CN101917161A - A Frequency Doubler Based on Carbon Nanotube Field Effect Transistor - Google Patents
A Frequency Doubler Based on Carbon Nanotube Field Effect Transistor Download PDFInfo
- Publication number
- CN101917161A CN101917161A CN 201010219178 CN201010219178A CN101917161A CN 101917161 A CN101917161 A CN 101917161A CN 201010219178 CN201010219178 CN 201010219178 CN 201010219178 A CN201010219178 A CN 201010219178A CN 101917161 A CN101917161 A CN 101917161A
- Authority
- CN
- China
- Prior art keywords
- effect transistor
- source
- frequency multiplier
- field effect
- input
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005669 field effect Effects 0.000 title claims abstract description 52
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 47
- 239000002041 carbon nanotube Substances 0.000 title claims abstract description 46
- 229910021393 carbon nanotube Inorganic materials 0.000 title claims abstract description 45
- 238000012546 transfer Methods 0.000 claims abstract description 12
- 230000004888 barrier function Effects 0.000 claims 2
- 238000006243 chemical reaction Methods 0.000 abstract description 2
- 239000008358 core component Substances 0.000 abstract 1
- 238000004519 manufacturing process Methods 0.000 abstract 1
- 238000012805 post-processing Methods 0.000 abstract 1
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 8
- 239000000758 substrate Substances 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- 229910052719 titanium Inorganic materials 0.000 description 6
- 238000001228 spectrum Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 229910052763 palladium Inorganic materials 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- 229910000449 hafnium oxide Inorganic materials 0.000 description 3
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000002109 single walled nanotube Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002048 multi walled nanotube Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-IGMARMGPSA-N Carbon-12 Chemical compound [12C] OKTJSMMVPCPJKN-IGMARMGPSA-N 0.000 description 1
- OKTJSMMVPCPJKN-OUBTZVSYSA-N Carbon-13 Chemical compound [13C] OKTJSMMVPCPJKN-OUBTZVSYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910021404 metallic carbon Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- -1 tungsten nitride Chemical class 0.000 description 1
Images
Landscapes
- Junction Field-Effect Transistors (AREA)
Abstract
本发明公开了一种基于碳纳米管场效应晶体管的倍频器。该倍频器的核心部件是以小禁带宽度碳纳米管为导电通道的场效应晶体管,以栅极作为输入端,源端接地,漏端作为输出端;将输入端输入的交流信号偏置到所述场效应晶体管的直流转移特性的电阻最大点,而输出端用一偏置直流源给场效应晶体管提供工作电源,即可实现倍频。本发明的倍频器转换效率高,频率响应高,信号增益大,并且价格低廉,制作工艺简单,不需要复杂的后期处理电路。
The invention discloses a frequency multiplier based on a carbon nanotube field effect transistor. The core component of the frequency multiplier is a field effect transistor with a small bandgap carbon nanotube as the conductive channel, with the gate as the input terminal, the source terminal as the ground, and the drain terminal as the output terminal; the AC signal input at the input terminal is biased To the maximum resistance point of the DC transfer characteristic of the field effect transistor, a bias DC source is used at the output end to provide working power for the field effect transistor, so that frequency doubling can be realized. The frequency multiplier of the present invention has high conversion efficiency, high frequency response, large signal gain, low price, simple manufacturing process and no complicated post-processing circuit.
Description
发明领域field of invention
本发明属于纳电子学技术领域,涉及碳纳米管的场效应晶体管,特别涉及基于碳纳米管的场效应晶体管的倍频器。The invention belongs to the technical field of nanoelectronics, relates to a carbon nanotube field effect transistor, and in particular to a frequency doubler based on a carbon nanotube field effect transistor.
