CN101895954B - Opportunistic network routing method based on incremental transmission of packet index - Google Patents
Opportunistic network routing method based on incremental transmission of packet index Download PDFInfo
- Publication number
- CN101895954B CN101895954B CN2010102606253A CN201010260625A CN101895954B CN 101895954 B CN101895954 B CN 101895954B CN 2010102606253 A CN2010102606253 A CN 2010102606253A CN 201010260625 A CN201010260625 A CN 201010260625A CN 101895954 B CN101895954 B CN 101895954B
- Authority
- CN
- China
- Prior art keywords
- node
- data packet
- message
- sending
- packet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 41
- 230000005540 biological transmission Effects 0.000 title claims abstract description 31
- 230000000737 periodic effect Effects 0.000 claims abstract description 10
- 238000012545 processing Methods 0.000 claims abstract description 8
- 230000008447 perception Effects 0.000 abstract description 14
- 230000008569 process Effects 0.000 abstract description 13
- 230000007246 mechanism Effects 0.000 description 26
- 208000015181 infectious disease Diseases 0.000 description 20
- 238000004891 communication Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 230000033001 locomotion Effects 0.000 description 6
- 230000006855 networking Effects 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 230000003044 adaptive effect Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
Images
Landscapes
- Data Exchanges In Wide-Area Networks (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明涉及一种基于分组索引增量传送的机会网络路由方法,包括节点未相遇和节点相遇两个阶段内的七个步骤,其中:节点未相遇阶段包含一个步骤:Hello消息周期性广播;节点相遇阶段包含六个步骤:节点相遇感知、目的节点为对方节点的数据分组发送、SV消息发送、Request消息发送、数据分组发送与处理和Hello消息按需广播。本发明在节点相遇期间的数据分组索引信息发送过程中,只发送分组索引的增量信息,从而降低了资源的消耗;既能降低数据分组的端到端时延,又能减小分组丢失风险;不需要专门的控制分组便能实现已达目的节点数据分组信息的发布,避免了全局广播和周期性发送控制分组的冗余开销;同时,通过删除已到达目的节点的数据分组,降低了存储开销。
The present invention relates to an opportunistic network routing method based on packet index incremental transmission, including seven steps in the two stages of node not meeting and node meeting, wherein: the node not meeting stage includes a step: periodic broadcast of Hello message; node The encounter phase includes six steps: node encounter perception, data packet sending with the destination node as the opposite node, SV message sending, Request message sending, data packet sending and processing, and Hello message broadcasting on demand. In the process of sending the data packet index information during the node encounter, the present invention only sends the incremental information of the packet index, thereby reducing resource consumption; it can not only reduce the end-to-end delay of the data packet, but also reduce the risk of packet loss ; No need for special control packets to realize the release of data packet information that has reached the destination node, avoiding the redundant overhead of global broadcasting and periodic sending of control packets; at the same time, by deleting the data packets that have reached the destination node, reducing storage overhead.
Description
技术领域 technical field
本发明属于使用机会网络技术的领域,特别涉及采用了基于感染(epidemic)机制的路由技术、且为网络中每个节点分配了独立标识的机会网络。 The present invention belongs to the field of using opportunistic network technology, and in particular relates to an opportunistic network that adopts a routing technology based on an epidemic mechanism and assigns an independent identifier to each node in the network.
背景技术 Background technique
机会网络是一种不需要源节点和目的节点之间存在完整路径、利用节点移动带来的相遇机会实现通信的、时延和断裂可容忍的自组织网络;它能够在无线链路断开和网络分裂的情况下完成数据传送任务,既是一种具体的组网形式,也是一种网络通信新技术,被视为移动Ad Hoc网络发展的重要方向,对未来泛在网络(Ubiquitous Networks)的实现和发展具有重要意义。 An opportunistic network is a self-organizing network that does not require a complete path between the source node and the destination node, and utilizes the encounter opportunities brought about by node movement to achieve communication, delay and fracture tolerance; it can Completing data transmission tasks in the case of network splitting is not only a specific form of networking, but also a new network communication technology. It is regarded as an important direction for the development of mobile Ad Hoc networks, and it is the realization of future ubiquitous networks (Ubiquitous Networks). and development are important.
