CN101900539A - 一种基于加速度计的旋翼共锥度测量装置及其方法 - Google Patents

一种基于加速度计的旋翼共锥度测量装置及其方法 Download PDF

Info

Publication number
CN101900539A
CN101900539A CN2010101534578A CN201010153457A CN101900539A CN 101900539 A CN101900539 A CN 101900539A CN 2010101534578 A CN2010101534578 A CN 2010101534578A CN 201010153457 A CN201010153457 A CN 201010153457A CN 101900539 A CN101900539 A CN 101900539A
Authority
CN
China
Prior art keywords
blade
omega
accelerometer
signal
integral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010101534578A
Other languages
English (en)
Other versions
CN101900539B (zh
Inventor
朱齐丹
蔡成涛
夏桂华
王立辉
张智
邓超
姜迈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN2010101534578A priority Critical patent/CN101900539B/zh
Publication of CN101900539A publication Critical patent/CN101900539A/zh
Application granted granted Critical
Publication of CN101900539B publication Critical patent/CN101900539B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

本发明的目的在于提供一种基于加速度计的旋翼共锥度测量装置及其方法。本发明的一种基于加速度计的旋翼共锥度测量装置包括旋翼头、桨叶、驱动电源以及信号输出电缆、加速度计和集流环,桨叶包括标准桨叶和伴随桨叶,旋翼头上设有安装桨叶的螺栓孔,螺栓孔共有3组、之间的夹角均为120°,标准桨叶和伴随桨叶通过螺栓孔安装在旋翼头上,驱动电源以及信号输出电缆分别安装在标准桨叶、伴随桨叶和被测桨叶上,加速度计分别安装在标准桨叶、伴随桨叶和被测桨叶的叶尖上;集流环安装在旋翼头上、位于旋翼头的下方。本发明可实现旋翼高速旋转过程中,任意时刻,任意旋转位置的旋翼共锥度测量。