背景技术Background technique
以碳材料为基的纳米电子学,尤其是碳纳米管(Carbon Nanotube)为基的纳米电子学,被认为具有极大的应用前景,尤其是在射频(RF)应用领域(Rutherglen,C.et al.Nature Nanotechnology,2009,4,811-819.)。自从1991年碳纳米管被人们成功制备出来以来(Iijima,S.Nature,1991,354,56-58.),碳基的电子学取得了巨大的进展。基于碳纳米管的电子学因其尺寸小、速度快、功耗低、工艺简单等特点受到人们越来越广泛的关注。一般来说,碳纳米管可以基于其禁带宽度被分为三类,一是大禁带宽度的碳纳米管(指能实现100倍以上的场效应开关电流比的半导体型单壁碳纳米管),二是没有禁带宽度的碳纳米管(包括金属型的单壁碳纳米管或多壁碳纳米管),三是小禁带宽度的碳纳米管(可以是单壁碳纳米管或者具有半导体外壳的多壁碳纳米管,能实现1-100倍场效应开关电流比)。基于半导体型碳纳米管的场效应晶体管的性能已经被人们推向了极致,并且最终得到了完美对称的互补金属-氧化物-半导体(CMOS)反相器(Zhang,Z.Y.et al.ACS Nano,2009,3,3781-3187.)。而金属型的碳纳米管也被证实很适合用来实现场效应晶体管之间的互联,并且具有极高的高频响应(Close,G.F.et al.Nano Letters,2008,8,706-709.)。而小禁带宽度的碳纳米管却一直没有得到广泛的应用。Nanoelectronics based on carbon materials, especially carbon nanotube (Carbon Nanotube)-based nanoelectronics, is considered to have great application prospects, especially in the field of radio frequency (RF) applications (Rutherglen, C.et al. Nature Nanotechnology, 2009, 4, 811-819.). Since carbon nanotubes were successfully prepared in 1991 (Iijima, S. Nature, 1991, 354, 56-58.), carbon-based electronics has made great progress. Electronics based on carbon nanotubes have attracted more and more attention due to their small size, high speed, low power consumption, and simple process. Generally speaking, carbon nanotubes can be divided into three categories based on their bandgap width. One is carbon nanotubes with large bandgap width (referring to semiconductor-type single-walled carbon nanotubes that can achieve a field-effect switching current ratio of more than 100 times. ), the second is carbon nanotubes without a bandgap (including metallic single-walled carbon nanotubes or multi-walled carbon nanotubes), and the third is carbon nanotubes with a small bandgap (which can be single-walled carbon nanotubes or have The multi-walled carbon nanotubes in the semiconductor shell can realize 1-100 times the field effect switching current ratio). The performance of field-effect transistors based on semiconducting carbon nanotubes has been pushed to the extreme, and finally a perfectly symmetrical complementary metal-oxide-semiconductor (CMOS) inverter (Zhang, Z.Y. et al.ACS Nano, 2009, 3, 3781-3187.). Metallic carbon nanotubes have also been proven to be very suitable for interconnection between field effect transistors, and have extremely high frequency response (Close, G.F. et al. Nano Letters, 2008, 8, 706-709.) . However, carbon nanotubes with small band gaps have not been widely used.
倍频器(Frequency Multiplier)是使输出信号频率等于输入信号频率整数倍的电路。现有的倍频器有晶体管倍频器、变容二极管倍频器、阶跃恢复二极管倍频器等。现有的倍频器,其电路复杂,需要很多后续的信号处理电路,如整流电路、滤波电路等,且转换效率不是很高,而且工作在极高频(10GHz以上)的倍频器其价格也十分昂贵。Frequency Multiplier (Frequency Multiplier) is a circuit that makes the output signal frequency equal to an integer multiple of the input signal frequency. Existing frequency multipliers include transistor frequency multipliers, varactor diode frequency multipliers, step recovery diode frequency multipliers, and the like. The existing frequency multiplier has complex circuits and requires many subsequent signal processing circuits, such as rectification circuits, filter circuits, etc., and the conversion efficiency is not very high, and the price of frequency multipliers working at extremely high frequencies (above 10GHz) Also very expensive.
发明内容Contents of the invention
本发明的目的在于扩展小禁带宽度碳纳米管的应用范围,采用基于小禁带宽度碳纳米管的场效应晶体管通过简单的架构实现高性能的倍频器。The purpose of the present invention is to expand the application range of carbon nanotubes with small bandgap width, and realize a high-performance frequency doubler with a simple structure by using a field effect transistor based on carbon nanotubes with small bandgap width.
