CN101898070B - 液态的二氧化碳吸收剂及其使用方法 - Google Patents

液态的二氧化碳吸收剂及其使用方法 Download PDF

Info

Publication number
CN101898070B
CN101898070B CN200910266381.7A CN200910266381A CN101898070B CN 101898070 B CN101898070 B CN 101898070B CN 200910266381 A CN200910266381 A CN 200910266381A CN 101898070 B CN101898070 B CN 101898070B
Authority
CN
China
Prior art keywords
carbon
absorbent
liquid
dioxide
functionalization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200910266381.7A
Other languages
English (en)
Other versions
CN101898070A (zh
Inventor
S·E·格诺维斯
D·汉库
R·J·佩里
G·L·索洛维基克
B·R·伍德
C·G·森万
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Products and Chemicals Inc
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN101898070A publication Critical patent/CN101898070A/zh
Application granted granted Critical
Publication of CN101898070B publication Critical patent/CN101898070B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/202Alcohols or their derivatives
    • B01D2252/2023Glycols, diols or their derivatives
    • B01D2252/2026Polyethylene glycol, ethers or esters thereof, e.g. Selexol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/202Alcohols or their derivatives
    • B01D2252/2023Glycols, diols or their derivatives
    • B01D2252/2028Polypropylene glycol, ethers or esters thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/2041Diamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20421Primary amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/205Other organic compounds not covered by B01D2252/00 - B01D2252/20494
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/40Absorbents explicitly excluding the presence of water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/50Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/40Sorption with wet devices, e.g. scrubbers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明涉及液态的二氧化碳吸收剂及其使用方法。本发明提供了包含用一种或多种与CO2可逆地反应和/或对CO2具有高亲和性的基团官能化的液态非水低聚材料的二氧化碳吸收剂。所述吸收剂可以用在减少排出气体中的二氧化碳的方法中,特别是可以用在发电厂中。

