CN101935462A - 一种双咔唑基染料及其制法和应用 - Google Patents

一种双咔唑基染料及其制法和应用 Download PDF

Info

Publication number
CN101935462A
CN101935462A CN2010102422438A CN201010242243A CN101935462A CN 101935462 A CN101935462 A CN 101935462A CN 2010102422438 A CN2010102422438 A CN 2010102422438A CN 201010242243 A CN201010242243 A CN 201010242243A CN 101935462 A CN101935462 A CN 101935462A
Authority
CN
China
Prior art keywords
branched
straight chained
hydrogen
chain alkyl
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010102422438A
Other languages
English (en)
Inventor
曹德榕
彭锦安
洪艳平
汪凌云
方晓明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN2010102422438A priority Critical patent/CN101935462A/zh
Publication of CN101935462A publication Critical patent/CN101935462A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/0008Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain
    • C09B23/005Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain the substituent being a COOH and/or a functional derivative thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/0008Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain
    • C09B23/005Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain the substituent being a COOH and/or a functional derivative thereof
    • C09B23/0058Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain the substituent being a COOH and/or a functional derivative thereof the substituent being CN
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/14Styryl dyes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/652Cyanine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明公开了一种双咔唑基染料及其制法和应用,属于精细化工中的光电转化材料应用领域。本发明将双咔唑及其衍生物单元通过烷基连接形成双电子给体,在此基础上分别用双键延伸共轭π桥,末端接上氰基乙酸作为电子受体,应用该方法合成了一系列染料。由于双咔唑基染料具有与TiO2更强的结合能力,并且有效地防止染料在TiO2表面的聚集,使得其在相同条件下具有比单咔唑基染料更优越的性能。而且双咔唑基染料的合成方法简单,原料易得,可代替价格昂贵、制备提纯较难的贵金属光敏染料,有效地降低染料敏化太阳能电池成本。