小禁带宽度的碳纳米管可以提供良好的双极性特性,既可以通过电子导电也可以通过空穴导电。以小禁带宽度碳纳米管为导电通道制备的场效应晶体管的典型结构包括位于导电通道两端的源端(即源电极)和漏端(即漏电极),以及位于源漏之间的栅极(即栅电极),所述栅极与导电通道之间为绝缘层,该场效应晶体管的转移特性曲线Ids-Vgs(漏端采用电压偏置的情况)和Vds-Vgs(漏端采用电流偏置的情况)分别如图1和图2所示,可以看出该场效应晶体管可以表现出良好的对称的双极性,这样的性能很适合用来做倍频器。Carbon nanotubes with a small band gap can provide good bipolar properties, which can conduct both electrons and holes. The typical structure of a field effect transistor prepared with a carbon nanotube with a small bandgap width as a conductive channel includes a source terminal (ie, source electrode) and a drain terminal (ie, drain electrode) located at both ends of the conductive channel, and a gate located between the source and drain. (i.e. the gate electrode), between the gate and the conduction channel is an insulating layer, the transfer characteristic curve I ds -V gs (the situation where the drain terminal adopts a voltage bias) and V ds -V gs (the drain terminal) of the field effect transistor The case where the terminal adopts current bias) is shown in Fig. 1 and Fig. 2 respectively. It can be seen that the field effect transistor can exhibit good symmetrical bipolarity, and such performance is very suitable for use as a frequency doubler.
以小禁带宽度碳纳米管为基制作的场效应晶体管作为器件的核心,可以简单的实现高性能的倍频器。本发明的倍频器包括一场效应晶体管、一输入端偏置直流源和一输出端偏置直流源,其中:所述场效应晶体管以小禁带宽度碳纳米管为导电通道,源端和漏端分别位于导电通道的两端,栅极位于源漏之间,栅极与作为导电通道的碳纳米管之间为绝缘层;栅极为倍频器的输入端,源端接地,漏端为倍频器的输出端;输入端偏置直流源将输入到输入端的交流信号偏置到所述场效应晶体管的直流转移特性的电阻最大点;而输出端偏置直流源连接输出端,给场效应晶体管提供一个工作电源。A field-effect transistor based on carbon nanotubes with a small band gap is used as the core of the device, and a high-performance frequency doubler can be simply realized. The frequency multiplier of the present invention includes a field effect transistor, an input terminal bias DC source and an output terminal bias DC source, wherein: the field effect transistor uses carbon nanotubes with a small bandgap width as a conductive channel, and the source terminal and The drain terminals are respectively located at both ends of the conductive channel, the gate is located between the source and drain, and the insulating layer is between the gate and the carbon nanotube as the conductive channel; the gate is the input terminal of the frequency doubler, the source terminal is grounded, and the drain terminal is The output terminal of the frequency multiplier; the input terminal bias DC source biases the AC signal input to the input terminal to the maximum resistance point of the DC transfer characteristic of the field effect transistor; and the output terminal bias DC source is connected to the output terminal, giving the field Effect transistors provide a working power supply.
输入端偏置直流源连接输入信号源,输入的交流信号被输入端偏置直流源偏置到所述场效应晶体管的直流转移特性的电阻最大点(即直流电流最低点,也就是晶体管的工作中心点)再输入到输入端。而在输出端偏置直流源的驱动下,输出端才可以采集到输出信号(对于碳纳米管双极性倍频器来说,输出端的直流偏置越大越好,但是也要考虑到器件的电流承受能力而在将其限制在一个合适的范围内,否则会造成器件的永久失效)。The input terminal bias DC source is connected to the input signal source, and the input AC signal is biased by the input terminal bias DC source to the maximum resistance point of the DC transfer characteristic of the field effect transistor (that is, the lowest point of DC current, which is the work of the transistor) center point) and then input to the input. Driven by the bias DC source at the output terminal, the output signal can be collected at the output terminal (for carbon nanotube bipolar frequency multipliers, the larger the DC bias at the output terminal, the better, but the device’s The current withstand capability is limited to an appropriate range, otherwise it will cause permanent failure of the device).