路由技术是机会网络体系架构中具有挑战性的重要组成部分。到目前为止,人们已经提出了多种以机会网络为背景条件的路由方法,这些方法可以分为基于冗余、基于效用、冗余效用混合和基于主动运动四种类型。作为基于冗余的路由方法的一个子类,基于感染机制的路由方法近年来引起了广泛关注并得到越来越深入的研究和应用。感染机制的主要思路是利用节点在运动中相遇的机会逐跳地传送数据分组,其基本步骤如下: Routing technology is a challenging and important part of opportunistic network architecture. So far, people have proposed a variety of routing methods with opportunistic network as the background condition, and these methods can be divided into four types: redundancy-based, utility-based, redundant-utility hybrid and active movement-based. As a subclass of redundancy-based routing methods, infection mechanism-based routing methods have attracted widespread attention in recent years and have been more and more deeply researched and applied. The main idea of the infection mechanism is to use the opportunity of nodes meeting in motion to transmit data packets hop by hop. The basic steps are as follows:
(1)当网络中的节点A与节点B相遇(“相遇”指相互进入对方的通信范围)时,A使用SV(Summary Vector)消息(“消息”指作为独立完整的信息单元在机会网络中传递的控制分组或数据分组,SV消息用于装载数据分组的索引信息)向B发送自己存有的数据分组的索引信息(“分组的索引信息”指能够唯一表示一个分组的标志性信息); (1) When node A and node B in the network meet ("encounter" refers to entering the communication range of each other), A uses SV (Summary Vector) message ("message" refers to an independent and complete information unit in the opportunistic network) The transmitted control packet or data packet, the SV message is used to load the index information of the data packet) to send B the index information of the data packet stored by itself ("the index information of the packet" refers to the symbolic information that can uniquely represent a packet);
(2)B收到SV消息后将其中的数据分组索引信息与自己所存数据分组的索引信息进行比对,确定出自己尚未存有的数据分组的索引信息; (2) After receiving the SV message, B compares the data packet index information in it with the index information of its stored data packets, and determines the index information of the data packets that it has not yet stored;
(3)B将尚未存有的数据分组的索引信息装入Request消息,并将该消息发送给A,向A请求发送自己没有的数据分组; (3) B loads the index information of the unexisted data packets into the Request message, sends the message to A, and requests A to send the data packets that it does not have;
(4)A收到B发来的Request消息后,根据该消息中的分组索引信息找到自己存有而B没有的数据分组,然后发送给B。 (4) After receiving the Request message from B, A finds the data packet that B has but does not have according to the packet index information in the message, and then sends it to B.
使用感染机制的机会网络节点需要采用“存储-携带-转发”的方式处理数据分组,在未与其它节点相遇时,不会删除数据分组,而是携带着它们一起运动。 Opportunistic network nodes using the infection mechanism need to use the "store-carry-forward" method to process data packets. When they do not meet other nodes, they will not delete the data packets, but carry them to move together.
感染机制的基本思想最初由Demers等人提出(参加文献:A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D. Swinehart, D. Terry. Epidemic Algorithms for Replicated Database Maintenance[C]. Proceedings of the Sixth Symposium on Principles of Distributed Computing, 1987:1-12),用于网络中不同节点的数据库信息的管理和维护。其后,Vahdat和Becker改进了原有的感染机制使之适合机会网络拓扑间断连接的特点,以此为基础提出了感染路由(Epidemic Routing)协议(参见文献:A. Vahdat, D. Becker. Epidemic Routing for partially connected ad hoc networks[R]. Technical Report CS-200006, Duke University, Durham, 2000),感染路由协议采用“存储-携带-转发”的方式处理分组,以IMEP(Internet MANET Encapsulation Protocol)协议(参见文献:M. S. Corson, S. Papademetriou, P. Papadopoulos, V. Park, A. Qayyum. An Internet MANET EncapsulationProtocol(IMEP)pecific- The basic idea of the infection mechanism was originally proposed by Demers et al. . Epidemic Algorithms for Replicated Database Maintenance[C]. Proceedings of the Sixth Symposium on Principles of Distributed Computing, 1987:1-12), used for the management and maintenance of database information of different nodes in the network. Later, Vahdat and Becker improved the original infection mechanism to make it suitable for the discontinuous connection characteristics of opportunistic network topology, and based on this, they proposed the Epidemic Routing protocol (see literature: A. Vahdat, D. Becker. Epidemic Routing for partially connected ad hoc networks[R]. Technical Report CS-200006, Duke University, Durham, 2000), the infected routing protocol uses the "store-carry-forward" method to process packets, and uses the IMEP (Internet MANET Encapsulation Protocol) protocol (See literature: M. S. Corson, S. Papademetriou, P. Papadopoulos, V. Park, A. Qayyum. An Internet MANET Encapsulation Protocol (IMEP) specific-
