对值电路、模拟乘法电路、低通滤波电路、比较电路和输出信号;第一和第二超导线圈上的电压经过电压传感器电路后作为差分运算放大电路的输人,由差分运算放大电路对输入的电压信号取差值,并对其进行放大,差分运算放大电路将输出信号K(u1-u2)输入绝对值电路,绝对值电路对输出信号K(u1-u2)取绝对值,经过模拟乘法电路实现有源功率检测P=K(u1-u2)*i,K的大小由电路中的具体参数来确定;根据改进后的有源功率检测法,附加二阶巴特沃斯低通滤波器,有源功率信号P经过低通滤波器并使它在通带范围内具有最平坦的幅频响应,在截止频率附近具有较陡的幅频特性;比较电路根据检测到的P值的大小,将输出信号转换为高电平或低电平,当超导线圈未失超时,P值小于门阀电压,输出信号为高电平;当超导线圈失超时,P值大于门阀电压,输出信号为低电平,这样根据输出信号就可以判断超导是否失超。
2.根据权利要求1所述的基于有源功率的超导磁体失超检测系统,其特征在于所述的电压传感器电路的构造是:第一超导线圈与第一限流电阻串联后连接第一霍尔电压传感器,第一霍尔电压传感器的输出经第三取样电阻连接电路的输出端,第二超导线圈与第二限流电阻串联后连接第二霍尔电压传感器,第二霍尔电压传感器的输出经第四取样电阻连接电路的另一输出端,将此量输出端作为差分运算放大电路的输入端;经过绝对值电路,不仅能够获得与被测电压成正比的电压信号,而且可以对输入信号中的电磁干扰进行隔离,提高检测精度。
3.根据权利要求1所述的基于有源功率的超导磁体失超检测系统,其特征在于框图所述中的差分放大电路和模拟乘法电路构成一个差分放大及模拟乘法电路,实现了模块化设计;本发明中,差分运放选用精密低功耗仪表放大器INA128,R5和R6为限流电阻,R7为增益电阻,其输出为(1+5OKΩ/R5)(u1-u2)。运放A1和A2组成绝对值电路,对前级电路的输出信号取绝对值,该运放宜选用低功耗、高速度的集成运算放大器。模拟乘法器选用精度高、线性度好的集成芯片RC4200,端口Port1为与超导线圈串联的分流器上的电流,经过模拟乘法电路实现有源功率检测,P=(u1-u2)*i。
CN 201010299122 2010-10-08 2010-10-08 一种基于有源功率的超导磁体失超检测系统 Pending CN101975900A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010299122 CN101975900A (zh) 2010-10-08 2010-10-08 一种基于有源功率的超导磁体失超检测系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010299122 CN101975900A (zh) 2010-10-08 2010-10-08 一种基于有源功率的超导磁体失超检测系统

Publications (1)

Publication Number Publication Date
CN101975900A true CN101975900A (zh) 2011-02-16

Family

ID=43575802

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010299122 Pending CN101975900A (zh) 2010-10-08 2010-10-08 一种基于有源功率的超导磁体失超检测系统

Country Status (1)

