CN101975735B - 多孔材料多场耦合渗透率测量装置及其测量方法 - Google Patents

多孔材料多场耦合渗透率测量装置及其测量方法 Download PDF

Info

Publication number
CN101975735B
CN101975735B CN2010102779568A CN201010277956A CN101975735B CN 101975735 B CN101975735 B CN 101975735B CN 2010102779568 A CN2010102779568 A CN 2010102779568A CN 201010277956 A CN201010277956 A CN 201010277956A CN 101975735 B CN101975735 B CN 101975735B
Authority
CN
China
Prior art keywords
porosint
permeability
cavity
inner core
feed liquor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010102779568A
Other languages
English (en)
Other versions
CN101975735A (zh
Inventor
汪焰恩
杨明明
魏生民
王海强
李山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN2010102779568A priority Critical patent/CN101975735B/zh
Publication of CN101975735A publication Critical patent/CN101975735A/zh
Application granted granted Critical
Publication of CN101975735B publication Critical patent/CN101975735B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

本发明公开了一种多孔材料多场耦合渗透率测量装置及测量方法,特别是针对流场、温度场耦合下人工骨多孔支架渗透率的测量装置和测量方法。该装置可以将溶液从进液软管输入,从出液软管流出,通过微流量传感器可以直接测出流体累积流量,通过压差传感器测出进液空腔压力与排液空腔压力之差,再结合流体粘度、多孔材料长度和截面积,提出一个计算多孔材料渗透率的方法。本发明的技术方案考虑了温度场变化对渗透性能的影响,实现了耦合场下对多孔材料的渗透性能测量。