Description

一种双咔唑基染料及其制法和应用
技术领域
本发明公开了一种双咔唑基染料及其制法和应用,属于精细化工中的光电转化材料应用领域,具体涉及一类双咔唑基染料及其衍生物的设计、合成,以及所述染料在染料敏化太阳能电池方面的应用。
技术背景
染料敏化太阳能电池(DSSCs)是1991年瑞士科学家M.
Figure BSA00000212636200011
首次提出并设计的一种新型的将太阳能转化为电能的装置。其构成一般由以下几方面组成:以镀Pt的导电玻璃为基板的光阴极,吸附了光敏染料的纳米多孔氧化物薄膜和透明导电基板组成的光阳极,填充在两电极之间的电解质以及密封材料。这类电池与传统的硅基太阳能电池相比具有结构简单、制作成本低等优点,而且其光电转化效率目前已达11%以上,是一类具有广泛应用前景的光电转换装置。光敏染料是染料敏化太阳能电池中非常重要的组成部分,染料的结构设计对于这类电池至关重要。目前,光电转化效率最高的依然是钌多吡啶配合物。然而钌属于稀有贵金属,相应的钌多吡啶配合物的分离提纯也有相当的难度,这限制了DSSCs成本的降低和未来的大规模实用化。为此,不含金属的有机光敏染料近年来在DSSCs中得到广泛的应用。同钉多吡啶配合物染料(如N3,N719等)相比,有机光敏染料具有结构多样、制备提纯相对容易、摩尔消光系数高等诸多优点。近年来品种多样的有机光敏染料发展迅速,为了进一步降低染料敏化太阳能电池成本,本发明设计合成了一类新型的咔唑类有机光敏染料。
发明内容
本发明的目的是合成一类新型的不含金属纯有机光敏染料,这类染料是以双咔唑及其衍生物为共轭体系,通过烷基链将双咔唑单元连接起来,在此基础上分别延伸共轭π桥,在末端接上氰基乙酸,用来吸附在TiO2上,组成一类双链电子推拉型染料。这类染料在染料敏化太阳能电池上具有很好的应用性能。
本发明提供了一类新型的咔唑光敏染料,这类染料具有如下结构:
其中:R1~R6为氢、C1~C20的直链烷基、C1~C20的支链烷基、C1~C20的酰胺基、C1~C20烷氧基或卤素;m为1~6的自然数;X为氢、C1~C20的直链烷基、C1~C20的支链烷基、C1~C20的酰胺基、C1~C20烷氧基、卤素或
Figure BSA00000212636200021
其中,X1~X5为氢,C1~C20的直链烷基,C1~C20的支链烷基,C1~C20的酰胺基,C1~C20烷氧基或卤素;X6,X7为氢,C1~C20的直链烷基,C1~C20的支链烷基或C1~C20烷氧基;X8,X9为氢,C1~C20的直链烷基或C1~C20的支链烷基;Y为C4~C20的直链烷基,C4~C20的支链烷基或
Figure BSA00000212636200022
其中,Y1~Y4为氢,C1~C20的直链烷基,C1~C20的支链烷基,C1~C20的酰胺基,C1~C20烷氧基或卤素;W为氮,氧或硫。
所述的一种双咔唑基染料的制备方法,包括以下步骤:
反应均在惰性气氛中进行;
(1)将碱和A按照摩尔比1~5∶1混合,在0~40℃下搅拌1~60min;然后滴加B,B与A的摩尔比为1∶2~3∶2,反应1~48h;加入到冰水混合物中搅拌10~30min,过滤,将固体溶于二氯甲烷中,水洗,分液,干燥有机相,重结晶后得到化合物M1;
(2)向冰浴中的N,N-二甲基甲酰胺缓慢滴加POCl3,N,N-二甲基甲酰胺与POCl3的摩尔比为1~5∶1,恢复室温,搅拌1~2h;然后滴加溶于溶剂的M1,M1与POCl3的摩尔比为1∶8~1∶1,在50~120℃下搅拌1~24h;调节pH为6~7,搅拌1~10h,加入二氯甲烷萃取,有机相水洗,干燥,浓缩,得到化合物M2;
(3)将M2和氰基乙酸按摩尔比为1∶20~1∶2加入到溶剂中,滴加4~10滴有机碱,在50~120℃下搅拌1~24h;调节pH为1~5,搅拌1~60min,过滤,固体干燥后进行柱层析分离得到化合物M3;
所述化合物A为:
Figure BSA00000212636200031
所述化合物B为Br-Y-Br;
所述化合物M1为:
Figure BSA00000212636200032
所述化合物M2为:
Figure BSA00000212636200033
所述化合物M3为:
其中:R1~R6为氢、C1~C20的直链烷基、C1~C20的支链烷基、C1~C20的酰胺基、C1~C20烷氧基或卤素;m为1~6的自然数;X为氢、C1~C20的直链烷基、C1~C20的支链烷基、C1~C20的酰胺基、C1~C20烷氧基、卤素或
