CN101955354B - Giant dielectric-nonlinear low-voltage difunctional varistor ceramic material and preparation method thereof - Google Patents

Giant dielectric-nonlinear low-voltage difunctional varistor ceramic material and preparation method thereof Download PDF

Info

Publication number
CN101955354B
CN101955354B CN 201010514378 CN201010514378A CN101955354B CN 101955354 B CN101955354 B CN 101955354B CN 201010514378 CN201010514378 CN 201010514378 CN 201010514378 A CN201010514378 A CN 201010514378A CN 101955354 B CN101955354 B CN 101955354B
Authority
CN
China
Prior art keywords
ceramic material
pressure
solution
linear low
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 201010514378
Other languages
Chinese (zh)
Other versions
CN101955354A (en
Inventor
袁松柳
邱洋
陈亮
田召明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN 201010514378 priority Critical patent/CN101955354B/en
Publication of CN101955354A publication Critical patent/CN101955354A/en
Application granted granted Critical
Publication of CN101955354B publication Critical patent/CN101955354B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

The invention relates to the field of materials of electronic information components, and discloses giant dielectric-nonlinear low-voltage varistor ceramic material and a preparation method thereof. The giant dielectric-nonlinear low-voltage varistor ceramic material of the invention is prepared by a sol-gel method in which a citric acid serves as a complexing agent, and has the molecular formula of Bi0.5-xNa0.5-xBa2xCu3Ti4O12, wherein x is more than 0 and less than or equal to 0.075. The ceramic material prepared by the method has a giant dielectric constant and nonlinear low-voltage varistor effect, is a multifunctional ceramic material with vast application prospect, and has dielectric properties and voltage-sensitive characteristics which are adjusted according to the ratio of Ba. The preparation method of the invention has the characteristics of simple process operation, short cycle, low cost, environmental friendliness, nontoxicity, no need of atmosphere reduction and the like.