Description

多孔材料多场耦合渗透率测量装置及其测量方法
所属领域
本发明涉及一种多孔材料多场耦合渗透率测量装置及测量方法。特别是针对流场、温度场耦合下人工骨多孔支架渗透率的测量装置和测量方法。
背景技术
多孔材料由于其相对密度小、比表面积大、热导率低及强度高等优异性能,被广泛应用于航空航天、电子通讯、交通运输、原子能、医学等诸多方面。渗透系数(亦称渗透率)是衡量多孔材料物理特性优劣的一个重要指标,渗透率测量仪则是测定多孔材料渗透系数的一种仪器。目前,渗透率测量主要集中应用于煤岩、沙土、岩石领域,测量方法主要基于常水头和变水头测量原理,依此原理发明的测量仪器测量精度低,操作繁琐,速度慢等缺点。随着多孔支架在生物医学领域的应用和推广,评价生物多孔支架材料的渗透性能优劣也愈发重要。但是有关生物骨支架渗透率测量仪器未有文献报道,对于血清蛋白等营养液在体温(37℃)下相对于多孔材料支架的渗透系数评定也愈发重要,它的测量直接关系生物多孔支架材料在骨移植术后成活的关键评价指标,因此,多孔支架材料渗透率测量仪器的发明在生物医学组织工程领域具有重要意义。
变水头法测定多孔材料渗透系数的液体渗流必须满足层流条件。该方法测定多孔材料渗透系数的测定仪器仍需在以下三个方面进行改进:
(1)秒表计时,由于人为读数和操作很容易引入主观观测误差,造成测量结果的准确性有待提高;
(2)由于没有考虑温度场对渗透系数的影响,故渗流液体的动力粘度系数必然造成测量不出不同温度下的多孔材料的渗透系数,仅能从宏观测量近似反映不同温度渗流液体的渗透系数;
(3)由于主观人为方法获取渗透系数的测量变量,因此测量变量相对多,且渗透系数操作和计算并不简便,测量变量可以减少,操作方法和仪器本身有待改进。
常水头试验方法中水头差容易测量但易波动,且该测量仪器也相对复杂,系统对外界环境变化敏感;其次,该方法操作复杂,需要很多辅助测量装置协作完成,因此测量多孔材料渗透率耗时,并且此方法同样未考虑温度因素对测量多孔材料渗透率的影响。
发明专利91226407.1公开了一种渗透率梯度测试仪,其主要测试岩心纵向分段渗透率参数,此方法需要从环压输入孔加入环压来实现密封,装置过于庞大,操作不便,对于生物骨支架渗透率测量更是不易操作。发明专利200420007652公开了一种多功能道路材料渗透测定仪,首先他利用水箱和测试容器的压差来维持进液,这样就不能保证精确的流量,其次利用天平测量渗流出的水的质量,如此造成误差传递,影响测量精度。发明专利200510031317.2公开了渗透系数测定方法及测定仪,它主要用于土样渗透性能的研究。上述发明仪器均未考虑温度变化对多孔材料渗透率的影响。实际上温度的变化直接导致多孔介质的微观结构,这样直接导致渗透率测量的准确性。对于多孔材料在温度和应力耦合条件下的低渗透率测量已引起该领域学者关注,然而用于温度和压力耦合条件下的渗透率测量仪器未见发明。对于生物多孔支架在温度和压力耦合条件下渗透率的测量就更未有报道。
发明内容
本发明的目的是,针对现有多孔材料渗透率测量在多场耦合场的条件下,未考虑温度场变化对渗透性能的影响的不足,提供一种新的多孔材料多场耦合渗透率测量装置及其测量方法。
本发明的技术方案是:一种多孔材料多场耦合渗透率测量装置,主要包括盖1、外筒2、保温材料3和内筒4;保温材料3填充在外筒2和内筒4之间;盖1、外筒2、保温材料3和内筒4使得内筒4内部形成一空腔;内筒4内壁为一台阶型壁面,待测多孔材料5位于该台阶上,其外壁面和内筒4内壁紧密配合,同时,多孔材料5将内筒4内部的空腔分割为右侧的进液空腔和左侧的排液空腔;排液空腔内有一个外壁与内筒4内壁吻合的套筒6,套筒6用来压紧多孔材料5,防止因液体压力而使被测实验材料发生移动,造成实验误差;密封圈7放置在套筒6的左侧,其左侧由盖1顶紧;一根依次贯穿外筒2、保温材料3和内筒4的进液软管8将进液空腔和外界连通,另一根依次贯穿套筒6、内筒4、保温材料3和外筒2的排液软管9将排液空腔和外界连通;所述进液软管8和排液软管9之间装有一个压差传感器10;所述的排液软管9上装有一个微流量传感器11;进液空腔或排液空腔中装有一个温度传感器12,用于测定液体的温度;温度传感器12也可以在进液空腔和排液空腔中各装有一个。
利用上述测量装置进行多孔材料多场耦合渗透率测量的方法,包括如下步骤:
步骤1:关闭微流量传感器11,通过进液软管8通入液体一段时间,当压差传感器读数为零时停止进液,保证多孔材料达到饱和渗流状态;同时置测试次数标识i=1;
步骤2:通过温度传感器12得到液体温度T,并保证T恒定;打开微流量传感器11继续通过进液软管8通入液体一段时间ti,记录该时间段ti内的流体累积流量Qi
步骤3:计算当前测试周期的渗透率Bi
B i = Q i η T δ t i AΔ P i
式中:ηT为温度T下的流体粘度系数;
δ为待测多孔材料5的长度;
A为待测多孔材料5的截面积;
ΔPi为时间段ti内进液空腔压力与排液空腔压力之差,由压差传感器10读数得到。