Figure BSA00000212636200041
X1~X5为氢,C1~C20的直链烷基,C1~C20的支链烷基,C1~C20的酰胺基,C1~C20烷氧基或卤素;X6,X7为氢,C1~C20的直链烷基,C1~C20的支链烷基或C1~C20烷氧基;X8,X9为氢,C1~C20的直链烷基或C1~C20的支链烷基;
其中,
Y为C4~C20的直链烷基,C4~C20的支链烷基或
Figure BSA00000212636200042
Y1~Y4为氢,C1~C20的直链烷基,C1~C20的支链烷基,C1~C20的酰胺基,C1~C20烷氧基或卤素;W为氮、氧或硫。
所述碱为氢氧化钠或氢氧化钾。
步骤(1)所述溶剂为二甲基亚砜或N,N-二甲基甲酰胺。
步骤(2)所述溶剂为氯仿、二氯甲烷或1,2-二氯乙烷。
步骤(3)所述溶剂为氯仿、乙腈或醋酸。
所述有机碱为吡啶、哌啶或三乙胺。
所述的一种双咔唑基染料在染料敏化太阳能电池中的应用。
本发明咔唑染料的合成方法简单,原料价廉易得,其合成按如下反应式进行:
当m=1时的反应式:
Figure BSA00000212636200051
本发明合成的咔唑染料在染料料敏化太阳能电池中的应用,包括染料敏化太阳能电池的组成和构造、制备步骤和电池性能测试为:
(1)染料敏化太阳能电池的组成和构造:染料敏化太阳能电池主要由光阳极、光阴极及它们的基板(导电玻璃)和电解质组成;光阳极基板工作区域一侧导电玻璃中间设有纳米多孔TiO2薄膜,并浸染有咔唑染料;光阴极基板工作区域一侧电玻璃中间设有催化剂(Pt)层;光阳极和光阴极相对间隔设置,中间纳米多孔TiO2薄膜周边用密封材料密封形成密闭的腔体,腔体内填充有电解质;
(2)所述染料敏化太阳能电池的制备步骤如下:
(a)导电玻璃的预处理:将导电玻璃依次在去油剂、无水乙醇和去离子水中用超声波清洗,然后烘干备用;
(b)TiO2浆料的制备:将2g P25型二氧化钛纳米颗粒分散在4ml去离子水与0.1ml乙酰丙酮的混合溶剂中,加入两滴Triton X-100;
(c)染料溶液的配制:将权利要求1所述的咔唑染料溶于四氢呋喃中,配制成5×10-4mol·L-1溶液;
(d)电解质溶液的配制:用绝对干燥的乙腈配制含有0.6M四丁基碘化铵,0.1M LiI,0.05M I2和0.5M对叔丁基吡啶的溶液;
(e)光阳极的制备:在步骤(1)处理好的导电玻璃上,通过丝网印刷制备底面积为0.237cm2,厚度为15~20μm的圆柱形纳米多孔TiO2薄膜材料,并在450℃下保持30分钟后缓慢降至室温,再将其浸于40mM TiCl4水溶液中,在70℃保持半小时,取出后用去离子水冲洗干净,在500℃烘焙半小时;
(f)光阳极的敏化:将步骤(5)制备的光阳极纳米多孔TiO2薄膜层浸染在权利要求1所述的咔唑染料按步骤(3)配制后的溶液中,染浴12~24h;
(g)光阴极的制备:在经过预处理的光阴极基板上,通过热分解法镀上Pt做催化剂层,然后钻针头大小孔备用;
(h)电池的封装:在光阳极TiO2薄膜的周边位置,放上经用磨具分割成内圆回字形的Surlyn1702热熔膜,盖上光阴极,然后在100℃加热2分钟密封;
(i)将上述电解质通过真空或者手工方法从光阴极的小孔注入,待两个电极之间没有气泡后,将其密封,制得染料敏化太阳能电池;
(3)电池性能测试:从电池的光阳极和光阴极分别引出导线,接到电池性能测试装置上,电池的工作面积为0.237cm2,用太阳光模拟器模拟太阳光,将光强度调节至100mW/cm2测得的光电转化效率为0.23~2.18%,短路电流为0.87-3.24mA/cm2,开路电压为0.512~0.717V,填充因子为0.60-0.70。
本发明相对于现有技术所具有的优点及有益效果如下:
咔唑是一种富电子的含氮杂环化合物,以其为电子给体的染料被广泛用于染料敏化太阳能电池的研究,其中最高光电转化效率达7.7%。
本发明设计并合成一类基于双咔唑及其衍生物为电子给体、双氰基乙酸为受体的新型染料。该染料具有结构简单,合成容易,防止止染料分子间堆积,光电转化性能良好等优点。
附图说明
图1为染料敏化太阳能电池封装俯视图,
图2为染料敏化太阳能电池封装侧视图;
其中:101导电玻璃
102镀铂的导电玻璃
103吸附了光敏染料的纳米TiO2
104热固性密封圈
105电解液注入小孔
图3为实施例1及实施例2中所合成的染料在四氢呋喃溶剂中(浓度2×10-5M)紫外/可见吸收谱图。横坐标表示的是吸收波长,单位为纳米,纵坐标表示的是吸光强度,单位为1。