Description

A kind of huge dielectric--non-linear low-pressure pressure-sensitive dual-function ceramic material and preparation method thereof
Technical field
The present invention relates to pressure-sensitive, the non-linear pressure sensitive of the huge dielectric field in the electronic information component.
Background technology
Multi-functional dielectric materials is with the critical material of the miniaturized of electron device with the microelectronics upgrading that turns to characteristic at a high speed.The pressure-sensitive dual-function ceramic material of huge dielectric is meant that stupalith has huge specific inductivity (
Figure DEST_PATH_IMAGE002
) concurrently and non-linear piezo resistance effect (is non-linear volt-ampere characteristic; The resistance that refers to material is to voltage-sensitive, and the resistance of material is along with electric current changes in certain electric current and voltage scope).Develop rapidly along with microelectronic industry; The integrated level of electron device improves constantly; Electronics is to integrated, miniaturized, multifunction development; The WV and the withstand voltage of various electronic components constantly lower; For the miniaturized and the integrated while of realizing microelectronic device guarantees that again these electronic security circuits move reliably; Reduce because electric subpulses such as overvoltage, human body discharge disturb the influence that circuit is caused, and we need adopt huge dielectric-low-voltage piezoresistor (scope of pressure sensitive voltage generally speaking is 4.7-68V (electric current is 1mA)) to absorb inside circuit or outside surge voltage or electric current, this just makes low voltage varistor have a wide range of applications and scientific research is worth.The main non-linear based varistor of low pressure mainly is ZnO system, TiO at present 2System, SrTiO 3System etc.; For present employed ZnO is low voltage varistor; Its specific inductivity is lower usually, and the electric capacity of itself and its to reach the stray capacity of object on every side over the ground suitable, ability abates the noise; And the zinc oxide pressure-sensitive ceramic resistance defective that can cause because of the multiple reasons such as environment of preparation technology and production and use causes and scraps, and influenced its normal use thereby shortened its work-ing life.TiO 2, SrTiO 3After semiconductor, can be used as electric capacity-pressure-sensitive double functional ceramics device, its specific inductivity can reach several thousand usually; But its preparation technology's relative complex and wayward.Therefore seek simple, the stable high dielectric of preparation technology-pressure-sensitive double-function device of low pressure constant for realizing in the microelectronics that device miniaturization and function integration have great importance.
People such as Subramanian went up report perovskite-like material C aCu at " J.Solid.Stat.Chem " first in 2000 3Ti 4O 12Have huge specific inductivity and good temperature stability, its potential application prospect has caused people's attention.2004, people such as Chung went up report, CaCu at " Nat. Mater " 3Ti 4O 12Possess good non-linear pressure-sensitive character, nonlinear factor reaches 900, is one of good varistor device candidate material.2006, people such as Ferrarelli went up report at " Appl.Phys.Lett ", are possessing the Bi of perovskite-like 0.5Na 0.5Cu 3Ti 4O 12Observe characteristic in the pottery equally with high-k.At present, about Bi 0.5-xNa 0.5-xBa 2xCu 3Ti 4O 12Ceramic and huge dielectric-non-linear low voltage varistor characteristic at home with external document in all less than record.
Summary of the invention
Technical problem of the present invention provides a kind of huge dielectric--non-linear low-pressure pressure-sensitive dual-function ceramic material and preparation method thereof, and this stupalith has big specific inductivity and non-linear low voltage varistor characteristic.
For solving the problems of the technologies described above, the present invention provides a kind of huge dielectric--the preparation method of non-linear low-pressure pressure-sensitive dual-function ceramic material, it is characterized in that may further comprise the steps:
Step 1, in first beaker that is being placed with analytically pure butyl(tetra)titanate, slowly add aqueous citric acid solution; Ceaselessly stir simultaneously and form transparent titanium ion solution; Add terepthaloyl moietie with the viscosity of regulator solution with make solution-stabilizedly, the concentration of gained Ti liquid is 0.5~1.5mol/L, above-mentioned analytically pure butyl(tetra)titanate is as the Ti ion source; Hydrocerol A is as complexing agent, and both mol ratios are between 1:1.5~2;