在计算中,各物理量Qi、ηT、δ、ti、A、ΔPi的单位分别取为m3、Pa·s、m、s、m2、Pa,算得的渗透率Bi单位为m2
步骤4:i=i+1,如果i≤N,依次重复步骤2和3,计算下一个测试周期的渗透率Bi;否则如果i>N,进入步骤5;N为自然数,表示测试次数;
步骤5:求多孔材料渗透率B: B = Σ i = 1 N B i N .
采用以上方案的有益效果:本发明所用装置可以将溶液从进液软管输入,从出液软管流出,通过微流量传感器可以直接测出流体累积流量,从而测出多孔材料渗透率。内筒和外筒之间加入的保温材料,很好的起到了隔热效果,可以在温度测量时使误差减小到最小。盖和套筒之间的密封圈,可以有效保证液体全部从出口流出,减少实验误差。多孔材料左端排液空腔安装温度传感器,可以精确的计算热量的流失,出口处安装了微流量传感器,可以精确的测出液体渗流量,从而做到了综合考虑耦合场下对多孔材料的渗透性能测量。
附图及附图说明
图1:本发明提出的多孔材料多场耦合渗透率测量装置示意图
图中,1-盖,2-外筒,3-保温材料,4-内筒,5-多孔材料,6-套筒,7-密封圈,8-进液软管,9-排液软管,10-压差传感器,11-微流量传感器,12-排液空腔温度传感器
具体实施方式
参阅图1,本实施例中的多孔材料多场耦合渗透率测量装置用于松质骨试样的渗透率测量,该装置包括双层真空聚乙烯盖1、不锈钢外筒2、聚氨酯保温材料3、钛合金方形内筒4和钛合金方形套筒6;保温材料3密封胶结于外筒2和内筒4之间,减少热量的耗散,从而减少测量误差;盖1、外筒2、保温材料3和内筒4使得内筒4内部形成一空腔;内筒4内壁为一台阶型壁面,台阶上放置边长d=15mm,高度δ=10mm立方体碳化硅多孔陶瓷材料5,其外壁面和内筒4内壁紧密配合,同时,多孔材料5将内筒4内部的空腔分割为右侧的进液空腔和左侧的排液空腔;排液空腔内有一个外壁与内筒4内壁吻合的套筒6,套筒6用来压紧多孔材料5,防止因液体压力而使被测实验材料发生移动,造成实验误差;密封圈7放置在套筒6的左侧,其左侧由盖1顶紧;一根依次贯穿外筒2、保温材料3和内筒4的进液软管8将进液空腔和外界连通,外连微流量输液泵,PVC进液软管8外径为5mm,它与外筒2、保温材料3和内筒4的小孔内闭密封;另一根依次贯穿套筒6、内筒4、保温材料3和外筒2的排液软管9将排液空腔和外界连通;PVC排液软管9外径也为5mm,亦与所穿过小孔的内壁密封;排液软管9上装有一个微流量传感器11,本例中使用的是HILGER KERN微流量传感器;进液空腔和排液空腔装有压差传感器10,本例中使用的是西门子QBE2002压差传感器,用于测定进液空腔和排液空腔的压力差。排液空腔中装有一个温度传感器12,本例中使用的是西门子SITRANS TF2温度传感器。
利用本实施例的装置,进行碳化硅多孔陶瓷板试样的渗透率测量方法,包括如下步骤:
步骤1:关闭微流量传感器11,通过进液软管8通入纯净水6分钟,以保证多孔材料渗流达到饱和状态;观察压差传感器为零停止进液,同时置测试次数标识i=1;
步骤2:通过温度传感器12得到温度T=25摄氏度,并保证T恒定;打开微流量传感器11继续通过进液软管8通入液体一段时间ti,记录该时间段ti内的流体累积流量Qi;本实施例中,各测试周期中ti均为60s;
步骤3:计算当前测试周期的渗透率Bi
B i = Q i η T δ t i AΔ P i
式中:ηT为25摄氏度下纯净水的粘度系数,ηT=0.894×10-3Pa·s;
δ为待测多孔材料5的长度,δ=10×10-3m
A为待测多孔材料5的截面积,该立方体碳化硅多孔陶瓷板截面积边长d=15mm,算出其截面积A=d2=225×10-6m2
ΔPi为进液空腔压力与排液空腔压力之差,由压差传感器10读数得到。
在计算中,各物理量Qi、ηT、δ、ti、A、ΔPi的单位分别取为m3、Pa·s、m、s、m2、Pa,算得的渗透率Bi单位为m2
步骤4:i=i+1,如果i≤N,依次重复步骤2和3,计算下一个测试周期的渗透率Bi;否则如果i>N,进入步骤5;本例中测试次数N=7;
七次测试周期中的Qi、ti、P2、ΔPi读数,以及各周期中算得的渗透率Bi如下:
  次数   Qi(×10-6m3)   t(×s)   ΔPi(×105Pa)   Bi(×10-11m2)
  1   73.54   60   0.051   0.954863
  2   103.3   60   0.072   0.949875
  3   134.1   60   0.093   0.955025
  4   162.8   60   0.113   0.954231
  5   192.6   60   0.135   0.944654
  6   222.1   60   0.154   0.955014
  7   246.4   60   0.172   0.948756
步骤5:求多孔材料渗透率B: B = Σ i = 1 7 B i 7 = 0.95173 × 10 - 11 m 2 .

