CN101924196A - A method to greatly increase the reversible capacity of graphite - Google Patents
A method to greatly increase the reversible capacity of graphite Download PDFInfo
- Publication number
- CN101924196A CN101924196A CN2009100120765A CN200910012076A CN101924196A CN 101924196 A CN101924196 A CN 101924196A CN 2009100120765 A CN2009100120765 A CN 2009100120765A CN 200910012076 A CN200910012076 A CN 200910012076A CN 101924196 A CN101924196 A CN 101924196A
- Authority
- CN
- China
- Prior art keywords
- graphite
- nano
- chemical vapor
- reversible capacity
- silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 80
- 239000010439 graphite Substances 0.000 title claims abstract description 38
- 229910002804 graphite Inorganic materials 0.000 title claims abstract description 38
- 230000002441 reversible effect Effects 0.000 title claims abstract description 31
- 238000000034 method Methods 0.000 title claims abstract description 18
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 42
- 239000000843 powder Substances 0.000 claims abstract description 36
- 239000005543 nano-size silicon particle Substances 0.000 claims abstract description 30
- 238000005229 chemical vapour deposition Methods 0.000 claims abstract description 27
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims abstract description 21
- 229910001416 lithium ion Inorganic materials 0.000 claims abstract description 21
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 15
- 238000000151 deposition Methods 0.000 claims abstract description 8
- 239000011863 silicon-based powder Substances 0.000 claims abstract description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 26
- 239000007789 gas Substances 0.000 claims description 17
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 14
- 229910052786 argon Inorganic materials 0.000 claims description 13
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 claims description 11
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 claims description 11
- 239000012159 carrier gas Substances 0.000 claims description 10
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 8
- 239000005977 Ethylene Substances 0.000 claims description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims description 7
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 6
- 239000012808 vapor phase Substances 0.000 claims description 6
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims description 4
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 claims description 4
- 229930195733 hydrocarbon Natural products 0.000 claims description 2
- 150000002430 hydrocarbons Chemical class 0.000 claims description 2
- 230000008021 deposition Effects 0.000 abstract description 7
- 229910052710 silicon Inorganic materials 0.000 description 10
- 239000010703 silicon Substances 0.000 description 10
- 230000014759 maintenance of location Effects 0.000 description 8
- 239000010405 anode material Substances 0.000 description 7
- 239000007773 negative electrode material Substances 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 238000002411 thermogravimetry Methods 0.000 description 6
- 238000004627 transmission electron microscopy Methods 0.000 description 6
- 241000282414 Homo sapiens Species 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000007770 graphite material Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- MWWATHDPGQKSAR-UHFFFAOYSA-N propyne Chemical compound CC#C MWWATHDPGQKSAR-UHFFFAOYSA-N 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明涉及大幅度提高石墨电化学性能的技术,具体为一种大幅度提高石墨可逆容量的方法。在纳米硅球粉表面化学气相沉积炭后,将包有炭的硅粉与石墨混合,具体如下:首先,通过化学气相沉积的方法在纳米硅球粉表面均匀包覆炭层,其中的炭层重量占5-40%;再将包覆有炭层的纳米硅球粉与石墨进行混合,其中的纳米硅球粉重量占5-20%,做成锂离子电池负极。本发明通过添加少量沉积炭后的纳米硅球粉,可大幅度提高石墨的可逆容量,锂离子电池负极的首次可逆容量比石墨提高50-300%,并保持石墨的高库伦效率和长循环寿命,解决了目前石墨可逆容量低,及纯硅粉库伦效率低和循环寿命差等问题。The invention relates to a technology for greatly improving the electrochemical performance of graphite, in particular to a method for greatly improving the reversible capacity of graphite. After chemical vapor deposition of carbon on the surface of nano-silicon sphere powder, the carbon-coated silicon powder is mixed with graphite, as follows: First, the carbon layer is uniformly coated on the surface of nano-silicon sphere powder by chemical vapor deposition, and the carbon layer The weight accounts for 5-40%; then the nano-silicon sphere powder coated with carbon layer is mixed with graphite, wherein the nano-silicon sphere powder accounts for 5-20% by weight to make the lithium-ion battery negative electrode. The present invention can greatly increase the reversible capacity of graphite by adding a small amount of nano silicon sphere powder after carbon deposition, the first reversible capacity of lithium ion battery negative electrode is 50-300% higher than that of graphite, and maintain the high coulombic efficiency and long cycle life of graphite , which solves the problems of low reversible capacity of graphite, low coulombic efficiency and poor cycle life of pure silicon powder.