Step 2, in second beaker that is placed with aqueous citric acid solution, add analytically pure cupric nitrate respectively successively; SODIUMNITRATE, Bismuth trinitrate, NSC 75794, ultrasonic dispersing is impelled dissolving, forms clear solution; The total concn of each metals ion is 0.5~1mol/L; As the ion source of Cu, Na, Bi and Ba, Hydrocerol A is a complexing agent respectively for above-mentioned analytically pure cupric nitrate, SODIUMNITRATE, Bismuth trinitrate, NSC 75794, and Hydrocerol A is 1:1~1:1.5 than the mol ratio with above-mentioned four metal ion species quantity sums;
Step 3, two kinds of solution stirring that above-mentioned first, second beaker is interior are mixed, and using ammoniacal liquor to regulate the pH value is 6.5~7.5, mixing solutions ageing 10~12 hours; Then in water-bath 80 oC~100 oC removes moisture with the solution evaporate to dryness, in baking oven 140 oC~160 oC is dry, until forming the black xerogel;
Step 4, xerogel is ground, in air 500 oC~600 oC thermal treatment 4~6 hours is got rid of organism and is obtained precursor powder; With precursor powder grinding, compressing tablet sintering, sintering temperature is 1000 then oC, sintering time is 3~5 hours, obtaining molecular formula is Bi 0.5-xNa 0.5-xBa 2xCu 3Ti 4O 12Stupalith, wherein, 0<x≤0.075.
Adopt a kind of huge dielectric--the non-linear low-pressure pressure-sensitive dual-function ceramic material of above-mentioned citrate sol gel method preparation, it is characterized in that the molecular formula of this stupalith is Bi 0.5-xNa 0.5-xBa 2xCu 3Ti 4O 12, wherein, 0<x≤0.075.
Preferably, said huge dielectric--non-linear low-pressure pressure-sensitive dual-function ceramic material is characterized in that the molecular formula of this stupalith is Bi 0.475Na 0.475Ba 0.05Cu 3Ti 4O 12
Preferably, said huge dielectric--non-linear low-pressure pressure-sensitive dual-function ceramic material is characterized in that the molecular formula of this stupalith is Bi 0.45Na 0.45Ba 0.1Cu 3Ti 4O 12
Preferably, said huge dielectric--non-linear low-pressure pressure-sensitive dual-function ceramic material is characterized in that the molecular formula of this stupalith is Bi 0.425Na 0.425Ba 0.15Cu 3Ti 4O 12
The pottery that the present invention prepares has huge specific inductivity and non-linear low voltage varistor effect, is one type of multifunctional ceramic material with broad prospect of application, and can regulate the dielectric properties and the pressure-sensitive character of material through the ratio that changes Ba; Preparing method's technological operation of the present invention is simple, and the cycle is short, and with low cost, environment-protecting asepsis need not characteristics such as reducing atmosphere.
Description of drawings
Fig. 1 is X=0,0.025,0.05 among the embodiment, 0.075 Bi 0.5-xNa 0.5-xBa 2xCu 3Ti 4O 12The XRD figure spectrum of ceramics sample.
Fig. 2 is X=0,0.025,0.05 among the embodiment, 0.075 Bi 0.5-xNa 0.5-xBa 2xCu 3Ti 4O 12The dielectric frequency collection of illustrative plates of ceramics sample.
Fig. 3 is X=0,0.025 among the embodiment, 0.075 Bi 0.5-xNa 0.5-xBa 2xCu 3Ti 4O 12The I-V of ceramics sample concerns collection of illustrative plates.
Embodiment
Embodiment 1:
Utilize Hydrocerol A to prepare Bi as the sol-gel method of complexing agent 0.5-xNa 0.5-xBa 2xCu 3Ti 4O 12(x=0) pottery.At first, take by weighing the beaker 1 that the 0.08mol Hydrocerol A is put into 100mL, add deionized water 35mL, under ultrasonic dispersing, dissolve, form clear solution; Take by weighing 0.04mol metatitanic acid fourth fat again and put into the beaker 2 of 100mL, then the citric acid solution in 1 beaker is transferred in 2 beakers in the titanium liquid; Constantly stir and make the dissolving of titanium liquid down, ultra-sonic dispersion 30min then adds the terepthaloyl moietie of 5mL, formation clear solution then.The mol ratio of metatitanic acid fourth fat and aqueous citric acid solution is 1:2.In second step, the Hydrocerol A that takes by weighing 0.05mol is put in the beaker of 500mL, adds deionized water 20mL, under ultrasonic dispersing, dissolves, and forms clear solution; Take by weighing 0.03mol cupric nitrate, 0.005mol SODIUMNITRATE, 0.005mol Bismuth trinitrate then successively and join above-mentioned solution, ultra-sonic dispersion forms clear solution, and the mol ratio of the mol ratio of Hydrocerol A and above-mentioned three metal ion species is 1:1.25.The 3rd step, above-mentioned two solution are mixed and continuous the stirring 15 minutes, using ammoniacal liquor to regulate the pH value is 7, mixing solutions ageing 10 hours.Then, in water-bath 95 oC removes moisture with the solution evaporate to dryness, in baking oven 160 oC is dry, until forming the black xerogel.In the 4th step, xerogel was ground 30 minutes, in air 550 oC thermal treatment 5 hours is got rid of organism and is obtained precursor powder, then with precursor powder grinding, compressing tablet, 1000 oC sintering 5 hours obtains Bi 0.5Na 0.5Cu 3Ti 4O 12Pottery.
