CN101949618A - 制冷剂侧切换污水源热泵系统 - Google Patents

制冷剂侧切换污水源热泵系统 Download PDF

Info

Publication number
CN101949618A
CN101949618A CN 201010298472 CN201010298472A CN101949618A CN 101949618 A CN101949618 A CN 101949618A CN 201010298472 CN201010298472 CN 201010298472 CN 201010298472 A CN201010298472 A CN 201010298472A CN 101949618 A CN101949618 A CN 101949618A
Authority
CN
China
Prior art keywords
heat exchanger
stop valve
refrigerant
source
manual stop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 201010298472
Other languages
English (en)
Inventor
潘祖栋
杨松杰
徐烽烽
王坚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Dunan Artificial Environment Co Ltd
Original Assignee
Zhejiang Dunan Artificial Environment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Dunan Artificial Environment Co Ltd filed Critical Zhejiang Dunan Artificial Environment Co Ltd
Priority to CN 201010298472 priority Critical patent/CN101949618A/zh
Publication of CN101949618A publication Critical patent/CN101949618A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

本发明公开了制冷剂侧切换水源热泵系统,制冷回路为:从冷媒压缩机依次通过第一手动截止阀、热源侧换热器、第二手动截止阀、干燥过滤器、节流装置、第三手动截止阀、使用侧换热器、第四手动截止阀后回到冷媒压缩机;制热回路为:冷媒压缩机依次通过第五手动截止阀、使用侧换热器、第六手动截止阀、干燥过滤器、节流装置、第七手动截止阀、热源侧换热器、第八手动截止阀后回到冷媒压缩机。本发明的优点是:通过控制手动截止阀的开关来实现机组制冷、制热运行模式的切换,无四通阀卡死故障、泄漏率低的问题,且成本较低,安全可靠,操作方便,直接采用污水进蒸发器可提升机组运行效率10%以上,热源丰富、绿色环保,又节省了中间换热的投资成本。