Description

液态的二氧化碳吸收剂及其使用方法
技术领域
本发明涉及液态的二氧化碳吸收剂及其使用方法。
背景技术
目前,美国用电有超过一半是由粉煤(pulverized coal,PC)发电厂生产的。在2007年,这些发电厂排放了超过19亿公吨二氧化碳(CO2),就此而言,占到发电工厂总CO2排放量的83%和美国CO2总排放量的33%。消除或者甚至减少这些排放在任何减少温室气体排放的计划中都将是必须的。
在食品生产、天然气脱硫和其他工艺中,从气流中分离CO2已经商业化几十年了。目前,含水单乙醇胺(MEA)基溶剂捕获被认为是从排出气体中分离CO2的商业上最可取的技术,并且是评价本领域中未来的发展的基准。遗憾的是,胺-基系统并没有被设计来处理PC厂产生的大量的废气。将胺-基CO2捕获系统放大到PC厂所需的尺寸将导致PC厂的电的总成本增加83%。将该技术用于美国现有的所有PC厂将会花费1250亿美元/年,这使得MEA-基CO2捕获对于大规模的商业化来说是不可取的选择。
在期望是目前采用的MEA-基系统的可行替代选择的任何CO2捕获技术中,存在许多希望将会被展示或增强的性能。例如,将希望任何这样的技术都展示高的净CO2容量并且消除载体溶剂(例如水),以及能够提供较低的资金和运行成本(需要加热和冷却的材料量较少,因此所需能量较少)。较低的反应热将意味着从材料中释放CO2将需要较少的能量。理想地,所述技术将不需要预-捕获气体压缩,从而可以在低CO2分压获得高的净CO2容量,减少捕获所需的能量。采用粘度较低的材料的技术将提供改善的质量传递,减小所需装置的尺寸,以及减少运行所述装置的能量成本。所用一种或多种材料的低挥发性和高的热、化学和水解稳定性可以减少需要补充的材料的量。当然,任何这样的技术也期望具有低材料成本,从而将最小化系统的材料补充成本。在高压下CO2释放的可操作性可以减少在螯合(sequestration)前CO2压缩所需的能量。最后,还期望这样的技术将显示降低的腐蚀性,从而有助于减少资金和维护成本,并且进一步将不需要大规模冷却以实现期望的净CO2加载,减少运行成本。
遗憾的是,很多以上描述的期望性能是相互作用和/或彼此依赖的,从而它们不能单独地改变,需要折衷考虑。例如,为了具有低挥发性,典型地,在任何这样的技术中所使用的材料必须具有相当大的分子量,但是为了具有低粘度,所述材料必须具有低分子量。为了在低压下具有高CO2容量,需要高总反应热,但是为了具有低再生能,需要低总反应热。
理想地,将提供这样的CO2捕获技术,其优化尽可能多的上述期望的性能,但是不对其他期望的性能造成实质性的损害。至少,为了能在商业上可行,这样的技术理想地将是低成本的,并且采用一种或多种具有低挥发性、高热稳定性和高CO2净容量的材料。
发明内容
在第一方面中,提供了二氧化碳吸收剂,包含液态非水低聚材料(liquid,nonaqueous oligomeric material),所述液态非水低聚材料被一种或多种与CO2可逆地反应和/或对CO2具有高亲和性的基团官能化。
此外,第二方面提供了减少工艺物流中二氧化碳的量的方法,所述方法包括使所述物流与包含液态非水低聚材料的二氧化碳吸收剂接触,所述液态非水低聚材料被一种或多种与CO2可逆地反应和/或对CO2具有高亲和性的基团官能化。
在第三方面中,提供了包含二氧化碳去除单元的发电装置,所述二氧化碳去除单元进一步含有包含液态非水低聚材料的二氧化碳吸收剂,所述液态非水低聚材料被一种或多种与CO2可逆地反应和/或对CO2具有高亲和性的基团官能化。
还提供了具有降低的二氧化碳排放的发电方法。所述方法包括燃烧燃料(粉煤、液态烃和天然气等)和将包含二氧化碳的烟道气(fluegas)引导至发电设备,例如蒸汽或燃气轮机,然后引导至二氧化碳去除单元,所述二氧化碳去除单元含有包含液态非水低聚材料的二氧化碳吸收剂,所述液态非水低聚材料被一种或多种与CO2可逆地反应和/或对CO2具有高亲和性的基团官能化。
附图说明
当参照附图阅读以下详细描述时,将更好的理解本发明的这些和其他特征、方面以及优点,其中,在所有附图中类似的符号代表类似的部分,其中:
图1是氨基丙基封端的聚二甲基硅氧烷的CO2吸收数据的图示描述,在25℃和60℃以及0.1、0.2、0.5、1、4和7bar的压力,通过重量分析气体吸附分析测量;
图2是未官能化的聚二甲基硅氧烷和氨基硅酮的60℃等温线的图示描述;和
图3是氨基硅酮的CO2吸收速率的图示描述。
具体实施方式
除非另有说明,否则这里所用的技术和科学术语具有与本发明所属技术领域的技术人员通常理解的含义相同的含义。这里所用的术语“第一”、“第二”等并不表示任何顺序、数量或重要性,而是用来将各个要素彼此区别开来。此外,术语“a”和“an”并不表示对数量的限制,而是表示存在至少一种(个)所指的对象,并且除非另有说明,否则术语“前”、“后”、“底部”和/或“顶部”只是为了描述的方便而使用,不限于任何一个位置或空间方位。如果披露了范围的话,那么涉及同一组分或性能的所有范围的端点都是被包括在内的,并且可以独立组合(例如,范围“不超过约25wt.%,或更具体地,约5wt.%至约20wt.%,”包括所述端点和范围“约5wt.%至约25wt.%”的所有中间值,等等)。与数量相连而采用的修饰语“约”包括所描述的值并且具有上下文所要求的意思(例如,包括与测量特定数量相关的误差度)。