ation[R].(draft-ietf-manet-imep-spec-01.txt,1999)作为相遇节点感知机制,在节点相遇时通过分组索引信息的发送和及数据分组的转发实现数据在网络中的逐跳传递,能够不需要先验拓扑信息的帮助而在机会网络中可靠地传输数据,且分组的端到端时延较小。以感染路由协议为基础,Ramanathan等人提出了划分优先级的感染(Prioritized Epidemic)路由协议(参见文献:R. Ramanathan, R. Hansen, P. Basu, R. Rosales-Hain, R. Krishnan. Prioritized Epidemic Routing for Opportunistic Networks[C]. Proceedings of the 1st ACM International MobiSys Workshop on Mobile opportunistic Networking, San Juan, 2007:62-66),利用计算出的路径开销对节点存储的数据消息划分优先级,并根据优先级对数据消息采取不同的删除和传送策略,通过抛弃相对无用的消息降低网络负载。Matsuda和Takine设计了(p,q)感染((p,q)-Epidemic)路由协议(参见文献:T. Matsuda, T. Takine. (p,q)-Epidemic Routing for Sparsely Populated Mobile Ad Hoc Networks[J]. IEEE Journal on Selected Areas in Communications, Vol. 26, No. 5, 2008:783-793),根据网络状态综合使用2-Hop转发和传统的感染路由算法,并采用被一种被称为“VACCINE”的机制(参见文献:Z. Haas, T. Small. A New Networking Model for Biological Applications of Ad Hoc Sensor Networks[J]. IEEE/ACM Trans. Networking, 2006, 14(1):27-40)通过广播控制分组来消除节点缓存中已到达目的节点的分组,减少存储开销。Wang Xin等人提出了ARER(Adaptive Randomized Epidemic Routing)—一种自适应随机化的感染路由协议(参见文献:Wang Xin, Shu Yan-Tai, Jin Zhi-Gang, Pan Qing-Fen, Lee Bu-Sung. Adaptive Randomized Epidemic Routing for Disruption Tolerant Networks[C]. Proceedings of the 5th International Conference on Mobile Ad-hoc and Sensor Networks, 2009:424-429),该协议使用表达式W ij =C 1 · R i (T s )+C2 · p ij +C3 · TTL ij 计算数据分组i经历了j跳传递后的权值W ij (其中,R i (T s )为复制密度,p ij 为转发概率,TTL ij 为生存时间参数,C 1 、C2、C3是预设常数),并根据权值W ij 在转发和删除过程中对数据分组排序以提高时延等性能,同时在Hello消息中携带已到达目的节点的分组的信息供相遇节点清理缓存,但加长周期性的Hello消息会带来额外的开销。Li Feng和Wu Jie将社团结构探测功能加入传统的感染路由协议(参见文献:Li Feng, Wu Jie. LocalCom: A Community-based Epidemic Forwarding Scheme in Disruption-tolerant Networks[C]. Proceedings of the 6th Annual IEEE Communications Society Conference on sensor, Mesh and Ad Hoc Communications and Networks, 2009:1-9),用本地信息检测社团结构并加以利用从而提高数据分组转发效率,然而社团结构的差异会对路由性能造成影响。 ation[R].(draft-ietf-manet-imep-spec-01.txt,1999) As a node-meeting perception mechanism, when the nodes meet, the transmission of group index information and the forwarding of data packets are used to realize the data transfer in the network Hop-by-hop transfer can reliably transmit data in opportunistic networks without the help of prior topology information, and the end-to-end delay of packets is small. Based on the infection routing protocol, Ramanathan et al. proposed a prioritized infection (Prioritized Epidemic) routing protocol (see literature: R. Ramanathan, R. Hansen, P. Basu, R. Rosales-Hain, R. Krishnan. Prioritized Epidemic Routing for Opportunistic Networks[C]. Proceedings of the 1st ACM International MobiSys Workshop on Mobile opportunistic Networking, San Juan, 2007:62-66), using the calculated path cost to prioritize the data messages stored by the nodes, and according to Priority adopts different deletion and transmission strategies for data messages, and reduces network load by discarding relatively useless messages. Matsuda and Takine designed (p,q) infected ((p,q)-Epidemic) routing protocol (see literature: T. Matsuda, T. Takine. (p,q)-Epidemic Routing for Sparsely Populated Mobile Ad Hoc Networks[ J]. IEEE Journal on Selected Areas in Communications, Vol. 26, No. 5, 2008:783-793), using 2-Hop forwarding and traditional infection routing algorithm according to the network status, and adopting a method called The mechanism of "VACCINE" (see literature: Z. Haas, T. Small. A New Networking Model for Biological Applications of Ad Hoc Sensor Networks[J]. IEEE/ACM Trans. Networking, 2006, 14(1): 27-40 ) Eliminate packets that have reached the destination node in the node cache by broadcasting control packets to reduce storage overhead. Wang Xin et al proposed ARER (Adaptive Randomized Epidemic Routing) - an adaptive randomized infection routing protocol (see literature: Wang Xin, Shu Yan-Tai, Jin Zhi-Gang, Pan Qing-Fen, Lee Bu-Sung . Adaptive Randomized Epidemic Routing for Disruption Tolerant Networks[C]. Proceedings of the 5th International Conference