Description

制冷剂侧切换污水源热泵系统
技术领域
本发明涉及制冷剂侧切换污水源热泵系统。
背景技术
当前,能源紧缺已经成为严重制约我国经济社会发展的关键问题,节能作为国家能源战略的一个重要组成部分,受到了越来越多的关注,其中空调系统是电耗的重要组成部分。从降低运行费用、节省能源、减少排放CO2排放量来看,当前市场上均采用电能驱动的热泵机组。从冷(热)源的角度来区分,当前市场热泵机组可以分为空气源热泵和地源热泵两大类。但是上述两种热泵机组均存在不同方面的缺陷,致使产品应用范围受阻:
1、风冷热泵机组
风冷冷热水机组是以空气源为冷热源,可省去冷却水系统,系统设计简单,施工方便。但是,由于外部环境变化多端,长期以来的理论和实践均表明,空气源热泵系统有以下缺点:
1.1、区域性限制强。受冬季环境温度较低影响,机组在黄河流域、华北、西北等地区将无法在冬季正常工作;
1.2、制热时蒸发器易结霜。由于空气源热泵冬季采用空气作为热源,所以,随着室外温度的降低,空气中的水分就会析出并依附于蒸发器表面形成霜层。蒸发器传热热阻增加,严重影响压缩机以及热泵整体的性能,同时,除霜带来的额外费用还将降低空气源热泵的经济性;
1.3、空气源热泵除霜系统复杂。空气源热泵冷热水机组在除霜易出现低压保护、液压缩、除霜水不易流尽、除霜时间过长等现象,并导致室内温度波动过大;
1.4、制热性能受环境温度影响大,制热效率低。系统的制热量随着外温的下降而迅速下降,而需热量却随着外温的下降而迅速上升,当外界温度很低时,系统的制热量将小到无法满足这些地区的冬季采暖需求;与此同时,随着室外环境温度的降低,机组COP急剧下降、压缩机的压比会越来越大,导致排气温度不断升高,长期运行必然会严重损坏压缩机。
1.5、四通阀内部容易泄漏,且机械部件容易卡死,机组效率、可靠性差。
综上所述,空气源热泵无法解决冬季寒冷气候条件下影响热效率根本问题,如结霜、化霜、运行效率低、四通阀可靠性差等问题,产品使用范围较窄。
2、水(地)源热泵机组
水地源热泵利用地下水和土壤常年温度可稳定在较高水平这一特性,解决了空气源热泵冬季换热器结霜、化霜需要导致热泵结构复杂及运行转换麻烦与系统运行不可靠并降低压缩机寿命等问题,同时还极大的提升了机组的运行能效比。但是由于水地源热泵对地下水破坏严重,且初投资大,极大地限制了产品的推广与应用:
2.1、机组效率分析。如果采用直接开采地下水,相对来说,在夏季时候,由于冷却水温度相对较低,机组有个较好的冷源,机组运行效率较高,冬季的时候,由于地下水热源温度较高,机组可以获得很高的运行效率;但是如果采用地源热泵,冬季的时候,由于地面温度较低,且换热效率差,其经过地埋管换热后的热源将在0℃左右,与水源热泵机组相比,机组运行效率将大幅下降。
2.2、地下水开采费用昂贵,使用受限。地源热泵需占用大面积土地,施工难度大,且造价昂贵,地下埋管、或打井的费用将在远高于机组本身的成本。
2.3、地下水开采容易造成地下水质污染。水源热泵对地下水资源会产生污染和浪费,在水、地源热泵空调系统在推广应用中发现,水源热泵由于井水不能100%回灌,导致宝贵的地下水被排入城市下水道,严重浪费地下水资源。由取水井抽取的地下水经过水源热泵机组提取能量之后,被返回至回水井的过程中,将长年沉睡在地下与世隔绝清洁的地下水与空气暴气循环被氧化,增加了地下水与空气中氧分子接触机会,导致地下水中氧化铁含量逐渐增大,使地下水变成红褐色的铁锈水,严重地污染和破坏了地下水资源;
2.4、机组制冷、制热通过外部水路阀门进行切换,水系统管路设计复杂,制冷制热切换时候使用侧、外部热源侧水质容易混淆,给使用侧水路造成污染。
3、上述各种热泵优缺点
风冷螺杆的最突出的优点是空气免费、取之不尽、用之不竭。但结霜、化霜、运行效率低、四通阀可靠性差等问题能效比太低成为了致命缺陷,而水源热泵虽然在运行效率上有明显优势,但工程投资大,且对地下水质有破坏,使该产品的应用推广受到了极大的限制。
发明内容
本发明的目的在于提供制冷剂侧切换污水源热泵系统,通过制冷剂侧切换达到制冷、制热需求的高效、无污染的热泵机组,同时要解决现有风冷热泵的结霜、化霜、运行效率低、四通阀可靠性差、能效比低等缺陷,且要解决水源热泵工程投资大,对地下水质有破坏缺陷。
为了解决上述技术问题,本发明是通过以下技术方案实现的:制冷剂侧切换污水源热泵系统,包括冷媒压缩机、使用侧换热器、节流装置、干燥过滤器、热源侧换热器,制冷回路为:从冷媒压缩机的出口通过第一手动截止阀进入热源侧换热器的第一冷媒进口,从热源侧换热器的第一冷媒出口依次通过第二手动截止阀、干燥过滤器、节流装置、第三手动截止阀后进入使用侧换热器第二冷媒入口,再从使用侧换热器的第二冷媒出口经过第四手动截止阀后回到冷媒压缩机;制热回路为:从冷媒压缩机的出口通过第五手动截止阀进入使用侧换热器的第三冷媒入口,从使用侧换热器的第三冷媒出口依次通过第六手动截止阀、干燥过滤器、节流装置、第七手动截止阀后进入热源侧换热器的第四冷媒入口,再从热源侧换热器的第四冷媒出口通过第八手动截止阀后回到冷媒压缩机。
优选的,所述节流装置为电子膨胀阀;能较好的在低温环境工作。
优选的,所述冷媒压缩机为螺杆式压缩机;螺杆式压缩机可靠性高、操作维护方便、动力平衡好、适应性强。
优选的,所述使用侧换热器、热源侧换热器均为满液式换热器;满液式换热器效率高、性能可靠、操作方便、维护保养简单,有效降低了用户管理成本。
与现有技术相比,本发明的优点是:通过控制手动截止阀的开关来实现机组制冷、制热运行模式的切换,无四通阀卡死故障、泄漏率低的问题,且成本较低,安全可靠,操作方便;可以以原生污水为冷(热)源,确保污水、空调水分别在固定的换热器内流动,避免了普通的外部切换水源热泵机组因制冷、制热水路切换而带来的二次污染问题,不会对地下水质造成任何危害,实现真正的变废为宝,污水直接近换热器,无中间换热损失,提高了机组的运行效率,污水热量得到充分利用,与常规的通过中间热交换器换热相比,直接采用污水进蒸发器可提升机组运行效率10%以上,热源丰富、绿色环保,同时又节省了中间换热的投资成本。
附图说明
图1为本发明制冷剂侧切换污水源热泵系统的工作流程示意图。
具体实施方式
参阅图1为本发明制冷剂侧切换污水源热泵系统的实施例,制冷剂侧切换污水源热泵系统,包括冷媒压缩机1、使用侧换热器2、节流装置3、干燥过滤器4、热源侧换热器5。
制冷回路为:从冷媒压缩机1的出口通过第一手动截止阀V1进入热源侧换热器5的第一冷媒进口,从热源侧换热器5的第一冷媒出口依次通过第二手动截止阀V2、干燥过滤器4、节流装置3、第三手动截止阀V3后进入使用侧换热器2第二冷媒入口,再从使用侧换热器2的第二冷媒出口经过第四手动截止阀V4后回到冷媒压缩机1;
制热回路为:从冷媒压缩机1的出口通过第五手动截止阀V5进入使用侧换热器2的第三冷媒入口,从使用侧换热器2的第三冷媒出口依次通过第六手动截止阀V6、干燥过滤器4、节流装置3、第七手动截止阀V7后进入热源侧换热器5的第四冷媒入口,再从热源侧换热器5的第四冷媒出口通过第八手动截止阀后回到冷媒压缩机1。
上述节流装置3为电子膨胀阀,所述冷媒压缩机1为螺杆式压缩机,所述使用侧换热器2、热源侧换热器5均为满液式换热器,所述热源侧换热器5内使用的热源为原生态污水。
上述热源侧换热器可以使用原生污水为冷(热)源,污水常年温度稳定在15~25度之间,夏(冬)天是现在发现的最好的冷(热)源,机组效率是所有同类产品中最高的。
制冷的时候开启第一、二、三、四手动截止阀,关闭第五、六、七、八手动截止阀;制热的时候开启第五、六、七、八手动截止阀,关闭第一、二、三、四手动截止阀;污水在热源侧换热器内流过,冷却水在使用侧换热器内流过。
以上所述仅为本发明的具体实施例,但本发明的技术特征并不局限于此,任何本领域的技术人员在本发明的领域内,所作的变化或修饰皆涵盖在本发明的专利范围之中。