图4为实施例1及实施例2中所合成的染料在四氢呋喃溶剂中(浓度2×10-5M)的荧光发射谱图。横坐标表示的是发射波长,单位为纳米,纵坐标表示的是发射强度,单位为1。
图5和图6为染料敏化太阳能电池的放电曲线图。
横坐标表示的是电压,单位为伏;纵坐标表示的是电流密度,单位为毫安每平方厘米。其中:图5为用Solaronix公司提供的N719光敏染料,并按照实施例4所述方法组装的电池测得的放电曲线图,图6为利用实施例1及实施例2中合成的光敏染料,并按照实施例4所述方法组装的电池测得的电池放电曲线图。
具体实施方式
下面结合实施例对本发明做进一步地详细说明,但是本发明要求保护的范围并不局限于实施例表示的范围。
实施例1
1,6-双-(3-氰基丙烯酸基咔唑)正己烷的合成
反应均在氮气保护下的干燥环境中进行
(1)1,6-双咔唑正己烷的合成
Figure BSA00000212636200071
将1.67g(10mmol)的咔唑溶于15ml DMSO中,加入2.24g(40mmol)KOH,在室温搅拌20min。然后滴加1.22g(5mmol)的1,6-二溴己烷,继续反应48h。倒入冰水混合物中剧烈搅拌30min,过滤,固体溶解于二氯甲烷中,水洗3次,干燥有机相,重结晶得到1.42g(3.41mmol)产物,收率为68%。熔点:126-127℃。
(2)1,6-双-(3-甲酰基咔唑)正己烷的合成
Figure BSA00000212636200072
向冰浴中的1~20份731mg(10mmol)DMF中加入1.23g(8mmol)POCl3,然后撤去冰浴,恢复至室温,搅拌反应1h。然后缓慢滴加416mg(1mmol)溶于15ml 1,2-二氯乙烷中的1,6-双咔唑正己烷,在85℃下反应24h。反应结束后冷却,滴加2M的NaOH溶液调节pH≈6,搅拌2h,分液,再用二氯甲烷萃取3次,合并有机层,有机相水洗3次,干燥,浓缩,粗产物通过柱层析分离提纯,得到363mg(0.77mmol)产物,收率为77%。熔点:158-160℃。
(3)1,6-双-(3-氰基丙烯酸基咔唑)正己烷的合成
Figure BSA00000212636200073
将236mg(0.5mmol)1,6-双-(3-甲酰基咔唑)正己烷加入到三口瓶中,以15ml氯仿作为溶剂,加入425mg(5mmol)氰基乙酸,滴加8滴哌啶,在75℃下搅拌反应8h。反应结束后冷却,滴加0.1M的盐酸,调节pH≈3,搅拌30min,过滤,固体干燥后进行柱层析分离得到243mg(0.40mmol)产物,收率为80%。核磁1H-NMR(400MHz,CDCl3)(δ/ppm):1.18(4H,m),1.62(4H,m),4.28(4H,t),7.22(2H,t),7.44(2H,t),7.54(2H,d,J=8Hz),7.65(2H,d,J=8Hz),8.05(2H,d,J=8Hz),8.15(2H,dd,J1=1.2Hz,J2=1.2Hz),8.31(2H,s),8.70(2H,s).质谱ESI-MS:Found m/z 605.7([M-H]-).ELEM.ANAL.Calc.For C38H30N4O4:C,75.23;H,4.98;N,9.24.Found:C,75.21;H,4.99;N,9.23.
实施例2
3-(9-乙基咔唑)-2-氰基丙烯酸的合成
反应均在氮气保护下的干燥环境中进行
(1)9-乙基咔唑的合成
Figure BSA00000212636200081
将1.67g(10mmol)的咔唑溶于15ml DMSO中,加入2.24g(40mmol)KOH,在室温下搅拌20min。然后滴加1.64g(15mmol)的溴乙烷,继续反应48h。倒入冰水混合物中搅拌10min,过滤,固体溶解于二氯甲烷中,水洗3次,干燥有机相,重结晶得到1.40g(7.2mmol)产物,收率为72%。熔点:70-72℃。
(2)9-乙基-3-甲酰基咔唑的合成
Figure BSA00000212636200082
在冰浴中1~20份的731mg(10mmol)DMF中加入1.23g(8mmol)POCl,然后撤去冰浴,恢复至室温,搅拌反应1h。然后缓慢滴加390mg(2mmol)溶于15ml 1,2-二氯乙烷中的9-乙基咔唑,在85℃下反应24h。反应结束后冷却,滴加2M的NaOH溶液调节pH≈6,搅拌2h,分液,再用二氯甲烷萃取3次,合并有机层,有机相水洗3次,干燥,浓缩,粗产物通过柱层析分离提纯,得到330mg(1.48mmol)产物,收率为74%。熔点:88-89℃。