本发明披露的主题一般地涉及二氧化碳吸收剂、结合它们的发电装置、和采用所述吸收剂从工艺物流吸收二氧化碳的方法,所述工艺物流例如可以是通过发电方法产生的工艺物流。在常规二氧化碳吸收剂用于许多技术中的商业可行性中,常规二氧化碳吸收剂缺乏一种或多种被认为很重要的性能(如果不是关键性能的话)。例如,MEA-基含水吸收剂并没有被设计用于大体积的排出气体。因此,在这类工艺中采用这些吸收剂是极其能量密集的并且成本很高-对于在发电厂中实施用于燃烧后CO2捕获来说成本过高。
现在提供了包含液态非水低聚材料的二氧化碳吸收剂。低聚材料被定义为具有2-20个重复单元的分子。更具体地,所述具有低蒸气压的低聚材料被或者与CO2可逆地反应,或者对CO2具有高亲和性的基团官能化。这些吸收剂中的许多吸收剂显示出许多对于提供MEA基捕获的商业可行的替代选择被认为很关键的性能,例如,它们在大的温度范围内是液态的、不挥发、热稳定,并且不需要载体流体。而且,通过合成为具有高官能度,本发明的吸收剂可以具有高CO2容量。
理想地,本发明的吸收剂包含亲-CO2的短链低聚物,例如,包含少于约20个重复单体单元。如本发明中所使用的那样,术语“亲-CO2的短链低聚物”是指对CO2具有亲和性的低聚物,如可以通过在液态或超临界CO2中的可溶性,或吸收CO2的能力得以证实。液态低聚物例如聚(硅氧烷)、聚(乙二醇)、聚(丙二醇)和全氟聚醚例如聚(氟乙烯),是适于用在本发明吸收剂中的亲-CO2短链低聚物的非限制性的例子。这些以及其他例证性低聚物在下面给出,并且可以在低聚物的链上或在末端进行衍生化,或者可以是共聚低聚物或三元共聚低聚物(co-orter-oligomers):
在这些之中,硅酮特别适合用在本发明的吸收剂中。准确地讲也称作聚合的硅氧烷或聚硅氧烷,硅酮是化学式为[R2SiO]n的混合的无机-有机聚合物或低聚物,其中,R包括含有任意数目碳的直链的、支链的或芳香族的有机基团,例如,甲基、乙基、苯基等等。因此,这些材料包含无机硅-氧主链(...Si-O-Si-O-Si-O-...),有机侧链基团与硅原子连接,所述硅原子是四价的(four-coordinate)。这些硅酮可以是具有R和OR’封端基团的线性的,或者可以是仅包含重复单元的环状的。后者的一个例子是八甲基环四硅氧烷(也称作D4)。
在室温,硅酮是不挥发的,即使是在短链长度也是不挥发的,并且是液态的。它们典型地是低成本的,在高温是稳定的,例如最高达约150℃,并且典型地对于用作本发明的二氧化碳吸收剂可以不需要使用额外的溶剂。硅酮也是易于官能化的,因此,可以用增强它们对CO2的亲和性的基团官能化。
在合成过程中可以容易地控制低聚物链的长度,其容许控制物理性能例如粘度和沸点。此外,硅氧烷键是热稳定的和在不存在强酸或碱时是水解稳定的。许多硅酮前体是市售可得的,因此,有利地,将不需要开发大规模的生产能力。这些中有许多可以用在本发明中。适于本发明中的官能化,并且可从许多来源获得的硅酮的一个例子包括聚氢甲基硅氧烷(polyhydridomethylsiloxane)。
所述低聚材料理想地可以用增强其CO2净容量的基团官能化。官能团,其被预期是亲-CO2的并因此增强CO2在用它们官能化的低聚材料中的溶解性,包括乙酸酯、碳酸酯、酮和胺。所用的具体官能团将取决于所选的低聚材料,并且对于其中低聚材料包含硅氧烷的那些实施方案来说,胺官能度可能是适合的,因为许多氨基硅氧烷是市售易得的,并且为了增加CO2反应性,如果希望或需要的话,易于被进一步官能化。显示出CO2-反应性的胺官能团的例子包括氨基丙基、氨基乙基-氨基丙基、氨基乙基-氨基异丁基、哌嗪-丙基和咪唑基(imidazoyl)丙基。
官能团可以位于侧链中,并且也可以是封端基团。与30wt%水中MEA的10wt%相比,官能团在侧链中的氨基乙基-氨基丙基硅氧烷低聚物,例如下面所示的分子,具有约20wt%的最大理论CO2容量。
适合用在本发明吸收剂中的具有封端官能团的氨基硅氧烷的另一个例子是氨基丙基封端的聚二甲基二硅氧烷:一种这样的氨基硅氧烷被用于头发护理并且从Gelest市售可得,其数均分子量为约850至约900,以及计算的CO2吸收容量为约4.4至约5.2%。预期另外的胺官能度的添加将导致所述吸收容量的增加。
可以至少或多或少地增强低聚物的CO2净容量的其他官能团包括,但是不限于乙酸酯、碳酸酯、酯、酮、甲基胺、乙基胺、丙基胺、氨基(emino)乙基氨基丙基、氨基乙基氨基(amina)异丁基、哌嗪丙基(piperazineopropyl)、哌嗪基丙基(piperazinopropyl)、咪唑基丙基,或这些的组合:
聚合物化学领域的技术人员非常精通将官能团添加到可用于本发明吸收剂中的低聚物主链上的方法。连接官能团的许多方法是已知的,例如氢化硅烷化和置换,如Michael A.Brook的书Silicon in Organic,Organometallic,and Polymer Chemistry(Wiley VCH Press,2000)中所示。
任选地,所述吸收剂也可以包含其他组分,例如,用于增强氧化稳定性的氧化抑制剂,和消泡剂。氧化抑制剂,也叫做抗氧化剂的使用,在本发明的其中所述官能团包括胺基团的那些实施方案中可以是特别有利的。
当用于从工艺气体中去除CO2时,与目前市售可得和/或用于此目的的那些相比,预期本发明提供的二氧化碳吸收剂提供极大的改进。因而,提供了减少工艺物流中二氧化碳的方法,并且包括使工艺物流与本发明所述的二氧化碳吸收剂接触。这样处理的所述工艺物流可以是希望减少其中的CO2水平的任何工艺物流,并且在许多工艺中,理想地至少在由其产生的排出物流中减少CO2。所述工艺物流典型地是气态的,但是可以包含固态或液态颗粒,并且根据应用可处于宽的温度和压力范围。
本发明提供的二氧化碳吸收剂及其使用方法是低成本的。而且,所述吸收剂具有低挥发性,高热稳定性,并且或者是市售可得并具有高CO2净容量,或者是可被提供有高CO2净容量,并因而适合用于大规模应用。因此,还提供了采用本发明吸收剂的发电装置,以及在具有减少的二氧化碳排放的发电方法中采用所述吸收剂的方法。在大的工厂规模使用本发明的吸收剂和方法预期不会显著增加由其产生的电的成本。
实施例
在以下实施例中,通过以下方法,采用配备有99.998%纯CO2(Airgas)的重量分析气体吸附分析仪(Hiden-Isochema IGA-001)测定CO2吸收。
在60℃,将样品脱气约8至约24小时,直至样品的重量变得稳定。一旦稳定了,记录干质量(dry mass)。将温度和压力设置在期望的试验水平,并且使系统达到平衡至少3小时,或者直至样品重量相对稳定,也就是说,变化<1μg。记录在这组条件的平衡重量,并且将压力设置为下一个期望的测试压力。对所有的期望压力重复该过程。也可在恒定压力对所有的期望温度重复该过程。在完成所有试验后,针对浮力值对重量值进行校正。
为了证实这种测量方法的准确度,采用相同的方法测量通常用于CO2吸收研究的离子液体,1-丁基-3-甲基咪唑鎓六氟磷酸盐(Aldrich)。在10℃和25℃获得CO2吸收数据,在实验误差之内所述结果与文献值(Shiflett,M.B.,Yokozeki,A.Solubilities andDiffusivities ofCarbon Dioxide in Ionic Liquids:[bmim][PF6]and[bmim][BF4].Ind.Eng.Chem.Res.,44(2005)4453)非常一致,从而显示该技术用于测量氨基硅酮的CO2吸收的适用性。
实施例1
测量和比较未官能化的聚二甲基硅氧烷(PDMS)和氨基丙基封端的聚二甲基硅氧烷(DMS-A11,来自Gelest,Philadelphia,PA)的CO2吸收。图1中显示了DMS-A11在25℃和60℃以及0.1、0.2、0.5、1、4和7bar压力的CO2吸收数据。如图中所示,随着压力增加,DMS-A11的CO2吸收逐渐接近其最大理论CO2容量。
图2中显示了60℃PDMS等温线和60℃DMS-A11氨基硅酮等温线。如图中所示,与未官能化的PDMS相比,在氨基硅酮中CO2吸收得到了很大的增强。
实施例2
将惰性载气中的CO2起泡通过氨基丙基封端的聚二甲基硅氧烷(DMS-A11,来自Gelest,Philadelphia PA),以显示样品吸收CO2的速度。更具体地,将14g DMS-A11样品加入到进行搅拌的20mL玻璃反应器中。穿过反应器建立50mL/min He流动,并将反应器/样品加热到约80℃的温度以将样品脱气。然后,将反应器/样品冷却至约60℃,并且停止He流动。将5%CO2、5%N2和90%He的气流以50mL/min鼓泡通过所述样品,并且采用质谱来分析来自反应器的产物。28分钟后,将该同一气流切换为使其绕过反应器并通过质谱来监控以提供基线。该实验的结果示于图3中。
如图中所示,当最初用质谱仪检测气体混合物时,N2信号强度迅速增加,然后变得稳定。相反地,CO2信号最初极其微弱,并且强度缓慢地增加。尽管CO2和N2是以同样浓度供给,但CO2信号却小于N2信号的10%,表明大部分CO2被吸收。28分钟后,将气体混合物设置为绕过反应器直接流到质谱仪。在该点,N2信号保持不变,这表明N2不被氨基硅酮吸收。相反地,CO2信号突然增加到与N2信号强度相匹配,这是因为CO2不再被吸收。在该实验的条件下,超过90%的CO2被吸收,表明在氨基硅酮中CO2的吸收并不是不合理的缓慢。
虽然这里仅说明和描述了本发明的某些特征,但是本领域技术人员可以想到许多改进和变化方式。因此,应该理解所附权利要求意在覆盖落在本发明真实精神范围内的所有这些改进和变化。