Claims (4)

1.制冷剂侧切换污水源热泵系统,其特征在于:包括冷媒压缩机(1)、使用侧换热器(2)、节流装置(3)、干燥过滤器(4)、热源侧换热器(5),制冷回路为:从冷媒压缩机(1)的出口通过第一手动截止阀(V1)进入热源侧换热器(5)的第一冷媒进口,从热源侧换热器(5)的第一冷媒出口依次通过第二手动截止阀(V2)、干燥过滤器(4)、节流装置(3)、第三手动截止阀(V3)后进入使用侧换热器(2)第二冷媒入口,再从使用侧换热器(2)的第二冷媒出口经过第四手动截止阀(V4)后回到冷媒压缩机(1);制热回路为:从冷媒压缩机(1)的出口通过第五手动截止阀(V5)进入使用侧换热器(2)的第三冷媒入口,从使用侧换热器(2)的第三冷媒出口依次通过第六手动截止阀(V6)、干燥过滤器(4)、节流装置(3)、第七手动截止阀(V7)后进入热源侧换热器(5)的第四冷媒入口,再从热源侧换热器(5)的第四冷媒出口通过第八手动截止阀后(V8)回到冷媒压缩机(1)。
2.如权利要求1所述的制冷剂侧切换污水源热泵系统,其特征在于:所述节流装置(3)为电子膨胀阀。
3.如权利要求1所述的制冷剂侧切换污水源热泵系统,其特征在于:所述冷媒压缩机(1)为螺杆式压缩机。
4.如权利要求1所述的制冷剂侧切换污水源热泵系统,其特征在于:所述使用侧换热器(2)、热源侧换热器(5)均为满液式换热器。
CN 201010298472 2010-10-08 2010-10-08 制冷剂侧切换污水源热泵系统 Pending CN101949618A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010298472 CN101949618A (zh) 2010-10-08 2010-10-08 制冷剂侧切换污水源热泵系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010298472 CN101949618A (zh) 2010-10-08 2010-10-08 制冷剂侧切换污水源热泵系统

Publications (1)

Publication Number Publication Date
CN101949618A true CN101949618A (zh) 2011-01-19

Family

ID=43453202

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010298472 Pending CN101949618A (zh) 2010-10-08 2010-10-08 制冷剂侧切换污水源热泵系统

Country Status (1)