本发明实现的双极性倍频器的工作电路和基本原理可如图3所示。图3所示电路的核心部分是基于小禁带宽度碳纳米管的场效应晶体管(FET)1;场效应晶体管1的栅极为倍频器的输入端,输入信号源连接直流偏置电压4(即输入端偏置直流源),输入信号被偏置后再输入输入端;源端接地;漏端为倍频器的输出端,输出端连接直流电流源3(即输出端偏置直流源)。直流偏置电压4和直流电流源3都是用来给FET提供直流工作点的,其中直流偏置电压4是用来偏置输入端的Vgs,而直流电流源3是用来提供输出端的Ids(注:直流电流源3也可以用一串联了电阻的直流电压源代替,而对于电压偏置来说是用来提供输出端的Vds)。其所示的基本原理是基于图2所示的转移特性(Vds-Vgs)。输入信号2是一个圆频率为ω,峰峰值为Vpp,in的正弦信号,而输出端信号则被电流源3所偏置,电流源3的大小为Idd。通过场效应晶体管1的转移特性(Vds-Vgs),我们可以得到其工作的中心点,然后通过直流偏置电压4将场效应晶体管1偏置到工作区,然后输出端就可以通过示波器5采集到倍频后的信号。输出端的直流偏置也可以使用电压偏置,这样就需要在输出端串联一个电阻,再接到电压源上。The working circuit and basic principle of the bipolar frequency multiplier realized by the present invention can be shown in FIG. 3 . The core part of the circuit shown in Figure 3 is a field effect transistor (FET) 1 based on carbon nanotubes with a small band gap; the gate of the
具体来说,输入信号在A点时,输入电压在工作中心点,所以器件的电阻处于其最大值,那么输出信号也应该在电压最大值A′点,当输入信号往B点变化时,输出端的电压逐渐变小,从而在B′点达到电压最小值,之后,输入信号回到C点,输出端再次同样达到电压最大值C′点,然后输入信号再到达D点和E点,相应的输出信号达到D′点和E′点。这样,对于一个周期的输入信号,输出信号却出现了两个周期,这样就很简单的实现了倍频。而且由于FET工作中心点附近的转移特性的亚线性,使得输出信号不需要经过滤波就可以展示出很好的波形。Specifically, when the input signal is at point A, the input voltage is at the working center point, so the resistance of the device is at its maximum value, then the output signal should also be at the maximum voltage point A'. When the input signal changes to point B, the output The voltage at the terminal gradually decreases, so that it reaches the minimum voltage at point B', and then the input signal returns to point C, and the output terminal also reaches the maximum voltage point C' again, and then the input signal reaches points D and E, correspondingly The output signal reaches points D' and E'. In this way, for an input signal of one cycle, there are two cycles of the output signal, so that the frequency multiplication is realized very simply. Moreover, due to the sub-linearity of the transfer characteristic near the working center point of the FET, the output signal can display a good waveform without filtering.
通过级联图3所示的倍频器,也就是将第一级倍频器的输出信号作为第二级倍频器的输入信号,即将第一级的输出端接到第二级的输入端上,这样就可以在第二级的输出端得到相对于第一级输入信号的四倍频的信号。以此类推,可以进一步得到八倍频,十六倍频等频率的信号,由于基于碳纳米管的倍频器的增益很大,这使得它可以实现多级的级联。By cascading the frequency multipliers shown in Figure 3, that is, the output signal of the first-stage frequency multiplier is used as the input signal of the second-stage frequency multiplier, that is, the output of the first stage is connected to the input of the second stage In this way, at the output of the second stage, a signal with four times the frequency of the input signal of the first stage can be obtained. By analogy, signals of frequencies such as octave frequency and sixteen frequency frequency can be further obtained. Since the frequency multiplier based on carbon nanotubes has a large gain, it can realize multi-level cascading.