Utilize embodiment 1 to prepare Bi 0.5Na 0. 5Cu 3Ti 4O 12The XRD of pottery is as shown in Figure 1, and as can beappreciated from fig. 1 sample has formed good perovskite-like phase structure.Fig. 2, Fig. 3 have provided Bi respectively 0.5Na 0.5Cu 3Ti 4O 12Dielectric and I/V concern collection of illustrative plates.
Embodiment 2:
Utilize Hydrocerol A to prepare Bi as the sol-gel method of complexing agent 0.5-xNa 0.5-xBa 2xCu 3Ti 4O 12(x=0.025) pottery.At first, take by weighing the beaker 1 that the 0.08mol Hydrocerol A is put into 100mL, add deionized water 35mL, under ultrasonic dispersing, dissolve, form clear solution; Take by weighing 0.04mol metatitanic acid fourth fat again and put into the beaker 2 of 100mL, then the citric acid solution in 1 beaker is transferred in 2 beakers in the titanium liquid; Constantly stir and make the dissolving of titanium liquid down, ultra-sonic dispersion 30min then adds the terepthaloyl moietie of 5mL, formation clear solution then.The mol ratio of metatitanic acid fourth fat and aqueous citric acid solution is 1:2.In second step, the Hydrocerol A that takes by weighing 0.05mol is put in the beaker of 500mL, adds deionized water 20mL, under ultrasonic dispersing, dissolves, and forms clear solution; The NSC 75794 that takes by weighing 0.03mol cupric nitrate, 0.00475mol SODIUMNITRATE, 0.00475mol Bismuth trinitrate and 0.0005mol then successively joins above-mentioned solution; Ultra-sonic dispersion forms clear solution, and the mol ratio of the mol ratio of Hydrocerol A and above-mentioned three metal ion species is 1:1.25.The 3rd step, above-mentioned two solution are mixed and continuous the stirring 15 minutes, using ammoniacal liquor to regulate the pH value is 7, mixing solutions ageing 10 hours.Then, in water-bath 95 oC removes moisture with the solution evaporate to dryness, in baking oven 160 oC is dry, until forming the black xerogel.In the 4th step, xerogel was ground 30 minutes, in air 550 oC thermal treatment 5 hours is got rid of organism and is obtained precursor powder, then with precursor powder grinding, compressing tablet, 1000 oC sintering 5 hours obtains Bi 0.475Na 0.475Ba 0.05Cu 3Ti 4O 12Pottery.
Utilize embodiment 2 to prepare Bi 0.475Na 0.475Ba 0.05Cu 3Ti 4O 12The XRD of pottery is as shown in Figure 1, and as can beappreciated from fig. 1 sample has formed good perovskite-like phase structure.Fig. 2, Fig. 3 have provided Bi respectively 0.475Na 0.475Ba 0.05Cu 3Ti 4O 12Dielectric and I/V concern collection of illustrative plates.
Embodiment 3:
Utilize Hydrocerol A to prepare Bi as the sol-gel method of complexing agent 0.5-xNa 0.5-xBa 2xCu 3Ti 4O 12(x=0.005) pottery.At first, take by weighing the beaker 1 that the 0.08mol Hydrocerol A is put into 100mL, add deionized water 35mL, under ultrasonic dispersing, dissolve, form clear solution; Take by weighing 0.04mol metatitanic acid fourth fat again and put into the beaker 2 of 100mL, then the citric acid solution in 1 beaker is transferred in 2 beakers in the titanium liquid; Constantly stir and make the dissolving of titanium liquid down, ultra-sonic dispersion 30min then adds the terepthaloyl moietie of 5mL, formation clear solution then.The mol ratio of metatitanic acid fourth fat and aqueous citric acid solution is 1:2.In second step, the Hydrocerol A that takes by weighing 0.05mol is put in the beaker of 500mL, adds deionized water 20mL, under ultrasonic dispersing, dissolves, and forms clear solution; The NSC 75794 that takes by weighing 0.03mol cupric nitrate, 0.0045mol SODIUMNITRATE, 0.0045mol Bismuth trinitrate and 0.001mol then successively joins above-mentioned solution; Ultra-sonic dispersion forms clear solution, and the mol ratio of the mol ratio of Hydrocerol A and above-mentioned three metal ion species is 1:1.25.The 3rd step, above-mentioned two solution are mixed and continuous the stirring 15 minutes, above-mentioned two solution are mixed, using ammoniacal liquor to regulate the pH value is 7, mixing solutions ageing 10 hours.Then, in water-bath 95 oC removes moisture with the solution evaporate to dryness, in baking oven 160 oC is dry, until forming the black xerogel.In the 4th step, xerogel was ground 30 minutes, in air 550 oC thermal treatment 5 hours is got rid of organism and is obtained precursor powder, then with precursor powder grinding, compressing tablet, 1000 oC sintering 5 hours obtains Bi 0.45Na 0.45Ba 0.1Cu 3Ti 4O 12Pottery.
Utilize embodiment 3 to prepare Bi 0.45Na 0.45Ba 0.1Cu 3Ti 4O 12The XRD of pottery is as shown in Figure 1, and as can beappreciated from fig. 1 sample has formed good perovskite-like phase structure.Fig. 2, Fig. 3 have provided Bi respectively 0.45Na 0.45Ba 0.1Cu 3Ti 4O 12Dielectric and I/V concern collection of illustrative plates.