Country Link
CN (1) CN101949618A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102261704A (zh) * 2011-05-08 2011-11-30 姜衍礼 直接式污水源热泵中央空调生活热水系统
CN102692054A (zh) * 2012-04-26 2012-09-26 江苏辛普森新能源有限公司 一种热源塔制冷供热专用机组
CN105674622A (zh) * 2016-03-31 2016-06-15 天津众石睿哲科技有限责任公司 一种使用满液式储液蒸发器的二氧化碳热泵系统
CN109579343A (zh) * 2018-10-29 2019-04-05 青岛海尔(胶州)空调器有限公司 空调器及其控制方法
CN114508870A (zh) * 2022-02-22 2022-05-17 江苏辛普森新能源有限公司 一种热源塔热泵机组及其制冷、制热双功能的简易切换方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1598444A (zh) * 2004-07-19 2005-03-23 烟台蓝德空调工业科技有限公司 海水源热泵机组
CN101311647A (zh) * 2007-05-25 2008-11-26 开利公司 用于制冷剂循环系统的复合型满液式热交换器
CN101514854A (zh) * 2009-01-13 2009-08-26 浙江盾安机电科技有限公司 一种节能型高温冷水机组
CN101762207A (zh) * 2010-01-15 2010-06-30 北京中科华誉能源技术发展有限责任公司 防沙型壳管式全逆流冷凝器
CN101839531A (zh) * 2010-04-27 2010-09-22 上海斯图华纳空调有限公司 原生态污水源数码变容量热泵空调系统
CN101852509A (zh) * 2010-05-21 2010-10-06 北京中科华誉能源技术发展有限责任公司 制冷剂侧冷热换向的满液式水源热泵机组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1598444A (zh) * 2004-07-19 2005-03-23 烟台蓝德空调工业科技有限公司 海水源热泵机组
CN101311647A (zh) * 2007-05-25 2008-11-26 开利公司 用于制冷剂循环系统的复合型满液式热交换器
CN101514854A (zh) * 2009-01-13 2009-08-26 浙江盾安机电科技有限公司 一种节能型高温冷水机组
CN101762207A (zh) * 2010-01-15 2010-06-30 北京中科华誉能源技术发展有限责任公司 防沙型壳管式全逆流冷凝器
CN101839531A (zh) * 2010-04-27 2010-09-22 上海斯图华纳空调有限公司 原生态污水源数码变容量热泵空调系统
CN101852509A (zh) * 2010-05-21 2010-10-06 北京中科华誉能源技术发展有限责任公司 制冷剂侧冷热换向的满液式水源热泵机组

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102261704A (zh) * 2011-05-08 2011-11-30 姜衍礼 直接式污水源热泵中央空调生活热水系统
CN102692054A (zh) * 2012-04-26 2012-09-26 江苏辛普森新能源有限公司 一种热源塔制冷供热专用机组
CN102692054B (zh) * 2012-04-26 2014-09-24 江苏辛普森新能源有限公司 一种热源塔制冷供热专用机组
CN105674622A (zh) * 2016-03-31 2016-06-15 天津众石睿哲科技有限责任公司 一种使用满液式储液蒸发器的二氧化碳热泵系统
CN109579343A (zh) * 2018-10-29 2019-04-05 青岛海尔(胶州)空调器有限公司 空调器及其控制方法
CN114508870A (zh) * 2022-02-22 2022-05-17 江苏辛普森新能源有限公司 一种热源塔热泵机组及其制冷、制热双功能的简易切换方法

Similar Documents

Publication Publication Date Title
CN102654324A (zh) 一种带有热气旁通除霜装置的双级压缩热泵系统
CN103423917A (zh) 空气源中央空调热水三联供热泵机组
CN109140851B (zh) 一种采暖制冷设备
CN101949618A (zh) 制冷剂侧切换污水源热泵系统
CN103528267B (zh) 带热管回路的低环境温度空气源热泵制冷系统
CN101761996A (zh) 一种地下水源热泵空调系统
CN201173633Y (zh) 一种冷媒自然循环并用型单元式空调机组
CN1072010A (zh) 一种热泵供热供冷系统
CN103032999B (zh) 用双四通阀切换的双热源热泵热水一体机
CN100467964C (zh) 一种利用多种自然环保能源的空调装置
CN201508076U (zh) 轨道车辆空气源低温热泵机组
CN101806515B (zh) 太阳能空调热水三联供系统
CN103528295B (zh) 复合能源热泵式节能型户式中央空调及其控制方法
CN211345664U (zh) 基于矿井井下回风余热的供暖、降温系统
CN205026983U (zh) 带过冷回路的低环境温度空气源热泵系统
CN203758083U (zh) 一种地热源热泵供暖、制冷系统
CN203572093U (zh) 空气源中央空调热水三联供热泵机组
CN203501528U (zh) 一种直接膨胀式土壤源热泵空调冷热水机组
CN204630134U (zh) 一种单双级复叠式空气源热泵供暖系统
CN208269316U (zh) 一种分体式户用地源热泵空调系统
CN202613855U (zh) 用双四通阀切换的双热源热泵热水一体机
CN105003952A (zh) 三热源无霜热泵系统
CN201173636Y (zh) 复合式风冷-水冷热泵机组
CN202267266U (zh) 一种水地源三联供机组
CN203518333U (zh) 带热管回路的低环境温度空气源热泵制冷系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20110119