on Mobile Ad-hoc and Sensor Networks, 2009:424-429), the protocol uses the expression W ij = C 1 · R i ( T s )+C 2 p ij +C 3 TTL ij calculates the weight value W ij of data packet i after j -hop transfer (wherein, R i ( T s ) is the replication density, p ij is the forwarding probability, TTL ij is the survival time parameter, C 1 , C 2 , and C 3 are preset constants), and according to the weight W ij , the data packets are sorted in the process of forwarding and deletion to improve performance such as delay, and at the same time, the Hello message carries the arrived The grouped information of the destination node can be used by the meeting node to clean up the cache, but increasing the periodical Hello message will bring additional overhead. Li Feng and Wu Jie added the community structure detection function to the traditional infection routing protocol (see literature: Li Feng, Wu Jie. LocalCom: A Community-based Epidemic Forwarding Scheme in Disruption-tolerant Networks[C]. Proceedings of the 6th Annual IEEE Communications Society Conference on sensor, Mesh and Ad Hoc Communications and Networks, 2009:1-9), using local information to detect community structure and use it to improve data packet forwarding efficiency, but the difference in community structure will affect routing performance.
从上述文献内容和研究现状来看,自从感染路由协议提出以后,人们对其加以改进和拓展的研究一直在进行,在数据分组的转发和管理、与其它转发方式的结合以及网络应用场景的扩充等方面已取得一定进展,但在相遇节点感知、控制分组发送、数据分组转发和节点缓存管理等环节仍然存在冗余开销,而且此问题到目前为止仍未得到有效的解决,而它对采用感染机制的路由方法的性能具有重要影响,因此有进一步研究改进的需要,本发明将针对这个问题提出一个创新性的解决方法。 Judging from the content of the above literature and the current research status, since the infection routing protocol was proposed, research on its improvement and expansion has been going on, in the forwarding and management of data packets, the combination with other forwarding methods, and the expansion of network application scenarios. Some progress has been made in such aspects, but there are still redundant overheads in the links of encountering node perception, control packet sending, data packet forwarding, and node cache management, and this problem has not been effectively solved so far, and it has a great impact on the adoption of infection The performance of the routing method of the mechanism has an important influence, so there is a need for further research and improvement, and the present invention will propose an innovative solution to this problem.
归纳起来,现有基于感染机制的机会网络路由方法存在以下问题: To sum up, the existing infection mechanism-based opportunistic network routing methods have the following problems:
(1)当两个节点相遇时,它们采用IMEP协议实现相遇节点感知功能,使用了Hello、Echo等控制消息和两次握手等机制,带来一定的冗余开销; (1) When two nodes meet, they use the IMEP protocol to realize the meeting node perception function, using control messages such as Hello and Echo and two handshake mechanisms, which bring a certain amount of redundant overhead;
(2)一个节点向相遇节点发送SV消息时,节点缓存分组的索引信息被不加区别地装入SV消息中,其中可能包含已经告诉过对方的信息,因此导致的信息重复收发会带来冗余开销; (2) When a node sends an SV message to the meeting node, the index information of the node cache group is indiscriminately loaded into the SV message, which may contain information that has been told to the other party, so the repeated sending and receiving of information will bring redundancy. extra expenses;
(3)节点相遇时,感染机制的操作顺序是发送SV消息-发送Request消息-发送对方请求的数据分组,由于数据分组的发送被安排在最后一个环节,可能会带来一定的额外延时;此外,节点在运动过程中相遇持续时间有限,也会造成丢失数据分组的潜在风险; (3) When nodes meet, the operation sequence of the infection mechanism is to send SV message-send Request message-send the data packet requested by the other party. Since the sending of the data packet is arranged in the last link, it may bring some additional delay; In addition, nodes meet during movement for a limited duration, which also poses a potential risk of losing data packets;
(4)在发布已到达目的节点分组的信息时,现有路由方法采用的是广播专门的控制分组或者使用已有的周期性控制分组(如Hello消息)捎带信息的方法,造成了一定的控制开销冗余。 (4) When publishing the information of the group that has arrived at the destination node, the existing routing method adopts the method of broadcasting a special control group or using the existing periodic control group (such as Hello message) to piggyback information, resulting in a certain degree of control Overhead redundancy.