Description
技术领域technical field
本发明涉及大幅度提高石墨电化学性能的技术,具体为一种大幅度提高石墨可逆容量的方法,在纳米硅球粉表面化学气相沉积炭后,将包有炭的硅粉与石墨混合,可将石墨的首次可逆容量提高50-200%,并保持石墨的高库伦效率和长循环寿命。The invention relates to a technology for greatly improving the electrochemical performance of graphite, specifically a method for greatly improving the reversible capacity of graphite. After chemical vapor deposition of carbon on the surface of nano-silicon sphere powder, the carbon-coated silicon powder is mixed with graphite. Increase the first reversible capacity of graphite by 50-200%, and maintain the high Coulombic efficiency and long cycle life of graphite.
背景技术Background technique
能源是人类社会发展的重要物质基础,但煤碳、石油和天然气等矿物能源存量锐减使人类面临资源枯竭的压力,同时环境污染问题也日趋严重。因此,能源和环境问题已经成为世界各国关注的焦点。提高能源使用效率、开发利用可再生能源、保护生态环境、实现可持续发展已成为各国政府和科研人员的共同目标和课题。从战略上说,开发可再生能源是解决能源问题的根本,因此这方面的研究工作已受到广泛关注,锂离子电池是可再生能源里的一个重要分支。Energy is an important material basis for the development of human society, but the sharp decline in the stock of mineral energy such as coal, oil, and natural gas has caused human beings to face the pressure of resource depletion, and the problem of environmental pollution is also becoming more and more serious. Therefore, energy and environmental issues have become the focus of attention of countries all over the world. Improving energy efficiency, developing and utilizing renewable energy, protecting the ecological environment, and realizing sustainable development have become the common goals and topics of governments and researchers of all countries. Strategically speaking, the development of renewable energy is fundamental to solving energy problems, so research in this area has received widespread attention. Lithium-ion batteries are an important branch of renewable energy.
锂离子二次电池负极石墨材料,价格低廉且具有高的库伦效率和长的循环寿命;然而,其理论可逆容量仅为372mAh/g,而报道的最好可逆容量为350mAh/g。硅的理论可逆容量为4200mAh/g,报道的实验值为3700mAh/g,但其库伦效率和循环寿命都非常差,这阻碍了它的实际应用。(文献1,文献2,Ryu Jh,Kim JVV,Sung YE,Oh SM.Electrochem.Solid State Lett.7:A306(2004))目前的主要问题是:如何在不大幅提高石墨负极材料价格的前提下,大幅度提高其可逆容量并保持其较好的库仑效率和长的循环寿命。Lithium-ion secondary battery negative electrode graphite material is cheap and has high Coulombic efficiency and long cycle life; however, its theoretical reversible capacity is only 372mAh/g, while the best reported reversible capacity is 350mAh/g. The theoretical reversible capacity of silicon is 4200mAh/g, and the reported experimental value is 3700mAh/g, but its coulombic efficiency and cycle life are very poor, which hinders its practical application. (Document 1, Document 2, Ryu Jh, Kim JVV, Sung YE, Oh SM. Electrochem. Solid State Lett. 7: A306 (2004)) The main problem at present is: how to increase the price of graphite anode materials , greatly improving its reversible capacity while maintaining its good Coulombic efficiency and long cycle life.