Claims (10)

1.包含液态非水低聚材料的二氧化碳吸收剂,所述液态非水低聚材料被一种或多种与CO2 可逆地反应和/或对CO2具有高亲和性的官能团官能化; 其中,材料低聚链同时包含硅酮和聚醚嵌段,其中,所述一种或多种官能团包括一种或多种胺。
2.权利要求1所述的吸收剂,其中,所述官能化的低聚材料任选包含抗氧化剂。
3.权利要求1所述的吸收剂,其中,所述一种或多种官能团包括一种或多种多胺或它们的组合。
4.权利要求3所述的吸收剂,其中,所述多胺包括二胺和三胺。
5.减少工艺物流中二氧化碳的量的方法,所述方法包括使所述物流与二氧化碳吸收剂接触,该二氧化碳吸收剂包含用一种或多种与CO2 可逆地反应和/或对CO2具有高亲和性的官能团官能化的液态非水低聚材料; 其中,材料低聚链同时包含硅酮和聚醚嵌段,其中,所述一种或多种官能团包括一种或多种胺。
6.权利要求5所述的方法,其中,所述一种或多种官能团包括一种或多种多胺或它们的组合。
7.权利要求6所述的方法,其中,所述多胺包括二胺和三胺。
8.权利要求5所述的方法,其中,所述工艺物流包含排出物流。
9.包含二氧化碳去除单元的发电装置,所述二氧化碳去除单元还含有二氧化碳吸收剂,该二氧化碳吸收剂包含用一种或多种与CO2 可逆地反应和/或对CO2具有高亲和性的官能团官能化的液态非水低聚材料; 其中,材料低聚链同时包含硅酮和聚醚嵌段,其中,所述一种或多种官能团包括一种或多种胺。
10.具有减少的二氧化碳排放的发电方法,所述方法包括燃烧燃料以产生包含二氧化碳的排出气体,和将所述排出气体引导至二氧化碳去除单元,所述二氧化碳去除单元含有二氧化碳吸收剂,该二氧化碳吸收剂包含用一种或多种与CO2 可逆地反应和/或对CO2具有高亲和性的官能团官能化的液态非水低聚材料; 其中,材料低聚链同时包含硅酮和聚醚嵌段,其中,所述一种或多种官能团包括一种或多种胺。
CN200910266381.7A 2008-12-24 2009-12-24 液态的二氧化碳吸收剂及其使用方法 Expired - Fee Related CN101898070B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/343,905 US20100154431A1 (en) 2008-12-24 2008-12-24 Liquid carbon dioxide absorbent and methods of using the same
US12/343905 2008-12-24