(3)3-(9-乙基咔唑)-2-氰基丙烯酸的合成
Figure BSA00000212636200083
将223mg(1mmol)9-乙基-3-甲酰基咔唑加入到三口瓶中,以15ml氯仿作为溶剂,加入425mg(5mmol)氰基乙酸,滴加8滴哌啶,在75℃下搅拌反应8h。反应结束后冷却,滴加0.1M的盐酸,调节pH≈3,搅拌30min,过滤,固体干燥后进行柱层析分离得到246mg(0.85mmol)产物,收率为85%。核磁1H-NMR(400MHz,CDCl3)(δ/ppm):1.33(3H,t),4.5(2H,m),7.31(1H,t),7.55(1H,t),7.71(1H,d,J=8Hz),7.83(1H,d,J=8Hz),8.15(1H,d,J=8Hz),8.29(1H,dd,J1=1.2Hz,J2=1.2Hz),8.45(1H,s),8.85(1H,s).质谱ESI-MS:Found m/z 289.2([M-H]-).ELEM.ANAL.Calc.For C38H30N4O4S2:C,74.47;H,4.86;N,9.65.Found:C,47.45;H,4.88;N,9.54.
实施例3
对实施例1及实施例2染料的紫外-可见吸收光谱/荧光光谱测试,紫外-可见吸收光谱和荧光发射谱图分别为图3、图4所示。
溶剂:四氢呋喃
浓度:2×10-5M
温度:室温
仪器:Shimadzu UV-2450紫外可见风光光度计,Hitachi F-4500荧光光谱仪
表1实施例1和2中染料的最大紫外/可见吸收波长和最大荧光发射波长(nm)数据比较,将所得的数据汇总于表1中
表1
  染料   最大紫外/可见光吸收波长(nm)   最大荧光发射波长(nm)
  实施例1   387   460
  实施例2   387   452
实施例4
本发明中染料敏化太阳能电池如图1和2的制作如下:
(1)导电玻璃(FTO)的预处理:将导电玻璃依次在去油剂、无水乙醇和去离子水中用超声波充分清洗,然后烘干备用;
(2)TiO2浆料的制备:将2g P25二氧化钛纳米颗粒分散在4ml去离子水和0.1ml的乙酰丙酮混合溶剂中,分散结束后加入两滴Triton X-100;
(3)染料溶液的配制:将实施例1制的的咔唑染料溶于四氢呋喃中,配制成2×10-4mol·L-1溶液;
(4)电解质溶液的配制:用绝对干燥的乙腈配制含有0.6M四丁基碘化铵,0.1M LiI,0.05M I2和0.5M对叔丁基吡啶的溶液;
(5)光阳极的制备:在步骤(1)处理好的导电玻璃上,通过丝网印刷制备底面积为0.237cm2,厚度为15~20μm的圆柱形纳米多孔TiO2薄膜材料,并在450℃下保持30分钟后缓慢降至室温,再将其浸于40mM TiCl4水溶液中,在70℃保持半小时,取出后用去离子水冲洗干净,在500℃烘焙半小时;
(6)光阳极的敏化:将步骤(5)制备的光阳极纳米多孔TiO2薄膜层浸染在实施例1的咔唑染料按步骤(3)配制后的溶液中,染浴12~24h;
(7)光阴极的制备:在经过预处理的光阴极基板上,通过热分解法镀上Pt做催化剂层,然后钻针头大小孔备用;
(8)电池的封装:在光阳极纳米多孔TiO2薄膜的周边位置,放上经用磨具分割成内圆回字形的Surlyn1702热熔膜,上面盖上光阴极,然后通过100℃加热2分钟进行密封;
(9)将上述电解质通过真空或者手工方法从光阴极的小孔注入,待两个电极之间没有气泡后,将小孔密封,制得染料敏化太阳能电池供测试使用;
实施例5
染料敏化太阳能电池性能测试:
将按照实施例4中的电池制备步骤,以N719为敏化染料组装成电池,分别从光阳极和光阴极引出导线,接到电池性能测试装置上,电池的有效工作面积为0.237cm2时,用太阳光模拟器模拟太阳光,将光强度调节至100mW/cm2测得的光电转化效率为5.82%,短路电流为12.61mA/cm2,开路电压为0.734V,填充因子为0.624;测得的电池放电曲线如图5所示。
将按照实施例4中的电池制备步骤,分别以实施例1和实施例2合成的染料组装成电池,分别从光阳极和光阴极引出导线,接到电池性能测试装置上,电池的工作面积为0.237cm2时,用太阳光模拟器模拟太阳光,将光强度调节至100mW/cm2分别测其光电转化效率。图6为利用实施例1及实施例2中合成的光敏染料,并按照实施例4所述方法组装的电池测得的电池放电曲线图。N719、实施例1和实施例2染料用于染料敏化太阳能电池性能数据对比,将所测数据汇总于表2。
表2
Figure BSA00000212636200101