发明内容Contents of the invention
本发明的目的在于提供一种大幅度提高石墨负极材料可逆容量的方法,并保持石墨高的库伦效率和长的循环寿命,解决现有石墨可逆容量低、硅的库伦效率和循环寿命差等问题。The purpose of the present invention is to provide a method for greatly improving the reversible capacity of graphite negative electrode materials, and maintain high coulombic efficiency and long cycle life of graphite, and solve the problems of low reversible capacity of existing graphite, poor coulombic efficiency and cycle life of silicon, etc. .
本发明的技术方案是:Technical scheme of the present invention is:
一种大幅度提高石墨可逆容量的方法,首先,通过化学气相沉积的方法在纳米硅球粉表面均匀包覆炭层,其中的炭层重量占5-40%(优选范围为10-30%);再将包覆有炭层的纳米硅球粉与石墨进行混合,其中的纳米硅球粉重量占5-20%(优选范围为10-15%),做成锂离子电池负极;锂离子电池负极的首次可逆容量比石墨提高50-300%,并保持石墨的高库伦效率和长循环寿命。A method for greatly improving the reversible capacity of graphite. First, a carbon layer is evenly coated on the surface of nano-silicon spherical powder by chemical vapor deposition, wherein the carbon layer accounts for 5-40% by weight (preferably in the range of 10-30%) ; Then mix the nano-silicon sphere powder coated with carbon layer with graphite, wherein the nano-silicon sphere powder accounts for 5-20% by weight (the preferred range is 10-15%), and make the negative electrode of lithium-ion battery; lithium-ion battery The initial reversible capacity of the negative electrode is 50-300% higher than that of graphite, and maintains the high Coulombic efficiency and long cycle life of graphite.
所述化学气相沉积的方法,过程如下:将纳米硅球粉(平均直径20-100纳米的球型硅粉)放在化学气相炉内,以氩气或氮气为载气,载气流速为100-500ml/分钟;在氩气或氮气保护下,将化学气相炉内温度以2-20℃/分钟的升温速率升至600-900℃;再通入碳源气体(甲烷、乙炔、乙烯或丙烯等气态烃类,碳源气体的体积浓度为1-20%)进行化学气相沉积,化学气相沉积时间为10分钟-3小时,压力为常压。The process of the chemical vapor deposition method is as follows: the nano-silicon spherical powder (spherical silicon powder with an average diameter of 20-100 nanometers) is placed in a chemical vapor phase furnace, with argon or nitrogen as the carrier gas, and the carrier gas flow rate is 100 -500ml/min; under the protection of argon or nitrogen, raise the temperature in the chemical vapor phase furnace to 600-900°C at a rate of 2-20°C/min; then feed carbon source gas (methane, acetylene, ethylene or propylene) gaseous hydrocarbons, the volume concentration of the carbon source gas is 1-20%) for chemical vapor deposition, the chemical vapor deposition time is 10 minutes-3 hours, and the pressure is normal pressure.
本发明的优点是:The advantages of the present invention are:
1、本发明方法简单,一步化学气相沉积就可以将碳均匀包覆在纳米硅球粉的表面。1. The method of the present invention is simple, and the carbon can be evenly coated on the surface of the nano-silicon sphere powder by one-step chemical vapor deposition.
2、本发明可以通过精确控制化学气相沉积的条件,来精确控制在纳米硅球粉表面包覆的碳含量。2. The present invention can accurately control the carbon content coated on the surface of the nano-silicon sphere powder by precisely controlling the conditions of the chemical vapor deposition.
3、本发明通过精确控制化学气相沉积的条件,在纳米硅球粉表面包覆一薄层炭,碳的重量百分比在5-40%之间精确可控,这层炭既可以增加硅粉的导电性,又能对硅在锂离子嵌入时的体积膨胀有一定的限制作用,因此对提高含硅复合负极的首次效率和循环稳定性有益处。3. The present invention coats a thin layer of carbon on the surface of nano-silicon spherical powder by precisely controlling the conditions of chemical vapor deposition. The weight percentage of carbon is precisely controllable between 5-40%. The conductivity can also limit the volume expansion of silicon when lithium ions are intercalated, so it is beneficial to improve the first-time efficiency and cycle stability of silicon-containing composite negative electrodes.