Description

一种基于加速度计的旋翼共锥度测量装置及其方法
技术领域
本发明涉及的是一种光学测量装置,本发明还涉及一种光学测量方法,具体地说是应用于共锥度测量的光学测量装置及其测量方法。
背景技术
旋翼在高速旋转时,在空气动力的作用下叶面产生向上的升力使桨叶向上挥舞,同时桨叶的质量又会产生很大的离心力使桨叶保持平衡。从而形成了以旋翼头为顶点,桨叶长度为母线的锥面。所谓共锥度,就是指被测桨叶与标准桨叶的锥面是否重合,如果重合则旋翼的翼尖相对于地面的高度是相同的,否则,就有一定的高度差(即锥度值)。测试时共安装三片桨叶,依次为标准桨叶、伴随桨叶和被测桨叶。
直升机旋翼共锥度测试是直升机旋翼动平衡试验中测试的一项重要指标,它直接影响到直升机的安全和各方面性能,共锥度测试的目的就是保证桨叶出厂后可以达到单片互换。旋翼共锥度测量是在旋翼高速旋转的动态下进行的,通过被测桨叶锥度与标准桨叶锥度的差来表述被测桨叶的共锥度特性,此差值越小,说明旋翼共锥度特性越好。过去的测量方法一直存在着测量难度大,精度差等问题。
由于旋翼共锥度测量的重要性,目前国内外已经有几种旋翼共锥度测量的方法,但是由于直升机旋翼是在高速旋转的情况下测量的,所以大部分测量方法均采用了非接触式的光电或者无线的测量方法。例如利用CCD成像技术、采用红外反射原理或构建激光光路等方法实现旋翼共锥度测量。但这些方法的测量均是定点测量,不能实现旋翼高速旋转过程中,任意时刻,任意旋转位置的旋翼共锥度测量。本申请的方案采用一种基于测量桨尖加速度的新型直升机旋翼共锥度测量方法,实现旋翼任意空间位置上的共锥度特性测量。
发明内容
本发明的目的在于提供现旋翼高速旋转过程中任意时刻、任意旋转位置的一种基于加速度计的旋翼共锥度测量装置及其方法。
本发明的目的是这样实现的:
本发明的一种基于加速度计的旋翼共锥度测量装置包括旋翼头、桨叶、驱动电源以及信号输出电缆、加速度计和集流环;桨叶包括标准桨叶和伴随桨叶,旋翼头上设有安装桨叶的螺栓孔,螺栓孔共有3组、之间的夹角均为120°,标准桨叶和伴随桨叶通过螺栓孔安装在旋翼头上,驱动电源以及信号输出电缆包括第一驱动电源以及信号输出电缆、第二驱动电源以及信号输出电缆和第三驱动电源以及信号输出电缆,第一驱动电源以及信号输出电缆、第二驱动电源以及信号输出电缆和第三驱动电源以及信号输出电缆分别安装在标准桨叶、伴随桨叶和被测桨叶上;加速度计包括第一加速度计、第二加速度计和第三加速度计,第一加速度计、第二加速度计和第三加速度计分别安装在标准桨叶、伴随桨叶和被测桨叶的叶尖上;集流环安装在旋翼头上、位于旋翼头的下方。
本发明的一种基于加速度计的旋翼共锥度测量方法是将被测桨叶安装在旋翼头上,确定参考点,然后用常规方法测静止状态下标准桨叶、伴随桨叶和被测桨叶相对于同一参考点的高度,之后三个加速度计开始工作,旋翼开始旋转,通过加速度计采集加速度信号,将采集到的加速度信号通过三个驱动电源以及信号输出电缆,经集流环输出到共锥度数据采集处理系统中,对加速度计采集到的加速度信号,采用频域二次积分的方法得到桨尖的位移,根据同一时刻桨尖间的位移曲线关系,利用差值方法计算出旋翼共锥度值。
本发明的一种基于加速度计的旋翼共锥度测量方法还可以包括:
所述的频域二次积分的方法是加速度信号在任一频率的傅立叶分量可以表达为:
a(t)=Aejωt
式中:a(t)为加速度信号在频率ω的傅立叶分量,A为对应a(t)的系数,j为虚数,即
Figure GSA00000092284100021
t代表时间;初速度分量为0时,对加速度信号分量的时间积分可以得到速度信号分量,即
v ( t ) = ∫ 0 t a ( τ ) dτ = ∫ 0 t Ae jωτ dτ = A jω e jωt = Ve jωt
式中:
v(t)为速度信号在频率ω的傅立叶分量,V为v(t)的系数;
一次积分在频域里关系式为:
V = A jω
初速度和初位移分量均为0时,对加速度信号的傅立叶分量两次积分可得出位移分量:
x ( t ) = ∫ 0 t [ ∫ 0 τ a ( λ ) dλ ] dτ = ∫ 0 t Ve jωτ dτ = V jω e jωt
= - A ω 2 e jωt = Xe jωt
式中:
x(t)为位移信号在频率ω的傅立叶分量,X为x(t)的系数;
则两次积分在频域里关系为:
X = - A ω 2
将所有不同频率的傅立叶分量按积分在频域里关系式运算后,进行傅立叶逆变换就能得到相应的积分信号;
设信号的离散数据{x(k)}(k=0,1,2,…,N),频域一次积分为:
y ( r ) = Σ k = 0 N - 1 1 j 2 πkΔf H ( k ) X ( k ) e j 2 πkr / N
则频域二次积分为:
y ( r ) = Σ k = 0 N - 1 - 1 ( 2 πkΔf ) 2 H ( k ) X ( k ) e j 2 πkr / N