Claims (4)

1.一种多孔材料多场耦合渗透率测量装置,其特征在于:主要包括盖(1)、外筒(2)、保温材料(3)和内筒(4);保温材料(3)填充在外筒(2)和内筒(4)之间;盖(1)、外筒(2)、保温材料(3)和内筒(4)使得内筒(4)内部形成一空腔;内筒(4)内壁为一台阶型壁面,待测多孔材料(5)位于该台阶上,其外壁面和内筒(4)内壁紧密配合,同时,多孔材料(5)将内筒(4)内部的空腔分割为右侧的进液空腔和左侧的排液空腔;排液空腔内有一个外壁与内筒(4)内壁吻合的套筒(6),套筒(6)用来压紧多孔材料(5);密封圈(7)放置在套筒(6)的左侧,其左侧由盖(1)顶紧;一根依次贯穿外筒(2)、保温材料(3)和内筒(4)的进液软管(8)将进液空腔和外界连通,另一根依次贯穿套筒(6)、内筒(4)、保温材料(3)和外筒(2)的排液软管(9)将排液空腔和外界连通;所述进液软管(8)和排液软管(9)之间装有一个压差传感器(10);所述的排液软管(9)上装有一个微流量传感器(11);进液空腔或排液空腔中装有一个温度传感器(12)。
2.一种如权利要求1所述的多孔材料多场耦合渗透率测量装置,其特征在于:在进液空腔和排液空腔中各装有一个所述的温度传感器(12)。
3.一种如权利要求1所述的多孔材料多场耦合渗透率测量装置,其特征在于:所述保温材料(3)为聚氨酯。
4.一种利用如权利要求1或2所述的测量装置进行多孔材料多场耦合渗透率测量的方法,其特征在于,包括如下步骤:
步骤1:关闭微流量传感器(11),通过进液软管(8)通入液体一段时间,当压差传感器读数为零时停止进液,保证多孔材料达到饱和渗流状态;同时置测试次数标识i=1;
步骤2:通过温度传感器(12)得到液体温度T,并保证T恒定;打开微流量传感器(11)继续通过进液软管(8)通入液体一段时间ti,记录该时间段ti内的流体累积流量Qi
步骤3:计算当前测试周期的渗透率Bi
Figure FSB00000675841100011
式中:ηT为温度T下的流体粘度系数;
δ为待测多孔材料(5)的长度;
A为待测多孔材料(5)的截面积;
ΔPi为时间段ti内进液空腔压力与排液空腔压力之差,由压差传感器(10)读数得到;
在计算中,各物理量Qi、ηT、δ、ti、A、ΔPi的单位分别取为m3、Pa·s、m、s、m2、Pa,算得的渗透率Bi单位为m2
步骤4:i=i+1,如果i≤N,依次重复步骤2和3,计算下一个测试周期的渗透率Bi;否则如果i>N,进入步骤5;N为自然数,表示测试次数;
步骤5:求多孔材料渗透率B:
Figure FSB00000675841100021
CN2010102779568A 2010-09-09 2010-09-09 多孔材料多场耦合渗透率测量装置及其测量方法 Expired - Fee Related CN101975735B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010102779568A CN101975735B (zh) 2010-09-09 2010-09-09 多孔材料多场耦合渗透率测量装置及其测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010102779568A CN101975735B (zh) 2010-09-09 2010-09-09 多孔材料多场耦合渗透率测量装置及其测量方法

Publications (2)

Publication Number Publication Date
CN101975735A CN101975735A (zh) 2011-02-16
CN101975735B true CN101975735B (zh) 2012-05-16

Family

ID=43575638

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102779568A Expired - Fee Related CN101975735B (zh) 2010-09-09 2010-09-09 多孔材料多场耦合渗透率测量装置及其测量方法