针对上述4个问题,本专利申请提出节点相遇后只发送分组索引信息的增量、节点相遇后的操作中优先发送数据分组、使用Request消息按需携带已到达目的节点分组的信息以及用hello消息进行相遇节点感知等4种新机制,减少在节点和无线信道资源方面的控制开销,缩短数据分组的端到端传送时延,降低节点的存储开销。 In view of the above four problems, this patent application proposes to send only the increment of the group index information after the nodes meet, to send data packets first in the operation after the nodes meet, to use the Request message to carry the information of the destination node group as needed, and to use the hello message Four new mechanisms, such as the perception of nodes encountered, reduce the control overhead of nodes and wireless channel resources, shorten the end-to-end transmission delay of data packets, and reduce the storage overhead of nodes.
发明内容 Contents of the invention
本发明的目的是提出一种基于分组索引增量传送的机会网络路由方法,在该路由方法中采用分组索引增量传送、数据分组优先发送、在Request消息中按需携带已到达目的节点分组的信息和用hello消息进行相遇节点感知等4种新机制,解决现有基于感染机制的路由方法在相遇节点感知和节点相遇后的信息传送过程中存在冗余开销的问题,降低分组端到端时延,并清理节点的数据分组缓存,减小节点存储开销。 The object of the present invention is to propose an opportunistic network routing method based on packet index incremental transmission, in which the packet index incremental transmission is adopted, data packets are sent preferentially, and the information of the destination node packet is carried in the Request message as needed 4 new mechanisms, such as information and hello messages for meeting node perception, solve the problem of redundant overhead in the existing routing method based on infection mechanism in the process of meeting node perception and information transmission after node meeting, and reduce the packet end-to-end time Delay, and clear the data packet cache of the node to reduce the storage cost of the node.
为实现上述目的而采用的技术方案是这样的,即一种基于分组索引增量传送的机会网络路由方法,包括节点未相遇和节点相遇两个阶段内的七个步骤,其中:节点未相遇阶段包含一个步骤:Hello消息周期性广播;节点相遇阶段包含六个步骤:节点相遇感知、目的节点为对方节点的数据分组发送、SV消息发送、Request消息发送、数据分组发送与处理和Hello消息按需广播;七个步骤如下: The technical solution adopted to achieve the above purpose is as follows, that is, an opportunistic network routing method based on group index incremental transmission, including seven steps in the two stages of node not meeting and node meeting, in which: the node not meeting stage Contains one step: periodic broadcast of Hello messages; the node encounter phase includes six steps: node encounter awareness, data packet sending with the destination node as the opposite node, SV message sending, Request message sending, data packet sending and processing, and Hello message on demand broadcast; the seven steps are as follows:
1)、所述Hello消息周期性广播具体为: 1), the periodic broadcast of the Hello message is specifically:
a、节点的网络层产生1个Hello消息,并将自己网络层的网络地址装入Hello消息; a. The network layer of the node generates a Hello message, and loads the network address of its own network layer into the Hello message;
b、根据设定的广播周期,节点在1跳的范围内重复广播装有自己网络层的网络地址的Hello消息; b. According to the set broadcast period, the node repeatedly broadcasts the Hello message with the network address of its own network layer within the range of 1 hop;
2)、所述节点相遇感知包括如下情况之一: 2). The node encounter awareness includes one of the following situations:
a、一个节点如果收到另一个节点广播的Hello消息,则确定它与该节点相遇; a. If a node receives the Hello message broadcast by another node, it determines that it has met the node;
b、一个节点如果收到另一个节点发来的目的节点为自己的数据分组,则确定它与该节点相遇;在这种情况下,接收节点的MAC层将发送节点的MAC地址跨层共享给自己的网络层;接收节点的网络层则根据MAC地址—网络地址对应关系搜索出发送节点的网络地址并存储; b. If a node receives a data packet from another node whose destination node is its own, it determines that it meets the node; in this case, the MAC layer of the receiving node will share the MAC address of the sending node across layers to Its own network layer; the network layer of the receiving node searches out and stores the network address of the sending node according to the MAC address-network address correspondence;
c、一个节点如果收到另一个节点发给自己的SV(Summary Vector)消息,则它确定与该节点相遇; c. If a node receives the SV (Summary Vector) message sent to itself by another node, it determines to meet the node;
3)、所述目的节点为对方节点的数据分组发送具体为: 3) The sending of the data packet in which the destination node is the opposite node is specifically:
a、一个节点确定遇到另一个节点后,它立即在分组缓存中搜索目的节点为对方的数据分组; a. After a node determines that it has encountered another node, it immediately searches the data packet whose destination node is the other party in the packet cache;
b、节点将搜索到的目的节点为对方的数据分组逐个地发送给对方直到发送完毕,然后进入下一步骤;如果没有搜索到目的节点为对方的数据分组,则直接进入下一步骤; b. The node sends the searched data packets whose destination node is the other party to the other party one by one until the sending is completed, and then enters the next step; if no data packet is found whose destination node is the other party, then directly enters the next step;
4)、所述SV消息发送具体为: 4) The sending of the SV message is specifically:
a、一个节点遇到另一个节点并完成目的节点为对方的数据分组发送步骤后,它根据自己的数据分组缓存中的位置标志,判断自上次与该节点相遇后是否存入了新的数据分组; a. After a node encounters another node and completes the destination node’s data packet sending step for the other node, it judges whether new data has been stored since the last encounter with the node according to the location flag in its own data packet cache group;
b、如果存入了新的数据分组,节点则在网络层产生一个SV消息并将所述新存入的数据分组的索引信息装入SV消息,发送给对方节点;同时,记录下最新存入的数据分组的位置,作为下次判断的标志;(数据分组的位置可以用该数据分组的索引信息来间接表示,也可以用该分组占用的缓存空间的地址来直接表示。) b. If a new data packet is stored, the node generates an SV message at the network layer and loads the index information of the newly stored data packet into the SV message and sends it to the other node; at the same time, record the latest stored The location of the data packet is used as a sign for the next judgment; (the location of the data packet can be indirectly represented by the index information of the data packet, or directly represented by the address of the cache space occupied by the packet.)
c、如果没有存入新的数据分组,则不发送SV消息; c. If no new data packet is stored, no SV message is sent;
5)、所述Request发送的具体步骤为: 5), the specific steps of sending the Request are:
a、一个节点收到SV消息后,通过对数据分组的索引信息的比对,搜索出对方节点有而自己没有的、或/和对方节点有但已到达目的节点的数据分组的索引信息; a. After a node receives the SV message, by comparing the index information of the data packet, it searches out the index information of the data packet that the other node has but does not have, or/and the other node has but has reached the destination node;
b、节点在网络层产生一个Request消息,并将搜索出的上述数据分组的索引信息装入Request消息,发送给对方节点;如果没有搜索到上述数据分组的索引信息,则不产生和发送Request消息; b. The node generates a Request message at the network layer, and loads the searched index information of the above-mentioned data packet into the Request message and sends it to the other node; if the index information of the above-mentioned data packet is not found, the Request message is not generated and sent ;
6)、所述数据分组发送与处理具体为: 6), the sending and processing of the data packets are as follows:
a、一个节点收到Request消息后,根据其中的数据分组索引信息,将对方请求的数据分组发给对方;如果对方节点没有请求发送数据分组,则不发送任何数据分组; a. After receiving the Request message, a node sends the data packet requested by the other party to the other party according to the data packet index information in it; if the other node does not request to send the data packet, no data packet is sent;
b、节点根据Request消息中提供的数据分组的索引信息,将已经到达目的节点的数据分组从分组缓存中删除,但保留该被删除的数据分组的索引信息,用于判断以后遇到的节点是否存有已到达目的节点的数据分组; b. According to the index information of the data packet provided in the Request message, the node deletes the data packet that has reached the destination node from the packet cache, but retains the index information of the deleted data packet, which is used to judge whether the node encountered in the future There are data packets that have reached the destination node;
7)、所述Hello消息按需广播具体为: 7) The on-demand broadcast of the Hello message is as follows:
a、一个节点通过步骤2)感知到与另一个节点相遇,并依次执行上述步骤3)、4)、5)、6)之后,它将进行判断:是否发送了目的节点为对方的数据分组、SV消息、或者Request消息; a. After a node perceives that it has encountered another node through step 2), and executes the above steps 3), 4), 5), and 6) in sequence, it will judge whether it has sent a data packet whose destination node is the other party, SV message, or Request message;
b、如果节点在执行完步骤2)至6)之后没有发送任何的数据分组或者控制消息(包括SV消息和Request消息)给对方节点,它则在1跳的范围内广播一个装有自己网络地址的Hello消息,向对方节点报告自己的出现。 b. If the node does not send any data packets or control messages (including SV messages and Request messages) to the other node after performing steps 2) to 6), it will broadcast a message containing its own network address within 1 hop. Hello message to the peer node to report its own appearance.