Country Link
CN (1) CN101975900A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102175981A (zh) * 2011-03-10 2011-09-07 中国科学院电工研究所 一种用于仿星器超导磁体的失超触发装置
CN102346239A (zh) * 2011-04-18 2012-02-08 中国科学院等离子体物理研究所 用于脉冲场下超导磁体的失超检测系统和方法
CN103323699A (zh) * 2013-05-24 2013-09-25 国家电网公司 一种冷绝缘高温超导电缆的失超检测电路及其检测方法
CN104884969A (zh) * 2012-12-27 2015-09-02 皇家飞利浦有限公司 用于对无低温超导磁体的失超保护的系统和方法
CN105403759A (zh) * 2015-10-14 2016-03-16 嘉兴金尚节能科技有限公司 供adc采样的漏电流检测电路
CN106501740A (zh) * 2016-09-22 2017-03-15 中国电力科学研究院 一种超导磁体失超检测方法和装置
CN110794328A (zh) * 2019-10-30 2020-02-14 汉中一零一航空电子设备有限公司 一种用于检测过载或短路故障的检测电路及检测方法
CN111579904A (zh) * 2020-05-18 2020-08-25 中国电力科学研究院有限公司 一种用于超导变压器绕组的失超检测电路及方法
CN111707978A (zh) * 2020-07-09 2020-09-25 华中科技大学 一种超导磁体的失超检测方法、装置、设备及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2747586Y (zh) * 2004-08-25 2005-12-21 天津理工大学 超导限流器超导体监测装置
US20100056378A1 (en) * 2006-11-10 2010-03-04 Koninklijke Philips Electronics N. V. Detecting quench in a magnetic resonance examination system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2747586Y (zh) * 2004-08-25 2005-12-21 天津理工大学 超导限流器超导体监测装置
US20100056378A1 (en) * 2006-11-10 2010-03-04 Koninklijke Philips Electronics N. V. Detecting quench in a magnetic resonance examination system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《中国优秀硕士学位论文全文数据库 工程科技II辑》 20100215 杨艳芳 电网用高温超导储能磁体的失超保护研究 第30-33页 1-3 , 第2期 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102175981A (zh) * 2011-03-10 2011-09-07 中国科学院电工研究所 一种用于仿星器超导磁体的失超触发装置
CN102175981B (zh) * 2011-03-10 2013-07-24 中国科学院电工研究所 一种用于仿星器超导磁体的失超触发装置
CN102346239A (zh) * 2011-04-18 2012-02-08 中国科学院等离子体物理研究所 用于脉冲场下超导磁体的失超检测系统和方法
CN102346239B (zh) * 2011-04-18 2014-09-10 中国科学院等离子体物理研究所 用于脉冲场下超导磁体的失超检测系统和方法
CN104884969A (zh) * 2012-12-27 2015-09-02 皇家飞利浦有限公司 用于对无低温超导磁体的失超保护的系统和方法
CN103323699A (zh) * 2013-05-24 2013-09-25 国家电网公司 一种冷绝缘高温超导电缆的失超检测电路及其检测方法
CN105403759A (zh) * 2015-10-14 2016-03-16 嘉兴金尚节能科技有限公司 供adc采样的漏电流检测电路
CN105403759B (zh) * 2015-10-14 2018-03-27 嘉兴金尚节能科技有限公司 供adc采样的漏电流检测电路
CN106501740A (zh) * 2016-09-22 2017-03-15 中国电力科学研究院 一种超导磁体失超检测方法和装置
CN110794328A (zh) * 2019-10-30 2020-02-14 汉中一零一航空电子设备有限公司 一种用于检测过载或短路故障的检测电路及检测方法
CN111579904A (zh) * 2020-05-18 2020-08-25 中国电力科学研究院有限公司 一种用于超导变压器绕组的失超检测电路及方法
CN111707978A (zh) * 2020-07-09 2020-09-25 华中科技大学 一种超导磁体的失超检测方法、装置、设备及存储介质
CN111707978B (zh) * 2020-07-09 2021-09-10 华中科技大学 一种超导磁体的失超检测方法、装置、设备及存储介质

Similar Documents

Publication Publication Date Title
CN101975900A (zh) 一种基于有源功率的超导磁体失超检测系统
CN201897633U (zh) 一种基于有源功率的超导磁体失超检测装置
CN203849322U (zh) 低压电源电涌保护器阻性电流监测装置
CN101101319A (zh) 发电机转子绕组匝间短路状态的检测装置
CN106057259B (zh) 反应堆核测系统
CN106291085A (zh) 变压器近区短路电流监测方法
CN102854366A (zh) 一种直流配用电系统中的小电流测量装置及方法
CN103605396B (zh) 变流器输出电流处理电路及方法
CN203535181U (zh) 一种基于无线传输的电力电缆外层绝缘在线监测系统
CN107656086A (zh) 一种核电站主泵转速信号监测系统及方法
CN103323699A (zh) 一种冷绝缘高温超导电缆的失超检测电路及其检测方法
CN110441591A (zh) 一种改进的电子式互感器电流采集方法
CN206559372U (zh) 考场无线作弊信号检测装置
CN106771610A (zh) 一种超导磁体失超检测系统
CN105301432A (zh) 一种电力设备绝缘泄漏电流在线监测电路
CN205120856U (zh) 变电站电能质量监测装置
CN202502131U (zh) 一种电压/电流检测电路
CN203616375U (zh) 一种四象限功率单元控制板的外部信号检测电路
CN109901025A (zh) 用电设备及其拉弧检测方法和装置
CN104391145A (zh) 在线低压漏电偷电测试装置及其实现方法
CN204228893U (zh) 一种局部放电在线检测系统
CN202939217U (zh) 直流检测器
CN220139538U (zh) 一种用于泵类故障检测的信号采样电路
CN104795272A (zh) 基于电磁信号的真空断路器真空度监测方法、装置和系统
Xu et al. Application of current sensor based on giant magnetoresistance effect in distribution network

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20110216