Embodiment 4:
Utilize Hydrocerol A to prepare Bi as the sol-gel method of complexing agent 0.5-xNa 0.5-xBa 2xCu 3Ti 4O 12(x=0.075) pottery.At first, take by weighing the beaker 1 that the 0.08mol Hydrocerol A is put into 100mL, add deionized water 35mL, under ultrasonic dispersing, dissolve, form clear solution; Take by weighing 0.04mol metatitanic acid fourth fat again and put into the beaker 2 of 100mL, then the citric acid solution in 1 beaker is transferred in 2 beakers in the titanium liquid; Constantly stir and make the dissolving of titanium liquid down, ultra-sonic dispersion 30min then adds the terepthaloyl moietie of 5mL, formation clear solution then.The mol ratio of metatitanic acid fourth fat and aqueous citric acid solution is 1:2.In second step, the Hydrocerol A that takes by weighing 0.05mol is put in the beaker of 500mL, adds deionized water 20mL, under ultrasonic dispersing, dissolves, and forms clear solution; The NSC 75794 that takes by weighing 0.03mol cupric nitrate, 0.0047mol SODIUMNITRATE, 0.0047mol Bismuth trinitrate and 0.0006mol then successively joins above-mentioned solution; Ultra-sonic dispersion forms clear solution, and the mol ratio of the mol ratio of Hydrocerol A and above-mentioned three metal ion species is 1:1.25.The 3rd step, above-mentioned two solution are mixed and continuous the stirring 15 minutes, above-mentioned two solution are mixed, using ammoniacal liquor to regulate the pH value is 7, mixing solutions ageing 10 hours.Then, in water-bath 95 oC removes moisture with the solution evaporate to dryness, in baking oven 160 oC is dry, until forming the black xerogel.In the 4th step, xerogel was ground 30 minutes, in air 550 oC thermal treatment 5 hours is got rid of organism and is obtained precursor powder, then with precursor powder grinding, compressing tablet, 1000 oC sintering 5 hours obtains Bi 0.425Na 0.425Ba 0.15Cu 3Ti 4O 12Pottery.
Utilize embodiment 4 to prepare Bi 0.425Na 0.425Ba 0.15Cu 3Ti 4O 12The XRD of pottery is as shown in Figure 1, and as can beappreciated from fig. 1 sample has formed good perovskite-like phase structure.Fig. 2, Fig. 3 have provided Bi respectively 0.425Na 0.425Ba 0.15Cu 3Ti 4O 12Dielectric and I/V concern collection of illustrative plates.
Adopt the Bi of above method preparation 0.5-xNa 0.5-xBa 2xCu 3Ti 4O 12(0≤x≤0.075) pottery possesses huge dielectric constant and non-linear low voltage varistor characteristic, is a kind of huge dielectric-non-linear low-pressure pressure-sensitive ceramic material with broad prospect of application.To the sample The characterization of microstructure, adopt X-ray diffractometer (XRD) to its material phase analysis.Adopt the dielectric properties of the accurate electric impedance analyzer measure sample of Wk6500B.Adopt Keithley2400 to measure the I/V characteristic of sample.
As shown in Figure 1, provided x=0,0.025,0.05,0.075 sintering temperature is 1000 oXRD figure spectrum during C, as can be seen from the figure all samples have formed good perovskite-like phase structure.When doping ratio is that the sample of X=0.025 can mate fully.As the x=0.05 that brings up to of doping ratio, 0.75 o'clock sample a spot of assorted peak occurred but main peak can be good at coupling.
Fig. 2 is the specific inductivity of x=0,0.025,0.075 sample and the graph of a relation of frequency.As can be seen from the figure the sample of x=0 has maximum specific inductivity, and along with the raising of Ba doping ratio, downward trend has appearred in specific inductivity, but 10 2-10 6Range of frequency in the specific inductivity of all samples all remain on 10 3-10 4Between, all samples have still kept huge specific inductivity.
Fig. 3 is the I-V graph of a relation of x=0,0.025,0.05,0.075 sample, and all samples have all shown non-linear piezo resistance effect.From figure, can be clearly seen that and significantly reduce with the unadulterated pressure sensitive voltage of comparing adulterated sample; Wherein the pressure sensitive voltage of the sample of X=0 is 61V; The pressure sensitive voltage minimum of the sample of X=0.025 is 8V; The pressure sensitive voltage of the sample of X=0.05 is 16V, and the pressure sensitive voltage of the sample of X=0.075 is 25V.
It should be noted last that; Above embodiment only in order to explain this material the technology implementation scheme but not the restriction; Although with reference to preferred embodiment the present invention is specified, those of ordinary skill in the art should be appreciated that and can make amendment or be equal to replacement technical scheme of the present invention; And not breaking away from the spirit and the scope of technical scheme of the present invention, it all should be encompassed in the middle of the claim scope of the present invention.