4、本发明添加少量(5-20wt%)包覆有炭层的纳米硅球粉,即可大幅度提高石墨的可逆容量,可以将石墨的可逆容量提高50-300%,并保持了石墨较好的库伦效率和长的循环寿命,首次库伦效率为90%左右,20次循环容量保持率大于80%,40次循环容量保持率为60%左右。4. The present invention adds a small amount (5-20wt%) of nano-silicon sphere powder coated with a carbon layer, which can greatly increase the reversible capacity of graphite, which can increase the reversible capacity of graphite by 50-300%, and keep graphite relatively high. Good coulombic efficiency and long cycle life, the first coulombic efficiency is about 90%, the capacity retention rate of 20 cycles is greater than 80%, and the capacity retention rate of 40 cycles is about 60%.
附图说明Description of drawings
图1.包覆有炭层的纳米硅球粉的扫描电镜照片。Figure 1. Scanning electron micrographs of nano silicon sphere powder coated with carbon layer.
图2.碳纳米硅球粉与石墨混合做成负极后的循环曲线。Figure 2. The cycle curve of carbon nano-silicon sphere powder mixed with graphite to make negative electrode.
具体实施方式Detailed ways
下面通过实施例详述本发明。The present invention is described in detail below by way of examples.
实施例1.Example 1.
将平均直径为20纳米的硅球粉放在竖式反应炉内,以氩气为载气(流速为300ml/分钟),以10℃/分钟的升温速率升到700℃,通入乙炔气体,在此温度下进行化学气相沉积,沉积时间为15分钟,乙炔体积浓度为5%。化学气相沉积结束后,关闭乙炔气体,在氩气保护下降到室温。透射电镜和热重分析表明,在纳米硅球粉表面均匀包覆了炭层,该条件下包覆的碳含量为10wt%,将该种碳纳米硅球粉与石墨以重量比1∶9的比例均匀混合,做成锂离子电池负极材料,扫描电镜照片如图1所示。锂离子电池负极材料的首次可逆容量为600mAh/g,库伦效率为90%,40次循环容量保持率为61%Put silicon sphere powder with an average diameter of 20 nm in a vertical reaction furnace, use argon as the carrier gas (flow rate of 300ml/min), raise the temperature to 700°C at a rate of 10°C/min, and feed acetylene gas, Chemical vapor deposition was carried out at this temperature, the deposition time was 15 minutes, and the volume concentration of acetylene was 5%. After the chemical vapor deposition is over, turn off the acetylene gas, and drop to room temperature under the protection of argon. Transmission electron microscopy and thermogravimetric analysis show that the carbon layer is evenly coated on the surface of the nano-silicon sphere powder. Under this condition, the carbon content of the coating is 10wt%. The ratio is uniformly mixed to make a lithium-ion battery negative electrode material. The scanning electron microscope photo is shown in Figure 1. The first reversible capacity of lithium-ion battery anode material is 600mAh/g, the coulombic efficiency is 90%, and the capacity retention rate after 40 cycles is 61%
实施例2.Example 2.