该器件的核心是以小禁带宽度碳纳米管为导电通道的场效应晶体管,这种晶体管由于其导电通道材料的禁带宽度很小,所以其开关比也很小(能实现1-100倍开关比)。同时它也具有很好的双极导电性,也就是电子和空穴的导电性都很好,且具有比较好的对称性。该器件是典型的纳米场效应晶体管,源、漏端用来作为导电的两端,栅极用来作为开关端,通过调节栅极电压来实现对导电通道的导电能力的调控。栅极不限于底栅或者顶栅(独立栅),还可以是环栅等其他各种可实现栅调控的结构。栅极和导电通道之间有绝缘层,通过绝缘层的电容效应来实现调控。而整个器件的结构也不限于自对准结构或者非自对准结构,只要能够实现场效应的结构都可以用来实现该倍频器。The core of the device is a field-effect transistor with a carbon nanotube as a conductive channel with a small bandgap width. This transistor has a small on-off ratio due to the small bandgap width of its conductive channel material (can achieve 1-100 times switch ratio). At the same time, it also has good bipolar conductivity, that is, the conductivity of electrons and holes is very good, and it has relatively good symmetry. The device is a typical nanometer field effect transistor. The source and drain terminals are used as the two ends of the conduction, and the gate is used as the switch terminal. The regulation and control of the conduction capacity of the conduction channel is realized by adjusting the gate voltage. The gate is not limited to the bottom gate or the top gate (independent gate), and may also be a ring gate and other various structures that can realize gate regulation. There is an insulating layer between the gate and the conductive channel, and regulation is realized through the capacitive effect of the insulating layer. And the structure of the whole device is not limited to the self-aligned structure or the non-self-aligned structure, as long as the structure that can realize the field effect can be used to realize the frequency doubler.
上述源端和漏端的材料可以是金属或者其他导电材料,例如钛、钯、金等;栅极的材料可以是金属或者其他导电材料,例如钛、钯、氮化钨等;绝缘层的材料可以是氧化物、氮化物或者氮氧化物,例如氧化硅、氧化铪、氧化铝、氧化钇、氮化硅等。The material of the above-mentioned source terminal and drain terminal can be metal or other conductive materials, such as titanium, palladium, gold, etc.; the material of the gate can be metal or other conductive materials, such as titanium, palladium, tungsten nitride, etc.; the material of the insulating layer can be It is an oxide, nitride or oxynitride, such as silicon oxide, hafnium oxide, aluminum oxide, yttrium oxide, silicon nitride, etc.
本发明的倍频器在工作时,整个场效应晶体管的栅极交流输入被偏置到直流电流最低点,也就是沟道电阻最大点,这就是工作时的中心点,然后把源端接地,并且在漏端加上一个直流的电流源或电压源,同时用示波器侦测该点的交流信号,可以看到一个频率为输入频率的两倍的信号可以被观察到,由此就很简单的实现了倍频。When the frequency multiplier of the present invention is working, the grid AC input of the entire field effect transistor is biased to the lowest point of the DC current, that is, the maximum point of the channel resistance, which is the center point during operation, and then the source terminal is grounded, And add a DC current source or voltage source to the drain, and use an oscilloscope to detect the AC signal at this point, you can see that a signal with a frequency twice the input frequency can be observed, so it is very simple Frequency doubling is achieved.
本发明基于小禁带宽度碳纳米管场效应晶体管的倍频器和传统的倍频器相比,其优势主要体现在:Compared with the traditional frequency multiplier, the frequency multiplier based on the small bandgap carbon nanotube field effect transistor of the present invention is mainly reflected in:
1、该倍频器构成简单,只需要一个场效应晶体管,而不需要整流或者滤波的复杂部分,由于良好的双极性使得输出的波形简单干净,大多数的信号都集中在二倍频的频率上,并且降低的工艺复杂度,减小了成本;1. The frequency multiplier is simple in structure, only needs a field effect transistor, and does not need complex parts of rectification or filtering. Due to the good bipolarity, the output waveform is simple and clean, and most signals are concentrated in the double frequency In terms of frequency, and the reduced process complexity reduces the cost;
2、频率响应高,由于碳纳米管中的载流子在输运过程中几乎不会遭受到表面的散射,所以其迁移率很高,从而会有很高的截止频率;2. The frequency response is high. Since the carriers in the carbon nanotubes are hardly scattered by the surface during the transport process, their mobility is very high, so there will be a high cut-off frequency;
3、信号增益大,可以通过提高电流源的大小来增加其输出信号和输入信号的比值,从而增大器件的增益,这也有利于级联的实现。3. The signal gain is large, and the ratio of the output signal to the input signal can be increased by increasing the size of the current source, thereby increasing the gain of the device, which is also conducive to the realization of cascading.