Claims (5)

1. a huge dielectric--the preparation method of non-linear low-pressure pressure-sensitive dual-function ceramic material is characterized in that may further comprise the steps:
Step 1, in first beaker that is being placed with analytically pure butyl(tetra)titanate, slowly add aqueous citric acid solution; Ceaselessly stir simultaneously and form transparent titanium ion solution; Add terepthaloyl moietie with the viscosity of regulator solution with make solution-stabilizedly, the concentration of gained Ti liquid is 0.5~1.5mol/L, above-mentioned analytically pure butyl(tetra)titanate is as the Ti ion source; Hydrocerol A is as complexing agent, and both mol ratios are between 1:1.5~2;
Step 2, in second beaker that is placed with aqueous citric acid solution, add analytically pure cupric nitrate respectively successively; SODIUMNITRATE, Bismuth trinitrate, NSC 75794, ultrasonic dispersing is impelled dissolving, forms clear solution; The total concn of each metals ion is 0.5~1mol/L; As the ion source of Cu, Na, Bi and Ba, Hydrocerol A is a complexing agent respectively for above-mentioned analytically pure cupric nitrate, SODIUMNITRATE, Bismuth trinitrate, NSC 75794, and the mol ratio of Hydrocerol A and above-mentioned four metal ion species quantity sums is 1:1~1:1.5;
Step 3, two kinds of solution stirring that above-mentioned first, second beaker is interior are mixed, and using ammoniacal liquor to regulate the pH value is 6.5~7.5, mixing solutions ageing 10~12 hours; Then in water-bath 80 ℃~100 ℃ the solution evaporate to dryness removed moisture, 140 ℃~160 ℃ dryings in baking oven are until forming the black xerogel;
Step 4, xerogel is ground, 500 ℃~600 ℃ thermal treatment is 4~6 hours in air, gets rid of organism and obtains precursor powder; With precursor powder grinding, compressing tablet sintering, sintering temperature is 1000 ℃ then, and sintering time is 3~5 hours, and obtaining molecular formula is Bi 0.5-xNa 0.5-xBa 2xCu 3Ti 4O 12Pottery, wherein, 0<X≤0.075.
2. the non-linear low-pressure pressure-sensitive dual-function ceramic material of huge dielectric according to claim 1--huge dielectric that the preparation method of non-linear low-pressure pressure-sensitive dual-function ceramic material is prepared--is characterized in that the molecular formula of this stupalith is Bi 0.5-xNa 0.5-xBa 2xCu 3Ti 4O 12, wherein, 0<X≤0.075, it has high specific inductivity and non-linear piezo resistance effect.
3. according to the said huge dielectric of claim 2--non-linear low-pressure pressure-sensitive dual-function ceramic material, it is characterized in that the molecular formula of this stupalith is Bi 0.475Na 0.475Ba 0.05Cu 3Ti 4O 12
4. according to the said huge dielectric of claim 2--non-linear low-pressure pressure-sensitive dual-function ceramic material, it is characterized in that the molecular formula of this stupalith is Bi 0.45Na 0.45Ba 0.1Cu 3Ti 4O 12
5. according to the said huge dielectric of claim 2--non-linear low-pressure pressure-sensitive dual-function ceramic material, it is characterized in that the molecular formula of this stupalith is Bi 0.425Na 0.425Ba 0.15Cu 3Ti 4O 12
CN 201010514378 2010-10-21 2010-10-21 Giant dielectric-nonlinear low-voltage difunctional varistor ceramic material and preparation method thereof Expired - Fee Related CN101955354B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010514378 CN101955354B (en) 2010-10-21 2010-10-21 Giant dielectric-nonlinear low-voltage difunctional varistor ceramic material and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010514378 CN101955354B (en) 2010-10-21 2010-10-21 Giant dielectric-nonlinear low-voltage difunctional varistor ceramic material and preparation method thereof