Country Status (1)

Country Link
CN (1) CN101975735B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103424345B (zh) * 2013-07-31 2016-06-22 广州市香港科大霍英东研究院 主动控制水在多孔介质中运移方式的系统
CN105158115A (zh) * 2015-08-25 2015-12-16 哈尔滨工业大学 一种多孔材料对流传热与压降的瞬态测量装置
CN105784561B (zh) * 2016-03-07 2018-07-20 西北工业大学 一种多孔材料多场耦合渗透率测量装置及其测量方法
CN106525692B (zh) * 2016-12-22 2023-04-25 合肥学院 多孔材料渗透率测试装置及系统
CN107271349A (zh) * 2017-07-19 2017-10-20 中国石油大学(北京) 一种超临界二氧化碳饱和下的岩石参数测定方法
CN109900611A (zh) * 2017-12-11 2019-06-18 中国科学院大连化学物理研究所 一种测量气体透过性的多孔材料夹具
CN108181223A (zh) * 2017-12-26 2018-06-19 北京航空航天大学 一种针对多孔生物材料渗透率的测量装置和测量方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201897562U (zh) * 2010-09-09 2011-07-13 西北工业大学 多孔材料多场耦合渗透率测量装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2105063U (zh) * 1991-10-07 1992-05-20 江汉石油学院 渗透率梯度测试仪
WO1996015285A1 (en) * 1994-11-16 1996-05-23 The B.F. Goodrich Company Pressure gradient cvi/cvd apparatus, process and product
CN101408493B (zh) * 2008-11-24 2011-04-06 中国科学院武汉岩土力学研究所 材料吸附量-变形-渗透系数测量的方法及装置
CN101608939B (zh) * 2009-07-22 2011-01-05 中国石油天然气股份有限公司 高温高压可视化微流量计量仪和计量方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201897562U (zh) * 2010-09-09 2011-07-13 西北工业大学 多孔材料多场耦合渗透率测量装置

Also Published As

Publication number Publication date
CN101975735A (zh) 2011-02-16

Similar Documents

Publication Publication Date Title
CN101975735B (zh) 多孔材料多场耦合渗透率测量装置及其测量方法
CN101975734B (zh) 多孔材料流—固—热多场耦合渗透率测量装置及其测量方法
CN105588796B (zh) 一种精确快速测定土壤渗透系数的装置
CN102395864B (zh) 用于测量超低气体流的装置
CN101718881B (zh) 具有自补偿功能的远程虹吸排水式降雨量测量方法和装置
CN206161492U (zh) 一种可实现变水压力作用的渗透装置
CN101608939A (zh) 高温高压可视化微流量计量仪和计量方法
CN113218843A (zh) 一种声电渗等多功能三轴实验系统及方法
CN104766513B (zh) 一种压力信号流量测量装置以及流量测量方法
CN104748801A (zh) 一种水箱出流的流量测量装置
CN208076347U (zh) 岩石渗透率和压缩系数联测装置
CN204705570U (zh) 一种自动压力检测的渗透率实验装置
CN104596739B (zh) 一种太阳能集热器热性能参数及循环流量测量装置和方法
CN201897562U (zh) 多孔材料多场耦合渗透率测量装置
CN108760232A (zh) 一种探究表面减阻机理的试验装置及试验方法
CN105784561B (zh) 一种多孔材料多场耦合渗透率测量装置及其测量方法
CN202024947U (zh) 多孔材料流-固-热多场耦合渗透率测量装置
CN104748903A (zh) 液气转换测压装置和实验用带同步电测数显的测压装置
CN204514393U (zh) 一种基于作用水头的流量测量装置
CN104849175B (zh) 采用杨氏模量拉伸仪测量棉花类物质密度的方法
CN204680275U (zh) 一种压力信号流量测量装置
CN113945459A (zh) 一种多功能压裂模拟实验系统及方法
CN206671234U (zh) 一种高分子材料体积膨胀系数的简易测试装置
CN206040067U (zh) 一种改进的沿程水头损失实验装置
CN204514523U (zh) 液气转换测压装置和实验用带同步电测数显的测压装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120516

Termination date: 20190909