本发明在节点相遇阶段操作的实质是在节点相遇期间,进行SV消息、Request消息和数据分组的发送。在SV消息和数据分组的发送过程中具有以下3个特点: The essence of the operation of the present invention in the node meeting stage is to send SV messages, Request messages and data packets during the node meeting period. There are the following three characteristics in the process of sending SV messages and data packets:
(1) SV消息只携带数据分组索引信息的增量,即只进行增量发送; (1) The SV message only carries the increment of the data packet index information, that is, only the increment is sent;
(2) 目的节点为对方节点的数据分组在节点相遇后首先发送给对方节点; (2) The data packet whose destination node is the other node is first sent to the other node after the nodes meet;
(3) 节点发送的Request消息中含有已经到达目的节点但仍存储在对方节点缓存区的数据分组的索引信息。 (3) The Request message sent by the node contains the index information of the data packets that have arrived at the destination node but are still stored in the cache area of the other node.
本发明提出的基于分组索引增量传送的机会网络路由方法的主要创新之处在于设计了分组索引增量传送、数据分组优先发送、在Request消息中按需携带已到达目的节点分组的信息和用Hello消息进行相遇节点感知等4种新机制,这些新机制的原理和操作具体如下: The main innovation of the opportunistic network routing method based on packet index incremental transmission proposed by the present invention lies in the design of packet index incremental transmission, priority transmission of data packets, carrying information and user information of packets that have reached the destination node in the Request message as needed Hello message implements 4 new mechanisms such as meeting node perception. The principles and operations of these new mechanisms are as follows:
(1) 分组索引增量传送 (1) Incremental transmission of group index
采用感染机制的机会网络节点接收的每一个SV消息中,只有和上次收到的发自同一节点的SV消息的内容之差,即分组索引的增量,才是实质上有用的信息。根据这个原理,在本发明中,一个节点向另一个节点发送SV消息时记录下当前最新存储的数据分组的位置;如果下一次遇到同一个节点,则在新的SV消息中只装载自上次发送SV消息之后新存入分组的索引信息;这样,便可以只传送分组索引的增量,从而缩短SV消息的长度和数量(当没有新存入的数据分组时便不发送SV消息),并减少对方节点进行比较运算的计算量,降低无线信道和节点资源的开销; In each SV message received by an opportunistic network node using the infection mechanism, only the difference between the content of the SV message received from the same node last time, that is, the increment of the group index, is essentially useful information. According to this principle, in the present invention, when a node sends an SV message to another node, record the position of the data grouping of the latest storage at present; After the SV message is sent for the first time, the index information of the new group is stored; in this way, only the increment of the group index can be transmitted, thereby shortening the length and quantity of the SV message (the SV message will not be sent when there is no new data group stored), And reduce the calculation amount of the other node's comparison operation, and reduce the overhead of wireless channels and node resources;
(2) 数据分组优先发送 (2) Data packets are sent first
由于节点的运动,机会网络中节点相遇的持续时间是有限的,这给数据分组发送过程的完成带来了潜在的负面影响。为了在有限的相遇时间内传送尽可能多的数据分组,这里提出了“数据分组优先发送”的机制,即:当一个节点与其它节点相遇时,会立即将目的节点为对方节点的数据分组发给对方,然后才发送SV消息,进行后续信息传送过程。这样能够尽可能地利用有限的节点相遇时间传递数据分组,既能降低分组端到端传输时延,又有助于降低数据分组因节点相遇时间不够而无法发送的风险,提高分组传送成功率; Due to the movement of nodes, the duration of node encounters in opportunistic networks is limited, which has a potential negative impact on the completion of the data packet sending process. In order to transmit as many data packets as possible within a limited meeting time, a mechanism of "data packet priority transmission" is proposed here, that is, when a node meets other nodes, it will immediately send the data packets whose destination node is the other node. to the other party, and then send the SV message to carry out the subsequent information transmission process. In this way, the limited node meeting time can be used to transmit data packets as much as possible, which can not only reduce the end-to-end transmission delay of the packet, but also help reduce the risk that the data packet cannot be sent due to insufficient node meeting time, and improve the success rate of packet transmission;