Publications (2)

Publication Number Publication Date
CN101955354A CN101955354A (en) 2011-01-26
CN101955354B true CN101955354B (en) 2012-12-19

Family

ID=43482977

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010514378 Expired - Fee Related CN101955354B (en) 2010-10-21 2010-10-21 Giant dielectric-nonlinear low-voltage difunctional varistor ceramic material and preparation method thereof

Country Status (1)

Country Link
CN (1) CN101955354B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103482974A (en) * 2013-09-29 2014-01-01 哈尔滨理工大学 Preparation method of CaCu3Ti4O12 ceramic powder
CN107602116A (en) * 2017-09-28 2018-01-19 天津大学 A kind of method that copper titanate strontium bismuth sodium dielectric material is prepared based on sol-gal process

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1568295A (en) * 2001-10-12 2005-01-19 纳幕尔杜邦公司 Sodium copper titanate compositions containing a rare earth, yttrium or bismuth
CN1975943A (en) * 2006-12-20 2007-06-06 天津大学 Doped copper titanium oxide capacitor ceramic dielectric and producing method thereof
CN101503186A (en) * 2008-02-04 2009-08-12 微宏科技(湖州)有限公司 Precursor water solution for preparing CaCu3Ti4O12 and preparing method thereof
CN101671178A (en) * 2009-09-24 2010-03-17 华中科技大学 Preparation method of Bi0.5Na0.5Cu3Ti4O12 giant dielectric non-linear pressure-sensitive ceramics