其中:
式中:fd和fu分别为下限截止频率和上限截止频率,X(k)为x(r)的傅立叶变换,Δf为频率分辨率。
本发明的优势在于:可实现旋翼高速旋转过程中任意时刻、任意旋转位置的旋翼共锥度测量。
附图说明
图1为本发明的加速度传感器安装正视示意图;
图2为本发明的加速度传感器安装俯视示意图;
图3为加速度计SJ的加速度曲线及位移曲线;
图4为加速度计SR的加速度曲线及位移曲线;
图5为加速度计SY的加速度曲线及位移曲线;
图6为二次积分后的3条位移曲线。
具体实施方式
下面结合附图举例对本发明做更详细地描述:
结合图1~6,一种基于加速度计的旋翼共锥度测量装置的加速度计5、6和7均为同一标准、分别安装于动平衡实验台桨叶2、3和4的叶尖上。加速度计5、6和7的驱动电源以及信号输出电缆8、9和10均通过桨叶边缘,连接至旋翼头1,然后通过集流环11输出到控制室的共锥度数据采集处理系统中。
测量开始时,先确定参考点,然后用常规方法(如采用一定精度的标尺)测静止状态下三片桨叶2、3和4相对与同一参考点的高度,然后加速度计5、6和7开始工作,旋翼开始旋转,采集加速度信号。将采集到的加速度信号通过驱动电源以及信号输出电缆8、9和10,经集流环11输出到控制室的共锥度数据采集处理系统中。对加速度计5、6和7采集到的加速度信号,采用频域二次积分的方法得到桨尖的位移,根据同一时刻桨尖间的位移曲线关系,计算出旋翼共锥度值。
频域积分的基本原理是首先将需要积分的信号作傅立叶变换,然后将变换结果在频域里进行积分运算,最后经傅立叶逆变换得到积分后的时域信号。积分在频域里的运算方法如下:
根据傅立叶逆变换的公式,加速度信号在任一频率的傅立叶分量可以表达为:
a(t)=Aejωt            (1)
式中:a(t)为加速度信号在频率ω的傅立叶分量;A为对应a(t)的系数;j为虚数,即t表示时间。初速度分量为0时,对加速度信号分量的时间积分可以得到速度信号分量,即
v ( t ) = ∫ 0 t a ( τ ) dτ = ∫ 0 t Ae jωτ dτ = A jω e jωt = Ve jωt - - - ( 2 )
式中:
v(t)为速度信号在频率ω的傅立叶分量;
V为v(t)的系数。
于是一次积分在频域里关系式为:
V = A jω - - - ( 3 )
初速度和初位移分量均为0时,对加速度信号的傅立叶分量两次积分可得出位移分量:
x ( t ) = ∫ 0 t [ ∫ 0 τ a ( λ ) dλ ] dτ = ∫ 0 t Ve jωτ dτ = V jω e jωt - - - ( 4 )
= - A ω 2 e jωt = Xe jωt
式中:
x(t)为位移信号在频率ω的傅立叶分量;
X为x(t)的系数。
于是两次积分在频域里关系为:
X = - A ω 2 - - - ( 5 )
将所有不同频率的傅立叶分量按积分在频域里关系式运算后,进行傅立叶逆变换就能得到相应的积分信号。
根据上述分析:设信号的离散数据{x(k)}(k=0,1,2,…,N),频域一次积分的数值计算公式为:
y ( r ) = Σ k = 0 N - 1 1 j 2 πkΔf H ( k ) X ( k ) e j 2 πkr / N - - - ( 6 )
频域二次积分的数值计算公式为:
y ( r ) = Σ k = 0 N - 1 - 1 ( 2 πkΔf ) 2 H ( k ) X ( k ) e j 2 πkr / N - - - ( 7 )
其中:
式中:fd和fu分别为下限截止频率和上限截止频率;X(k)为x(r)的傅立叶变换;Δf为频率分辨率。
实施方式1:
设在试验中三片桨叶2、3和4的颜色分别为蓝(J)、红(R),黄(Y),对应加速度计5、6和7分别为SJ、SR和SY。设采样频率为800Hz,为了消除趋势项对信号的影响,在频域积分中设置下限截止频率为0.7Hz,上限截止频率为600Hz,图3为SJ的加速度测量信号以及经过频域积分后的位移信号。同样可以得到SR、SY的加速度测量信号值以及位移信号,分别如图4、5所示。将3片旋翼的位移信号以统一时间轴的方法画在一起的图形如图6所示。设在图6中,在一时间轴0.13s处,对蓝(J)、红(R)和黄(Y)三片旋翼的位移曲线的交点分别为A,B,C。对应的位移值分别为-0.02mm、0.3mm和-0.01mm。则锥度差可由下式计算出:
蓝(J)旋翼和红(R)旋翼之间的锥度差为:
ΔhJ-R=|-0.02-0.3|=0.32mm                (9)
蓝(J)旋翼和黄(Y)旋翼之间的锥度差为:
ΔhJ-Y=|-0.02-(-0.01)|=0.01mm            (10)
红(R)旋翼和黄(Y)旋翼之间的锥度差为:
ΔhR-Y=|0.3-(-0.01)|=0.31mm              (11)