Publications (2)

Publication Number Publication Date
CN101898070A CN101898070A (zh) 2010-12-01
CN101898070B true CN101898070B (zh) 2016-08-10

Family

ID=41796576

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910266381.7A Expired - Fee Related CN101898070B (zh) 2008-12-24 2009-12-24 液态的二氧化碳吸收剂及其使用方法

Country Status (4)

Country Link
US (1) US20100154431A1 (zh)
EP (1) EP2201994A3 (zh)
KR (1) KR20100075401A (zh)
CN (1) CN101898070B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011119218A1 (en) * 2010-03-22 2011-09-29 Georgetown University Polysiloxanes with amino functionalities having reversible thickening and adhesion properties and systems and methods for crude oil, petroleum product or chemical spill containment and remediation
US8709367B2 (en) 2010-07-30 2014-04-29 General Electric Company Carbon dioxide capture system and methods of capturing carbon dioxide
EP2613868B1 (en) * 2010-09-09 2019-11-20 ExxonMobil Research and Engineering Company Co2 scrubbing processes with a primary amine absorbent
KR101239380B1 (ko) * 2010-12-15 2013-03-05 한국에너지기술연구원 복수의 아민기를 갖는 아미노산 및 금속 수화물을 포함하는 이산화탄소 포집용 흡수제
US20130052109A1 (en) * 2011-08-25 2013-02-28 General Electric Company Compositions for absorbing carbon dioxide, and related processes and systems
US8945368B2 (en) 2012-01-23 2015-02-03 Battelle Memorial Institute Separation and/or sequestration apparatus and methods
US20130323148A1 (en) 2012-05-31 2013-12-05 Ravikumar Vipperla Integrated co2 phase changing absorbent for co2 separation system
US9427698B2 (en) * 2013-10-11 2016-08-30 General Electric Company Amino-siloxane composition and methods of using the same
EP3083014B1 (en) * 2013-12-20 2017-11-15 Solvay Specialty Polymers Italy S.p.A. Method for removing carbon dioxide from gas mixtures
CN103736382B (zh) * 2013-12-27 2017-01-11 广东电网公司电力科学研究院 一种基于1-丁基-3-甲基咪唑醋酸盐[Bmim][Oac]二氧化碳吸收剂的粘度控制方法
US20160175770A1 (en) * 2014-12-22 2016-06-23 General Electric Company Method and system for carbon dioxide desorption
US10610826B2 (en) 2016-06-30 2020-04-07 Baker Hughes, A Ge Company, Llc Method and system for treatment of a gas stream that contains carbon dioxide
CN113477033B (zh) * 2021-07-20 2023-03-14 金浦新材料股份有限公司 一种可自乳化有机硅脱碳溶剂

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0674936A2 (en) * 1994-03-30 1995-10-04 Dow Corning Corporation A method for using aminofunctional silicon compounds for selective separation of gases
WO2007074494A1 (en) * 2005-12-27 2007-07-05 Saes Getters S.P.A. Gas sorbing composite systems and methods for their manufacturing
CN101124031A (zh) * 2005-02-03 2008-02-13 热能系统有限公司 气体分离和压缩装置
WO2008090168A1 (en) * 2007-01-25 2008-07-31 Shell Internationale Research Maatschappij B.V. Process for reducing carbon dioxide emission in a power plant