附图说明Description of drawings
图1是基于小禁带宽度碳纳米管的场效应晶体管的转移特性(Ids-Vgs)曲线,其中,Vds自上而下从1V到0.1V,每条曲线减少0.1V。Fig. 1 is a transfer characteristic (I ds -V gs ) curve of a field effect transistor based on a carbon nanotube with a small bandgap width, wherein Vds decreases from 1V to 0.1V from top to bottom, and each curve decreases by 0.1V.
图2是基于小禁带宽度碳纳米管的场效应晶体管的转移特性(Vds-Vgs)曲线,其中,Ids自上而下从15μA到5μA,每条曲线减少1μA。Figure 2 is the transfer characteristic (V ds -V gs ) curve of a field effect transistor based on carbon nanotubes with small bandgap width, where I ds is from 15 μA to 5 μA from top to bottom, and each curve decreases by 1 μA.
图3显示了本发明基于小禁带宽度碳纳米管场效应晶体管的倍频器的工作原理和工作电路。其中:输出信号中的A′、B′、C′、D′、E′点分别与输入信号中的A、B、C、D、E点对应相同的时间点;1是器件的核心——场效应晶体管(FET);2是输入的正弦信号,峰峰值为Vpp,in,圆频率为ω;3是输出端的电流源Idd;4是输入信号的直流电压偏置Vg,DC; 5是采集信号使用的示波器(OS)。Fig. 3 shows the working principle and working circuit of the frequency doubler based on the small bandgap carbon nanotube field effect transistor of the present invention. Among them: points A', B', C', D', and E' in the output signal correspond to the same time points as points A, B, C, D, and E in the input signal; 1 is the core of the device—— Field effect transistor (FET); 2 is the input sinusoidal signal, the peak-to-peak value is V pp, in , and the circular frequency is ω; 3 is the current source I dd at the output terminal; 4 is the DC voltage bias V g, DC of the input signal; 5 is an oscilloscope (OS) used for signal acquisition.
图4是一种底栅结构的场效应晶体管,其中11为导电通道碳纳米管,12和13分别为源漏电极,14是栅极的绝缘层,15是硅衬底。Fig. 4 is a field effect transistor with a bottom gate structure, wherein 11 is a conductive channel carbon nanotube, 12 and 13 are source and drain electrodes respectively, 14 is an insulating layer of a gate, and 15 is a silicon substrate.
图5是一种顶栅结构的场效应晶体管,其中21为导电通道碳纳米管,22和23分别为源漏电极,24是栅极的绝缘层,25是栅电极,26是绝缘基底。5 is a field effect transistor with a top gate structure, wherein 21 is a conductive channel carbon nanotube, 22 and 23 are source and drain electrodes respectively, 24 is an insulating layer of a gate, 25 is a gate electrode, and 26 is an insulating substrate.
图6显示了基于本发明倍频器的频谱仪测试电路,其中1是器件的核心——场效应晶体管(FET);2是输入的正弦信号,峰峰值为Vpp,in,圆频率为ω;3是输出端的电流源Idd;4是输入信号的直流电压偏置Vg,DC;6是直流和交流信号的隔离器(或偏置器,Bias-T);7是采集交流信号使用的频谱仪(SA)。Fig. 6 has shown the spectrometer test circuit based on frequency multiplier of the present invention, and wherein 1 is the core of device---field effect transistor (FET); 2 is the sinusoidal signal of input, and peak-to-peak value is V pp, in , and circle frequency is ω ; 3 is the current source I dd of the output terminal; 4 is the DC voltage bias V g of the input signal, DC ; 6 is the isolator (or bias device, Bias-T) of the DC and AC signals; 7 is the use of collecting AC signals spectrum analyzer (SA).