将平均直径为60纳米的硅球粉放在竖式反应炉内,以氮气为载气(流速为300ml/分钟),以5℃/分钟的升温速率升到700℃,通入乙炔气体,在此温度下进行化学气相沉积,沉积时间为45分钟,乙炔体积浓度为5%。化学气相沉积结束后,关闭乙炔气体,在氩气保护下降到室温。透射电镜和热重分析表明,在纳米硅球粉表面均匀包覆炭层,该条件下包覆的碳含量为25wt%,将该种碳纳米硅球粉与石墨以重量比1∶9的比例均匀混合,做成锂离子电池负极材料,其充放电循环曲线如图2所示。锂离子电池负极材料的首次可逆容量为670mAh/g,库伦效率为91%,40次循环容量保持率为62%。Put silicon spherical powder with an average diameter of 60 nanometers in a vertical reaction furnace, use nitrogen as a carrier gas (flow rate of 300ml/min), raise the temperature to 700°C at a rate of 5°C/min, feed acetylene gas, and Chemical vapor deposition was carried out at this temperature, the deposition time was 45 minutes, and the volume concentration of acetylene was 5%. After the chemical vapor deposition is over, turn off the acetylene gas, and drop to room temperature under the protection of argon. Transmission electron microscopy and thermogravimetric analysis show that the carbon layer is uniformly coated on the surface of the nano-silicon sphere powder. Under this condition, the carbon content of the coating is 25wt%. Mix evenly to make lithium-ion battery negative electrode material, and its charge-discharge cycle curve is shown in Figure 2. The first reversible capacity of the lithium-ion battery anode material is 670mAh/g, the coulombic efficiency is 91%, and the capacity retention rate after 40 cycles is 62%.
实施例3.Example 3.
将平均直径为50纳米的硅球粉放在竖式反应炉内,以氮气为载气(流速为300ml/分钟),以20℃/分钟的升温速率升到800℃,通入乙烯气体,在此温度下进行化学气相沉积,沉积时间为30分钟,乙烯体积浓度为2%。化学气相沉积结束后,关闭乙烯气体,在氩气保护下降到室温。透射电镜和热重分析表明,在纳米硅球粉表面均匀包覆炭层,该条件下包覆的碳含量为18wt%,将该种碳纳米硅球粉与石墨以重量比1∶9的比例均匀混合,制成锂离子电池负极材料。锂离子电池负极材料的首次可逆容量为700mAh/g,库伦效率为92%,20次循环容量保持率为81%。Put silicon spherical powder with an average diameter of 50 nm in a vertical reaction furnace, use nitrogen as a carrier gas (flow rate of 300ml/min), raise the temperature to 800°C at a rate of 20°C/min, feed ethylene gas, and Chemical vapor deposition was carried out at this temperature, the deposition time was 30 minutes, and the volume concentration of ethylene was 2%. After the chemical vapor deposition is over, turn off the ethylene gas, and drop to room temperature under the protection of argon. Transmission electron microscopy and thermogravimetric analysis show that the carbon layer is uniformly coated on the surface of the nano-silicon sphere powder. Under this condition, the carbon content of the coating is 18wt%. Mix evenly to make lithium ion battery negative electrode material. The first reversible capacity of the lithium-ion battery anode material is 700mAh/g, the coulombic efficiency is 92%, and the capacity retention rate after 20 cycles is 81%.
实施例4.Example 4.
将平均直径为50纳米的硅球粉放在竖式反应炉内,以氮气为载气(流速为300ml/分钟),以15℃/分钟的升温速率升到800℃,通入乙烯气体,在此温度下进行化学气相沉积,沉积时间为1小时,乙烯体积浓度为20%。化学气相沉积结束后,关闭乙烯气体,在氩气保护下降到室温。透射电镜和热重分析表明,在纳米硅球粉表面均匀包覆炭层,该条件下包覆的碳含量为30wt%,将该种碳纳米硅球粉与石墨以重量比2∶8的比例均匀混合,做成锂离子电池负极材料。锂离子电池负极材料的首次可逆容量为1200mAh/g,库伦效率为90.6%,40次循环容量保持率为58%。Put silicon sphere powder with an average diameter of 50 nanometers in a vertical reaction furnace, use nitrogen as a carrier gas (flow rate of 300ml/min), raise the temperature to 800°C at a rate of 15°C/min, feed ethylene gas, and Chemical vapor deposition was carried out at this temperature, the deposition time was 1 hour, and the volume concentration of ethylene was 20%. After the chemical vapor deposition is over, turn off the ethylene gas, and drop to room temperature under the protection of argon. Transmission electron microscopy and thermogravimetric analysis show that the carbon layer is uniformly coated on the surface of the nano-silicon sphere powder. Under this condition, the carbon content of the coating is 30wt%. Mix evenly to make lithium ion battery negative electrode material. The first reversible capacity of the lithium-ion battery anode material is 1200mAh/g, the coulombic efficiency is 90.6%, and the capacity retention rate after 40 cycles is 58%.