Claims (8)

1.一种双咔唑基染料,其特征在于,具有以下结构通式:
Figure FSA00000212636100011
其中:R1~R6为氢、C1~C20的直链烷基、C1~C20的支链烷基、C1~C20的酰胺基、C1~C20烷氧基或卤素;m为1~6的自然数;X为氢、C1~C20的直链烷基、C1~C20的支链烷基、C1~C20的酰胺基、C1~C20烷氧基、卤素或
Figure FSA00000212636100012
其中,X1~X5为氢,C1~C20的直链烷基C1~C20的支链烷基,C1~C20的酰胺基,C1~C20烷氧基或卤素;X6,X7为氢,C1~C20的直链烷基,C1~C20的支链烷基或C1~C20烷氧基;X8,X9为氢,C1~C20的直链烷基或C1~C20的支链烷基;Y为C4~C20的直链烷基,C4~C20的支链烷基或
Figure FSA00000212636100021
其中,Y1~Y4为氢,C1~C20的直链烷基,C1~C20的支链烷基,C1~C20的酰胺基,C1~C20烷氧基或卤素;W为氮,氧或硫。
2.权利要求1所述的一种双咔唑基染料的制备方法,其特征在于,包括以下步骤:
反应均在惰性气氛中进行;
(1)将碱和A按照摩尔比1~5∶1混合,在0~40℃下搅拌1~60min;然后滴加B,B与A的摩尔比为1∶2~3∶2,反应1~48h;加入到冰水混合物中搅拌10~30min,过滤,将固体溶于二氯甲烷中,水洗,分液,干燥有机相,重结晶后得到化合物M1;
(2)向冰浴中的N,N-二甲基甲酰胺缓慢滴加POCl3,N,N-二甲基甲酰胺与POCl3的摩尔比为1~5∶1,恢复室温,搅拌1~2h;然后滴加溶于溶剂的M1,M1与POCl3的摩尔比为1∶8~1∶1,在50~120℃下搅拌1~24h;调节pH为6~7,搅拌1~10h,加入二氯甲烷萃取,有机相水洗,干燥,浓缩,得到化合物M2;
(3)将M2和氰基乙酸按摩尔比为1∶20~1∶2加入到溶剂中,滴加4~10滴有机碱,在50~120℃下搅拌1~24h;调节pH为1~5,搅拌1~60min,过滤,固体干燥后进行柱层析分离得到化合物M3;
所述化合物A为:
Figure FSA00000212636100022
所述化合物B为Br-Y-Br;
所述化合物M1为:
Figure FSA00000212636100023
所述化合物M2为:
Figure FSA00000212636100031
所述化合物M3为:
Figure FSA00000212636100032
其中:R1~R6为氢、C1~C20的直链烷基、C1~C20的支链烷基、C1~C20的酰胺基、C1~C20烷氧基或卤素;m为1~6的自然数;X为氢、C1~C20的直链烷基、C1~C20的支链烷基、C1~C20的酰胺基、C1~C20烷氧基、卤素或
Figure FSA00000212636100033
X1~X5为氢,C1~C20的直链烷基,C1~C20的支链烷基,C1~C20的酰胺基,C1~C20烷氧基或卤素;X6,X7为氢,C1~C20的直链烷基,C1~C20的支链烷基或C1~C20烷氧基;X8,X9为氢,C1~C20的直链烷基或C1~C20的支链烷基;
其中,
Y为C4~C20的直链烷基,C4~C20的支链烷基或
Figure FSA00000212636100041
Y1~Y4为氢,C1~C20的直链烷基,C1~C20的支链烷基,C1~C20的酰胺基,C1~C20烷氧基或卤素;W为氮,氧或硫。
3.根据权利要求2所述的制备方法,其特征在于,所述碱为氢氧化钠或氢氧化钾。
4.根据权利要求2所述的制备方法,其特征在于,所述有机碱为吡啶、哌啶或三乙胺。
5.根据权利要求2-4之一所述的制备方法,其特征在于,步骤(1)所述溶剂为二甲基亚砜或N,N-二甲基甲酰胺。
6.根据权利要求2-4之一所述的制备方法,其特征在于,步骤(2)所述溶剂为氯仿、二氯甲烷或1,2-二氯乙烷。
7.根据权利要求2-4之一所述的制备方法,其特征在于,步骤(3)所述溶剂为氯仿、乙腈或醋酸。
8.权利要求1所述的一种双咔唑基染料在染料敏化太阳能电池中的应用。
CN2010102422438A 2010-07-30 2010-07-30 一种双咔唑基染料及其制法和应用 Pending CN101935462A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010102422438A CN101935462A (zh) 2010-07-30 2010-07-30 一种双咔唑基染料及其制法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010102422438A CN101935462A (zh) 2010-07-30 2010-07-30 一种双咔唑基染料及其制法和应用