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3665678A (en) * 1970-09-14 1972-05-30 Bendix Corp Method of recovering carbon dioxide from a fluid
US4405582A (en) * 1982-01-18 1983-09-20 Exxon Research And Engineering Co. Process for selective removal of H2 S from mixtures containing H22 using diaminoether solutions
US4843127A (en) * 1985-04-19 1989-06-27 Allied-Signal Inc. Reactive elastomeric block co-oligomer and lactam-block copolymers derived therefrom
ES2316817T3 (es) * 2002-07-03 2009-04-16 Fluor Corporation Equipo divisor de flujo mejorado.
EP1590080A2 (en) * 2002-12-18 2005-11-02 University Of Ottawa Amine modified adsorbent, its preparation and use for dry scrubbing of acid gases
US7056482B2 (en) * 2003-06-12 2006-06-06 Cansolv Technologies Inc. Method for recovery of CO2 from gas streams
US20100154639A1 (en) * 2008-12-24 2010-06-24 General Electric Company Liquid carbon dioxide absorbent and methods of using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0674936A2 (en) * 1994-03-30 1995-10-04 Dow Corning Corporation A method for using aminofunctional silicon compounds for selective separation of gases
CN101124031A (zh) * 2005-02-03 2008-02-13 热能系统有限公司 气体分离和压缩装置
WO2007074494A1 (en) * 2005-12-27 2007-07-05 Saes Getters S.P.A. Gas sorbing composite systems and methods for their manufacturing
WO2008090168A1 (en) * 2007-01-25 2008-07-31 Shell Internationale Research Maatschappij B.V. Process for reducing carbon dioxide emission in a power plant

Also Published As

Publication number Publication date
US20100154431A1 (en) 2010-06-24
EP2201994A3 (en) 2012-07-25
CN101898070A (zh) 2010-12-01
KR20100075401A (ko) 2010-07-02
EP2201994A2 (en) 2010-06-30

Similar Documents

Publication Publication Date Title
CN101898070B (zh) 液态的二氧化碳吸收剂及其使用方法
Sujan et al. Direct CO2 capture from air using poly (ethylenimine)-loaded polymer/silica fiber sorbents
AU2010276681B2 (en) Liquid silicon-based carbon dioxide absorbent and methods of using the same
Lee et al. Effect of humidity on the CO2 adsorption of tertiary amine grafted SBA-15
Ramachandran et al. Kinetics of the absorption of CO2 into mixed aqueous loaded solutions of monoethanolamine and methyldiethanolamine
US9440182B2 (en) Liquid carbon dioxide absorbents, methods of using the same, and related systems
Zheng et al. Ethylenediamine-modified SBA-15 as regenerable CO2 sorbent
US20130052109A1 (en) Compositions for absorbing carbon dioxide, and related processes and systems
Chaikittisilp et al. Poly (L‐lysine) Brush–Mesoporous Silica Hybrid Material as a Biomolecule‐Based Adsorbent for CO2 Capture from Simulated Flue Gas and Air
Barzagli et al. Novel non-aqueous amine solvents for biogas upgrading
Perry et al. CO2 capture using solutions of alkanolamines and aminosilicones
Kim et al. CO2 absorption characteristics in aqueous K2CO3/piperazine solution by NMR spectroscopy
JP2017104776A (ja) 二酸化炭素吸収液および二酸化炭素分離回収方法
US10610826B2 (en) Method and system for treatment of a gas stream that contains carbon dioxide
Sadeghpour et al. Modification of polyethylene glycol with choline chloride and evaluation of the CO2 absorption capacity of their aqueous solutions
Wang et al. Excess properties, computational chemistry, and spectral analysis of [diethanolamine+ alcohols (ethanol, n-propanol, or n-butanol)] ion-like liquids
Kim et al. NMR study of carbon dioxide absorption in aqueous potassium carbonate and homopiperazine blend
US20160175770A1 (en) Method and system for carbon dioxide desorption
US9643123B2 (en) High performance hydrophobic solvent, carbon dioxide capture
CN105828913B (zh) 用于从气体混合物中去除二氧化碳的方法
US20170165608A1 (en) System and methods for co2 separation
Perry Aminosilicone systems for post-combustion CO2 capture
US11612854B2 (en) Non-aqueous solvent CO2 capture in rotating packed bed
Westendorf et al. System and methods for CO 2 separation
US20190358585A1 (en) Di-substituted siloxane solvents for gas capture

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20191227

Address after: Pennsylvania, USA

Patentee after: Air Products and Chemicals, Inc.

Address before: New York State, USA

Patentee before: General Electric Co.

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160810