实施例5Example 5
将平均直径为30纳米的硅球粉放在竖式反应炉内,以氩气为载气(流速为200ml/分钟),以15℃/分钟的升温速率升到600℃,通入乙炔气体,在此温度下进行化学气相沉积,沉积时间为30分钟,乙炔体积浓度为10%。化学气相沉积结束后,关闭乙炔气体,在氩气保护下降到室温。透射电镜和热重分析表明,在纳米硅球粉表面均匀包覆炭层,该条件下包覆的碳含量为17wt%,将该种碳纳米硅球粉与石墨以重量比15∶85的比例均匀混合,做成锂离子电池负极材料。锂离子电池负极材料的首次可逆容量为950mAh/g,库伦效率为90.1%,20次循环容量保持率为80%。Put silicon sphere powder with an average diameter of 30 nm in a vertical reaction furnace, use argon as a carrier gas (flow rate of 200ml/min), raise the temperature to 600°C at a rate of 15°C/min, and feed acetylene gas, Chemical vapor deposition was carried out at this temperature, the deposition time was 30 minutes, and the volume concentration of acetylene was 10%. After the chemical vapor deposition is over, turn off the acetylene gas, and drop to room temperature under the protection of argon. Transmission electron microscopy and thermogravimetric analysis show that the carbon layer is uniformly coated on the surface of the nano-silicon sphere powder. Under this condition, the carbon content of the coating is 17wt%. Mix evenly to make lithium ion battery negative electrode material. The first reversible capacity of the lithium-ion battery anode material is 950mAh/g, the coulombic efficiency is 90.1%, and the capacity retention rate after 20 cycles is 80%.
实施例6Example 6
将平均直径为100纳米的硅球粉放在竖式反应炉内,以氩气为载气(流速为400ml/分钟),以20℃/分钟的升温速率升到900℃,通入丙烯气体,在此温度下进行化学气相沉积,沉积时间为3小时,丙炔体积浓度为10%。化学气相沉积结束后,关闭丙烯气体,在氩气保护下降到室温。透射电镜和热重分析表明,在纳米硅球粉表面均匀包覆炭层,该条件下包覆的碳含量为40wt%,将该种碳纳米硅球粉与石墨以重量比5∶95的比例均匀混合,做成锂离子电池负极材料。锂离子电池负极材料的首次可逆容量为450mAh/g,库伦效率为89.9%,40次循环容量保持率为60%。Put silicon sphere powder with an average diameter of 100 nanometers in a vertical reaction furnace, use argon as a carrier gas (flow rate of 400ml/min), raise the temperature to 900°C at a rate of 20°C/min, and feed propylene gas, Chemical vapor deposition was carried out at this temperature, the deposition time was 3 hours, and the volume concentration of propyne was 10%. After the chemical vapor deposition is over, turn off the propylene gas, and drop to room temperature under the protection of argon. Transmission electron microscopy and thermogravimetric analysis show that the carbon layer is uniformly coated on the surface of the nano-silicon sphere powder. Under this condition, the carbon content of the coating is 40wt%. Mix evenly to make lithium ion battery negative electrode material. The first reversible capacity of the lithium-ion battery anode material is 450mAh/g, the coulombic efficiency is 89.9%, and the capacity retention rate after 40 cycles is 60%.