Publications (1)

Publication Number Publication Date
CN101935462A true CN101935462A (zh) 2011-01-05

Family

ID=43389044

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102422438A Pending CN101935462A (zh) 2010-07-30 2010-07-30 一种双咔唑基染料及其制法和应用

Country Status (1)

Country Link
CN (1) CN101935462A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103086950A (zh) * 2013-01-08 2013-05-08 太原理工大学 一种基于咔唑基的有机电致发光化合物
CN103087051A (zh) * 2013-01-17 2013-05-08 浙江工业大学 一种香豆素型染料敏化剂的合成及应用
CN104479391A (zh) * 2014-12-30 2015-04-01 南京信息工程大学 一种双咔唑D-D-π-A型染料、制备方法及应用
CN116217559A (zh) * 2022-12-29 2023-06-06 浙江工业大学 一种带天线的咔唑类化合物及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07286170A (ja) * 1994-04-18 1995-10-31 Toray Ind Inc 発光素子
CN1490312A (zh) * 2003-09-05 2004-04-21 �廪��ѧ 咔唑衍生物及其在电致发光器件中的应用
US7105258B2 (en) * 2003-11-11 2006-09-12 Dai Nippon Printing Co., Ltd. Charge transport monomer, charge transport material, and process for producing the same
CN101265256A (zh) * 2008-05-05 2008-09-17 淮海工学院 四苯乙烯基双咔唑化合物及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07286170A (ja) * 1994-04-18 1995-10-31 Toray Ind Inc 発光素子
CN1490312A (zh) * 2003-09-05 2004-04-21 �廪��ѧ 咔唑衍生物及其在电致发光器件中的应用
US7105258B2 (en) * 2003-11-11 2006-09-12 Dai Nippon Printing Co., Ltd. Charge transport monomer, charge transport material, and process for producing the same
CN101265256A (zh) * 2008-05-05 2008-09-17 淮海工学院 四苯乙烯基双咔唑化合物及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NAGATOSHI KOUMURA,ZHONG-SHENG WANG,SHOGO MORI: "Alkyl-Functionalized Organic Dyes for Efficient Molecular Photovoltaics", 《JOURNAL OF THE CHEMICAL SOCIETY SECTION》 *
TZI-YI WU,MING-HSIU TSAO,FU-LIN CHEN,SHYH-GANG SU: "Synthesis and Characterization of Organic Dyes Containing Various Donors and Acceptors", 《INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES》 *
杨术明主编: "《染料敏化纳米晶太阳能电池》", 30 September 2007, 郑州大学出版社 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103086950A (zh) * 2013-01-08 2013-05-08 太原理工大学 一种基于咔唑基的有机电致发光化合物
CN103087051A (zh) * 2013-01-17 2013-05-08 浙江工业大学 一种香豆素型染料敏化剂的合成及应用
CN104479391A (zh) * 2014-12-30 2015-04-01 南京信息工程大学 一种双咔唑D-D-π-A型染料、制备方法及应用
CN116217559A (zh) * 2022-12-29 2023-06-06 浙江工业大学 一种带天线的咔唑类化合物及其制备方法和应用
CN116217559B (zh) * 2022-12-29 2024-04-02 浙江工业大学 一种带天线的咔唑类化合物及其制备方法和应用