Claims (3)

1.一种基于加速度计的旋翼共锥度测量装置,其特征是:包括旋翼头、桨叶、驱动电源以及信号输出电缆、加速度计和集流环;桨叶包括标准桨叶和伴随桨叶,旋翼头上设有安装桨叶的螺栓孔,螺栓孔共有3组、之间的夹角均为120°,标准桨叶和伴随桨叶通过螺栓孔安装在旋翼头上,驱动电源以及信号输出电缆包括第一驱动电源以及信号输出电缆、第二驱动电源以及信号输出电缆和第三驱动电源以及信号输出电缆,第一驱动电源以及信号输出电缆、第二驱动电源以及信号输出电缆和第三驱动电源以及信号输出电缆分别安装在标准桨叶、伴随桨叶和被测桨叶上;加速度计包括第一加速度计、第二加速度计和第三加速度计,第一加速度计、第二加速度计和第三加速度计分别安装在标准桨叶、伴随桨叶和被测桨叶的叶尖上;集流环安装在旋翼头上、位于旋翼头的下方。
2.一种基于加速度计的旋翼共锥度测量方法,采用权利要求1所述的一种基于加速度计的旋翼共锥度测量装置,其特征是:将被测桨叶安装在旋翼头上,确定参考点,然后用常规方法测静止状态下标准桨叶、伴随桨叶和被测桨叶相对于同一参考点的高度,之后三个加速度计开始工作,旋翼开始旋转,通过加速度计采集加速度信号,将采集到的加速度信号通过三个驱动电源以及信号输出电缆,经集流环输出到共锥度数据采集处理系统中,对加速度计采集到的加速度信号,采用频域二次积分的方法得到桨尖的位移,根据同一时刻桨尖间的位移曲线关系,利用差值方法计算出旋翼共锥度值。
3.根据权利要求2所述的一种基于加速度计的旋翼共锥度测量方法,其特征是:所述的频域二次积分的方法是加速度信号在任一频率的傅立叶分量可以表达为:
a(t)=Aejωt
式中:a(t)为加速度信号在频率ω的傅立叶分量,A为对应a(t)的系数,j为虚数,即t代表时间;初速度分量为0时,对加速度信号分量的时间积分可以得到速度信号分量,即
v ( t ) = ∫ 0 t a ( τ ) dτ = ∫ 0 t A e jωτ dτ = A jω e jωt = Ve jωt
式中:
v(t)为速度信号在频率ω的傅立叶分量,V为v(t)的系数;
一次积分在频域里关系式为:
V = A jω
初速度和初位移分量均为0时,对加速度信号的傅立叶分量两次积分可得出位移分量:
x ( t ) = ∫ 0 t [ ∫ 0 t a ( λ ) dλ ] dτ = ∫ 0 t V e jωτ dτ = V jω e jωt
= - A ω 2 e jωt = X e jωt
式中:
x(t)为位移信号在频率ω的傅立叶分量,X为x(t)的系数;
则两次积分在频域里关系为:
X = - A ω 2
将所有不同频率的傅立叶分量按积分在频域里关系式运算后,进行傅立叶逆变换就能得到相应的积分信号;
设信号的离散数据{x(k)}(k=0,1,2,…,N),频域一次积分为:
y ( r ) = Σ k = 0 N - 1 1 j 2 πkΔf H ( k ) X ( k ) e j 2 πkr / N
则频域二次积分为:
y ( r ) = Σ k = 0 N - 1 - 1 ( 2 πkΔf ) 2 H ( k ) X ( k ) e j 2 πkr / N
其中:
Figure FSA00000092284000028
式中:fd和fu分别为下限截止频率和上限截止频率,X(k)为x(r)的傅立叶变换,Δf为频率分辨率。
CN2010101534578A 2010-04-23 2010-04-23 一种基于加速度计的旋翼共锥度测量装置及其方法 Expired - Fee Related CN101900539B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010101534578A CN101900539B (zh) 2010-04-23 2010-04-23 一种基于加速度计的旋翼共锥度测量装置及其方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010101534578A CN101900539B (zh) 2010-04-23 2010-04-23 一种基于加速度计的旋翼共锥度测量装置及其方法

Publications (2)

Publication Number Publication Date
CN101900539A true CN101900539A (zh) 2010-12-01
CN101900539B CN101900539B (zh) 2011-11-16

Family

ID=43226290

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010101534578A Expired - Fee Related CN101900539B (zh) 2010-04-23 2010-04-23 一种基于加速度计的旋翼共锥度测量装置及其方法

Country Status (1)