实施例结果表明,本发明可以通过优化化学气相沉积的升温速率、时间、碳源浓度来精确控制在纳米硅球粉表面沉积的炭量和结晶度,将碳纳米硅球粉与石墨混合后可以大幅度提高石墨的可逆容量,并保持了石墨的高库伦效率和长的循环寿命。The results of the examples show that the present invention can precisely control the amount of carbon and crystallinity deposited on the surface of the nano-silicon sphere powder by optimizing the heating rate, time, and carbon source concentration of the chemical vapor deposition. After the carbon nano-silicon sphere powder is mixed with graphite, it can The reversible capacity of graphite is greatly improved, and the high Coulombic efficiency and long cycle life of graphite are maintained.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910012076A CN101924196B (en) | 2009-06-17 | 2009-06-17 | Method for greatly improving reversible capacity of graphite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910012076A CN101924196B (en) | 2009-06-17 | 2009-06-17 | Method for greatly improving reversible capacity of graphite |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101924196A true CN101924196A (en) | 2010-12-22 |
CN101924196B CN101924196B (en) | 2012-10-03 |
Family
ID=43338955
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200910012076A Expired - Fee Related CN101924196B (en) | 2009-06-17 | 2009-06-17 | Method for greatly improving reversible capacity of graphite |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101924196B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102394288A (en) * | 2011-11-24 | 2012-03-28 | 深圳市贝特瑞新能源材料股份有限公司 | Silicon-carbon cathode material for lithium ion battery and manufacturing method thereof |
CN102394287A (en) * | 2011-11-24 | 2012-03-28 | 深圳市贝特瑞新能源材料股份有限公司 | Silicon-carbon negative electrode material of lithium ion battery and preparation method thereof |
CN103219494A (en) * | 2013-03-31 | 2013-07-24 | 马军昌 | Preparation method of graphite-ferroferric oxide composite cathode material |
CN103972507A (en) * | 2013-01-30 | 2014-08-06 | 比亚迪股份有限公司 | Negative pole active substance, negative pole piece, pulse buffer single battery containing negative pole piece, pulse buffer battery pack and power battery module |
CN107293719A (en) * | 2017-06-26 | 2017-10-24 | 合肥国轩高科动力能源有限公司 | Preparation method of silicon-carbon composite material for lithium ion battery cathode |
CN108172781A (en) * | 2017-12-11 | 2018-06-15 | 浙江大学 | A silicon-carbon composite material doped with silver particles and its preparation method and application |
CN112510185A (en) * | 2020-11-30 | 2021-03-16 | 南通路远科技信息有限公司 | Silicon-carbon composite negative electrode material and manufacturing method thereof |
CN115472809A (en) * | 2022-10-26 | 2022-12-13 | 晖阳(贵州)新能源材料有限公司 | Preparation method of graphite composite material with high first-time efficiency |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4393610B2 (en) * | 1999-01-26 | 2010-01-06 | 日本コークス工業株式会社 | Negative electrode material for lithium secondary battery, lithium secondary battery, and charging method of the secondary battery |
CN100422112C (en) * | 2005-07-08 | 2008-10-01 | 中国科学院物理研究所 | A carbon-silicon composite material with a spherical core-shell structure and its preparation method and application |
CN101265571A (en) * | 2008-04-23 | 2008-09-17 | 华东理工大学 | A kind of preparation method of silicon-based composite material for negative electrode of lithium ion battery |
-
2009
- 2009-06-17 CN CN200910012076A patent/CN101924196B/en not_active Expired - Fee Related
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102394288A (en) * | 2011-11-24 | 2012-03-28 | 深圳市贝特瑞新能源材料股份有限公司 | Silicon-carbon cathode material for lithium ion battery and manufacturing method thereof |
CN102394287A (en) * | 2011-11-24 | 2012-03-28 | 深圳市贝特瑞新能源材料股份有限公司 | Silicon-carbon negative electrode material of lithium ion battery and preparation method thereof |
CN103972507A (en) * | 2013-01-30 | 2014-08-06 | 比亚迪股份有限公司 | Negative pole active substance, negative pole piece, pulse buffer single battery containing negative pole piece, pulse buffer battery pack and power battery module |
CN103972507B (en) * | 2013-01-30 | 2016-09-07 | 比亚迪股份有限公司 | A kind of negative electrode active material, negative plate and pulse buffer cell, battery pack and power battery module containing this negative plate |
CN103219494A (en) * | 2013-03-31 | 2013-07-24 | 马军昌 | Preparation method of graphite-ferroferric oxide composite cathode material |