Similar Documents

Publication Publication Date Title
Warnan et al. A compact diketopyrrolopyrrole dye as efficient sensitizer in titanium dioxide dye-sensitized solar cells
Zafer et al. New perylene derivative dyes for dye-sensitized solar cells
Hara et al. Dye-sensitized nanocrystalline TiO2 solar cells based on novel coumarin dyes
Srinivas et al. D-π-A organic dyes with carbazole as donor for dye-sensitized solar cells
Lee et al. Organic dyes incorporating low-band-gap chromophores based on π-extended benzothiadiazole for dye-sensitized solar cells
Wan et al. Phenothiazine–triphenylamine based organic dyes containing various conjugated linkers for efficient dye-sensitized solar cells
Qu et al. New diketo-pyrrolo-pyrrole (DPP) sensitizer containing a furan moiety for efficient and stable dye-sensitized solar cells
Tang et al. Starburst triphenylamine-based cyanine dye for efficient quasi-solid-state dye-sensitized solar cells
JP4676970B2 (ja) 光増感色素
Kim et al. Novel conjugated organic dyes containing bis-dimethylfluorenyl amino phenyl thiophene for efficient solar cell
Wang et al. Porphyrins bearing long alkoxyl chains and carbazole for dye-sensitized solar cells: tuning cell performance through an ethynylene bridge
Cabau et al. A single atom change “switches-on” the solar-to-energy conversion efficiency of Zn-porphyrin based dye sensitized solar cells to 10.5%
Pasunooti et al. Synthesis, characterization and application of trans-D–B–A-porphyrin based dyes in dye-sensitized solar cells
Chen et al. Novel cyanine dyes with different methine chains as sensitizers for nanocrystalline solar cell
Kandavelu et al. Novel iminocoumarin dyes as photosensitizers for dye-sensitized solar cell
Wan et al. Influence of different arylamine electron donors in organic sensitizers for dye-sensitized solar cells
JP2012530796A (ja) 新規の有機色素およびその製造方法
Qian et al. Triazatruxene-based organic dyes containing a rhodanine-3-acetic acid acceptor for dye-sensitized solar cells
Shi et al. New efficient dyes containing tert-butyl in donor for dye-sensitized solar cells
Baik et al. Synthesis and photovoltaic properties of novel organic sensitizers containing indolo [1, 2-f] phenanthridine for solar cell
CN102250484B (zh) 用于染料敏化太阳能电池的咔唑基有机染料的制备方法
Horiuchi et al. Highly efficient metal-free organic dyes for dye-sensitized solar cells
Maglione et al. Tuning optical absorption in pyran derivatives for DSSC
Chiu et al. A new series of azobenzene-bridged metal-free organic dyes and application on DSSC
Matsui et al. Application of benz [c, d] indolenine-based unsymmetrical squaraine dyes to near-infrared dye-sensitized solar cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20110105