图7是实施例2测量得到的频谱曲线。Fig. 7 is the frequency spectrum curve measured in
具体实施方式Detailed ways
下面结合附图,通过实施例进一步详细说明本发明,但不以任何方式限制本发明。Below in conjunction with the accompanying drawings, the present invention will be further described in detail through examples, but the present invention is not limited in any way.
实施例1Example 1
如图4所示的底栅结构场效应晶体管,以绝缘基底上的碳纳米管11为导电通道;碳纳米管11上的两个钛电极分别为源电极12和漏电极13;基底是表面热氧化处理过的硅片,基底表面热氧化得到的氧化硅作为栅介质14(即栅电极15与碳纳米管11之间的绝缘层),而基底重掺杂的硅衬底15则作为栅电极。具体制备步骤如下:在分布于基底上的小禁带宽度的碳纳米管上通过光刻形成源、漏电极的形状,蒸镀一层50纳米厚的钛金属层作为源漏电极层,然后将样品放进丙酮中剥离,去除不需要的金属层即得到源漏金属电极。The bottom gate structure field effect transistor as shown in Figure 4, with the
所制备出来的场效应晶体管通过实验测量得到其转移特性曲线,可以知道其工作点,然后在栅电极15输入一个已被偏置到工作点的10kHz的正弦信号,把源电极12接地,在漏电极13上接上一个10μA的直流电流源,同时将漏电极13也接到示波器上,这样就可以在示波器上看到一个频率为20kHz的近似正弦的信号,也就是实现了倍频。(具体的电路图和图3所示相同)The prepared field effect transistor obtains its transfer characteristic curve through experimental measurement, and its operating point can be known, and then a 10kHz sinusoidal signal that has been biased to the operating point is input at the
实施例2Example 2
如图5所示的顶栅结构的场效应晶体管,以分布在绝缘基底26上小禁带宽度碳纳米管21为导电通道,碳纳米管21上的两个钯电极分别为源电极22和漏电极23,栅介质层24是由原子层沉积得到的氧化铪薄膜,栅电极25为蒸发得到的金属钛。具体制备步骤如下:The field effect transistor of the top gate structure as shown in Figure 5, with the
1.在半导体碳纳米管上通过光刻形成栅极形状,通过原子层沉积方式生长一层15纳米左右的氧化铪;1. Form the gate shape by photolithography on the semiconductor carbon nanotubes, and grow a layer of hafnium oxide of about 15 nanometers by atomic layer deposition;
2.马上通过电子束蒸发的方法蒸镀一层20纳米厚的金属钛作为栅电极层;2. Immediately evaporate a layer of 20 nm thick metal titanium as the gate electrode layer by electron beam evaporation;
3.将样品放进丙酮中剥离,制备出栅电极;3. Put the sample into acetone and peel it off to prepare the gate electrode;
4.光刻形成源、漏电极的形状,蒸镀一层50纳米厚的钯金属层作为源漏电极层,然后将样品放进丙酮中剥离,去除不需要的金属层即得到源漏金属电极。4. Form the shape of the source and drain electrodes by photolithography, vapor-deposit a layer of palladium metal layer with a thickness of 50 nanometers as the source and drain electrode layer, then put the sample into acetone and peel it off, and remove the unnecessary metal layer to obtain the source and drain metal electrodes .