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1568295A (en) * 2001-10-12 2005-01-19 纳幕尔杜邦公司 Sodium copper titanate compositions containing a rare earth, yttrium or bismuth
CN1975943A (en) * 2006-12-20 2007-06-06 天津大学 Doped copper titanium oxide capacitor ceramic dielectric and producing method thereof
CN101503186A (en) * 2008-02-04 2009-08-12 微宏科技(湖州)有限公司 Precursor water solution for preparing CaCu3Ti4O12 and preparing method thereof
CN101671178A (en) * 2009-09-24 2010-03-17 华中科技大学 Preparation method of Bi0.5Na0.5Cu3Ti4O12 giant dielectric non-linear pressure-sensitive ceramics

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈戈等.(Na1/2Bi1/2)Cu3Ti4O12陶瓷的微观结构和电学性质.《物理学报》.2010,第59卷(第5期),第3509-3515页. *

Also Published As

Publication number Publication date
CN101955354A (en) 2011-01-26

Similar Documents

Publication Publication Date Title
Borisevich et al. Effect of V2O5 Doping on the Sintering and Dielectric Properties of M‐Phase Li1+ x− yNb1− x− 3yTix+ 4yO3 Ceramics
CN103342558B (en) Low temperature sintering microwave dielectric ceramic Ba 3ti 2v 4o 17and preparation method thereof
CN103113104A (en) Low temperature sintered microwave dielectric ceramic Li2W4O13 and preparation method thereof
Srisombat et al. Chemical investigation of Fe3+/Nb5+-doped barium titanate ceramics
Zhang et al. Simultaneously achieving colossal permittivity, ultralow dielectric loss tangent, and high insulation resistivity in Er-doped SrTiO3 ceramics via oxygen vacancy regulation
CN101955354B (en) Giant dielectric-nonlinear low-voltage difunctional varistor ceramic material and preparation method thereof
CN106938928A (en) A kind of anti-reduction huge dielectric constant low loss, high value ceramic capacitor dielectric material
CN102515755B (en) Lead-zirconate-based antiferroelectric thick film with high energy storage density, and preparation method thereof
CN111792930A (en) Method for obtaining three-relaxation-state ferroelectric ceramic with wide temperature range and high dielectric constant
CN103553612B (en) Microwave dielectric ceramic Ba6W2V2O17 capable of being sintered at low temperature and preparation method thereof
CN103508732B (en) Low temperature coefficient crystal boundary layer ceramic capacitor medium and preparation method thereof
CN107827451B (en) Method for reducing loss of calcium copper titanate ceramic by water quenching
CN103332932B (en) Low-temperature sintered vanadate microwave dielectric ceramic BaZnV2O7 and preparation method thereof
CN103319177B (en) Microwave dielectric ceramic Ba3WTiO8 with low-temperature sintering characteristic and preparation method thereof
US20200286654A1 (en) Ceramic member
CN102887703A (en) Li-base low-temperature-sinterable microwave dielectric ceramic Li2Ba1-xSrxTi6O14 and preparation method thereof
CN101628808A (en) CaTiO3 based pressure sensitivity-capacity dual-function ceramic material and method for preparing same
CN104045344A (en) Low temperature sinterable microwave dielectric ceramic Li2Zn3WO7 and preparation method thereof
CN106915964A (en) A kind of unleaded high energy storage density ceramic material and preparation method thereof
Hreniak et al. Preparation and conductivity measurement of Eu doped BaTiO3 nanoceramic
CN101671178B (en) Preparation method of Bi0.5Na0.5Cu3Ti4O12 giant dielectric non-linear pressure-sensitive ceramics
CN111217604A (en) Sodium bismuth titanate-based electronic ceramic with high energy storage density and high efficiency and preparation method thereof
JP5283813B2 (en) Dielectric ceramic material containing silver, niobium and tantalum
CN105198405B (en) A kind of pressure-sensitive double functional ceramics of electric capacity and preparation method thereof
Zu et al. CaCu3Ti4O12 ceramics with giant permittivity prepared by reduction-reoxidation method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121219

Termination date: 20131021