CN107293719A (en) * | 2017-06-26 | 2017-10-24 | 合肥国轩高科动力能源有限公司 | Preparation method of silicon-carbon composite material for lithium ion battery cathode |
CN107293719B (en) * | 2017-06-26 | 2020-03-20 | 合肥国轩高科动力能源有限公司 | Preparation method of silicon-carbon composite material for lithium ion battery cathode |
CN108172781A (en) * | 2017-12-11 | 2018-06-15 | 浙江大学 | A silicon-carbon composite material doped with silver particles and its preparation method and application |
CN112510185A (en) * | 2020-11-30 | 2021-03-16 | 南通路远科技信息有限公司 | Silicon-carbon composite negative electrode material and manufacturing method thereof |
CN115472809A (en) * | 2022-10-26 | 2022-12-13 | 晖阳(贵州)新能源材料有限公司 | Preparation method of graphite composite material with high first-time efficiency |
CN115472809B (en) * | 2022-10-26 | 2023-09-01 | 晖阳(贵州)新能源材料有限公司 | Preparation method of graphite composite material with high first efficiency |
Also Published As
Publication number | Publication date |
---|---|
CN101924196B (en) | 2012-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101924196B (en) | Method for greatly improving reversible capacity of graphite | |
CN108899507B (en) | A preparation method of a double-layer carbon-coated metal sulfide composite electrode material with a core-shell structure | |
CN105680023B (en) | A kind of preparation method, negative material and the lithium battery of high magnification silicon based composite material | |
CN103700819B (en) | Preparation method of silicon composite negative electrode material with gradient change coating layer on surface | |
WO2015188726A1 (en) | Nitrogen-doped graphene coated nano-sulfur anode composite material, and preparation method and application thereof | |
CN106887567B (en) | Carbon-coated silicon/graphene composite material and preparation method thereof | |
CN114335523A (en) | A kind of preparation method of hard carbon negative electrode for high energy density sodium ion battery | |
Susantyoko et al. | Influences of annealing on lithium-ion storage performance of thick germanium film anodes | |
CN102544505A (en) | Surface modification method of lithium iron phosphate cathode material | |
CN103208618A (en) | Carbon-sulfur composite positive electrode material of lithium-ion battery and preparation method of material | |
CN110444745A (en) | A kind of porous hollow carbon material of carried metal phosphide, its preparation and application | |
CN108767241A (en) | Magnesium adulterates Si oxide, preparation method and the application in secondary lithium battery | |
CN114156456B (en) | High-capacity fast charge-discharge graphene@hard carbon composite material and its preparation method and application in sodium-ion batteries | |
CN111276684A (en) | A kind of preparation method and application of carbon-coated composite material | |
CN108023062A (en) | A cathode material for a lithium-sulfur battery | |
CN108987729A (en) | A kind of lithium sulfur battery anode material and preparation method thereof and lithium-sulfur cell | |
CN105355892A (en) | Preparation method of lithium ion battery cathode | |
CN104466138B (en) | Spherical composite positive pole material for lithium sulfur battery and preparation method and application of spherical composite positive pole material | |
CN107579188B (en) | Titanium dioxide doped carbon nitride and its preparation method and application | |
CN110085823B (en) | A kind of nanocomposite negative electrode material and its preparation method and application | |
CN103378355B (en) | Alkali metal secondary battery and the preparation method of negative electrode active material, negative material, negative pole and negative electrode active material | |
CN112010279A (en) | Preparation method of a three-dimensional porous carbon aerogel material and its application in lithium-sulfur batteries | |
CN103943858B (en) | Four sulfuration three nickel-nitrogen-doped graphene composites and its preparation method and application | |
CN103928684B (en) | Modified lithium ion battery graphite negative electrode material and preparation method thereof | |
CN104701531B (en) | In-situ carbon-coated hexagonal K0.7[Fe0.5Mn0.5]O2 nanomaterial and its preparation method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20121003 Termination date: 20150617 |
|
EXPY | Termination of patent right or utility model |