将器件按照图6所示的电路进行连接,在场效应晶体管(FET)1的栅极输入一个被直流电压4所偏置的1kHz的正弦波信号2,其中偏置电压4需要通过测量场效应晶体管的直流转移特性来得到。然后漏端通过一个偏置器(Bias-T)6将直流的电流源3连接上,同时也是通过偏置器6将交流信号耦合到频谱仪(SA)7中,从而就可以得到输出信号的频谱。输出信号的频谱如图7所示,可以看到信号功率95%以上都集中在倍频2kHz处,可以显示出这种倍频器的高效率。Connect the device according to the circuit shown in Figure 6, and input a 1kHz
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010219178 CN101917161A (en) | 2010-06-25 | 2010-06-25 | A Frequency Doubler Based on Carbon Nanotube Field Effect Transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010219178 CN101917161A (en) | 2010-06-25 | 2010-06-25 | A Frequency Doubler Based on Carbon Nanotube Field Effect Transistor |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101917161A true CN101917161A (en) | 2010-12-15 |
Family
ID=43324579
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201010219178 Pending CN101917161A (en) | 2010-06-25 | 2010-06-25 | A Frequency Doubler Based on Carbon Nanotube Field Effect Transistor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101917161A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108461446A (en) * | 2018-03-26 | 2018-08-28 | 北京大学 | A kind of preparation method of list grid graphene frequency multiplier |
WO2018215892A1 (en) * | 2017-05-23 | 2018-11-29 | International Business Machines Corporation | Semiconductor device |
-
2010
- 2010-06-25 CN CN 201010219178 patent/CN101917161A/en active Pending
Non-Patent Citations (3)
Title |
---|
《Applied Physics Letters》 20100427 Zhenxing Wang等 A high-performance top-gate graphene field-effect transistor based frequency doubler 第96卷, 第17期 * |
《Applied Physics Letters》 20100427 Zhenxing Wang等 A high-performance top-gate graphene field-effect transistor based frequency doubler 第96卷, 第17期 2 * |
《NANO LETTERS》 20050603 Fei Liu等 Determination of the small band gap of carbon nanotubes using the ambipolar random telegraph signal 第5卷, 第7期 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018215892A1 (en) * | 2017-05-23 | 2018-11-29 | International Business Machines Corporation | Semiconductor device |
GB2577208A (en) * | 2017-05-23 | 2020-03-18 | Ibm | Semiconductor device |
CN108461446A (en) * | 2018-03-26 | 2018-08-28 | 北京大学 | A kind of preparation method of list grid graphene frequency multiplier |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | A high-performance top-gate graphene field-effect transistor based frequency doubler | |
Wang et al. | Graphene frequency multipliers | |
Chen et al. | Highly uniform carbon nanotube field-effect transistors and medium scale integrated circuits | |
US8324555B2 (en) | Nanoelectronic differential amplifiers and related circuits implemented on a segment of a graphene nanoribbon | |
Wang et al. | Metal contact engineering and registration-free fabrication of complementary metal-oxide semiconductor integrated circuits using aligned carbon nanotubes | |
Wang et al. | Synthesis and device applications of high-density aligned carbon nanotubes using low-pressure chemical vapor deposition and stacked multiple transfer | |
Zhong et al. | Carbon nanotube film-based radio frequency transistors with maximum oscillation frequency above 100 GHz | |
Wang et al. | Scalable Fabrication of Ambipolar Transistors and Radio‐Frequency Circuits Using Aligned Carbon Nanotube Arrays | |
CN105810746A (en) | N-type thin-film transistor | |
JP4461673B2 (en) | Active electronic device and electronic device | |
Wang et al. | Graphene-based ambipolar electronics for radio frequency applications | |
Nayfeh | Radio-frequency transistors using chemical-vapor-deposited monolayer graphene: performance, doping, and transport effects | |
CN102832256A (en) | Tunneling field effect transistor | |
Wang et al. | Large signal operation of small band-gap carbon nanotube-based ambipolar transistor: a high-performance frequency doubler | |
Peng et al. | Frequency multiplier based on back-gated graphene FETs with M-shaped resistance characteristics | |
Lee et al. | Flexible carbon nanotube Schottky diode and its integrated circuit applications | |
Choi et al. | Low-voltage 2D material field-effect transistors enabled by ion gel capacitive coupling | |
CN101917161A (en) | A Frequency Doubler Based on Carbon Nanotube Field Effect Transistor | |
Cobas et al. | Single carbon nanotube Schottky diode microwave rectifiers | |
CN108461446B (en) | A kind of preparation method of single grid graphene frequency doubler | |
Petrone et al. | Flexible 2D FETs using hBN dielectrics | |
Xie et al. | Carbon nanotube-based CMOS transistors and integrated circuits | |
Kim et al. | Anti-ambipolar transport and logic operation in two-dimensional field-effect transistors using in-series integration of GeAs and SnS2 | |
CN101252145B (en) | A carbon nanotube nanoelectronic device and its preparation method | |
Xiang et al. | Configurable multifunctional integrated circuits based on carbon nanotube dual-material gate devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20101215 |