Country Link
CN (1) CN101900539B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105423991A (zh) * 2015-12-31 2016-03-23 金华职业技术学院 一种风机风叶锥度的测试方法
CN105606041A (zh) * 2016-01-28 2016-05-25 南昌航空大学 一种基于pc/104嵌入式系统的旋翼共锥度机载测量装置及方法
CN105716837A (zh) * 2014-12-03 2016-06-29 中国飞行试验研究院 一种基于psd光学成像的机载旋翼运动测量方法
CN106586023A (zh) * 2016-11-29 2017-04-26 中国直升机设计研究所 一种同步数据采集系统及方法
CN112224446A (zh) * 2020-10-16 2021-01-15 中国直升机设计研究所 一种基于相位测距原理的高速共轴双旋翼桨尖距测量方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105716837A (zh) * 2014-12-03 2016-06-29 中国飞行试验研究院 一种基于psd光学成像的机载旋翼运动测量方法
CN105716837B (zh) * 2014-12-03 2018-04-17 中国飞行试验研究院 一种基于psd光学成像的机载旋翼运动测量方法
CN105423991A (zh) * 2015-12-31 2016-03-23 金华职业技术学院 一种风机风叶锥度的测试方法
CN105606041A (zh) * 2016-01-28 2016-05-25 南昌航空大学 一种基于pc/104嵌入式系统的旋翼共锥度机载测量装置及方法
CN106586023A (zh) * 2016-11-29 2017-04-26 中国直升机设计研究所 一种同步数据采集系统及方法
CN106586023B (zh) * 2016-11-29 2019-03-29 中国直升机设计研究所 一种同步数据采集系统及方法
CN112224446A (zh) * 2020-10-16 2021-01-15 中国直升机设计研究所 一种基于相位测距原理的高速共轴双旋翼桨尖距测量方法

Also Published As

Publication number Publication date
CN101900539B (zh) 2011-11-16

Similar Documents

Publication Publication Date Title
CN101900539B (zh) 一种基于加速度计的旋翼共锥度测量装置及其方法
US9709392B2 (en) Aero engine rotor assembling method and device based on concentricity and verticality measurement
CN103790647B (zh) 基于电感传感的液压抓卡式航空发动机转子装配装置
CN103899367B (zh) 航空发动机转子堆叠装配方法与装置
US9890661B2 (en) Aero engine rotor air floatation assembling device based on gantry structure
CN103471803A (zh) 一种模型自由飞试验的气动参数确定方法
CN103806958B (zh) 基于感应同步器的液压抓卡式航空发动机转子装配装置
CN109556878B (zh) 一种电动螺旋桨系统气动性能及效率同步测量装置及方法
CN103791815B (zh) 基于电感测量的航空发动机转子气浮装配方法与装置
CN103790653B (zh) 基于气磁复合支撑的龙门式航空发动机转子装配装置
CN103790651B (zh) 气浮与磁浮相结合的航空发动机转子装配方法与装置
CN206019842U (zh) 叶片振动模拟装置及具有其的测试系统
CN103790652B (zh) 基于光电编码器测角的航空发动机转子气浮装配装置
CN103790649B (zh) 可移动式双立柱结构的航空发动机转子装配装置
CN103790646B (zh) 基于光电编码器测角的航空发动机转子电驱动磁浮装配装置
CN103776365A (zh) 基于径向与轴向基准的航空发动机多轴转子装配方法与装置
CN103790648B (zh) 基于多部件同心度优化的航空发动机转子装配方法与装置
CN103791821B (zh) 基于径向误差与轴向倾斜的航空发动机转子装配方法与装置
CN103791813B (zh) 基于电容传感测量的气动内卡式航空发动机转子装配装置
CN103791825B (zh) 基于双基准测量的航空发动机转子装配方法与装置
CN103790644B (zh) 基于空间矢量投影的航空发动机转子装配方法与装置
CN103776367B (zh) 基于遗传算法寻优的航空发动机多轴转子装配方法与装置
CN103791812B (zh) 基于电容传感与四爪液压卡盘抓卡的航空发动机转子装配方法与装置
CN103791820B (zh) 基于矢量堆叠原理的航空发动机转子装配方法与装置
CN102829905A (zh) 一种用于电机用滚珠轴承寿命评估的摩擦力矩测量方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20111116

Termination date: 20170423