(3) 在Request消息中按需携带已到达目的节点分组的索引信息 (3) Carry the index information of the group that has reached the destination node in the Request message as needed
从数据分组缓存中删除已经到达目的节点的分组是节点管理缓存和减少存储开销的重要途径,但在删除数据分组时必须先确定它是否已经到达了目的节点。目前在发布已达目的节点分组的信息方面,已有广播和Hello消息捎带等方法,但广播的全局性和Hello消息的周期性会使控制开销增加。 Deleting packets that have arrived at the destination node from the data packet cache is an important way for nodes to manage the cache and reduce storage overhead, but before deleting a data packet, it must first be determined whether it has reached the destination node. At present, there are methods such as broadcasting and Hello message piggybacking in publishing the information of the node group that has reached the destination, but the globality of broadcasting and the periodicity of Hello messages will increase the control overhead.
为了减少发布已到达目的节点数据分组信息产生的控制开销,在本发明中,提出了一种使用Request消息按需携带已到达目的节点数据分组索引信息的机制来发布已到达目的节点的数据分组信息,从而不需要专门的控制分组,也避免了全局广播和周期性发送的问题。该机制的具体实现方式如下:一个节点成功收到相遇节点发来的目的节点为自己的数据分组后,将在其后的Request消息中将这些分组的索引信息发给对方,对方收到索引信息后删除这些分组,但保留它们的索引信息用于判断以后遇到的节点是否存有已到达目的节点的数据分组;一个节点收到另一节点发送的SV消息,会进行分组索引信息比对,查找出已到达目的节点的数据分组;如果发现对方节点仍存有已到达目的节点的分组,它会在Request消息中告知对方。这样既能删除已到达目的节点的数据分组,节省节点的存储空间;又能减少控制信息的无谓传递,降低控制开销; In order to reduce the control overhead generated by publishing the data packet information that has arrived at the destination node, in the present invention, a mechanism that uses the Request message to carry the index information of the data packet that has reached the destination node on demand is proposed to publish the data packet information that has arrived at the destination node , so that no special control group is needed, and the problems of global broadcast and periodic transmission are also avoided. The specific implementation of this mechanism is as follows: After a node successfully receives the data grouping of the destination node sent by the meeting node, it will send the index information of these groups to the other party in the subsequent Request message, and the other party receives the index information After deleting these groups, but retaining their index information is used to judge whether the nodes encountered later have data packets that have reached the destination node; when a node receives the SV message sent by another node, it will compare the group index information, Find out the data packets that have reached the destination node; if it finds that the other node still has packets that have reached the destination node, it will inform the other party in the Request message. This can not only delete the data packets that have reached the destination node, save the storage space of the node; but also reduce the unnecessary transmission of control information and reduce the control overhead;
(4) 用Hello消息进行相遇节点感知 (4) Use the Hello message to perceive the meeting node
现有基于感染机制的路由方法使用IMEP协议作为默认的相遇节点感知机制,该协议使用了Hello、Echo等控制消息和两次握手等操作,存在一定的冗余开销。我们通过研究发现:实际上,Echo消息在节点相遇感知过程中并不是必需的,一个节点收到另一个节点发送的其它分组,如数据分组,同样能够感知到节点相遇事件的发生。基于这样的原理,在本发明中我们不再使用IMEP协议,而是只用周期性的hello消息进行相遇节点感知,具体感知过程如下:网络运行时,节点周期性地在本地广播Hello消息,设周期为T Hello ;如果一个节点收到另一个节点广播的Hello消息,它便判断遇到了对方,因此启动数据分组和SV消息的发送过程;如果一个节点收到了另一个节点发来的目的节点为自己的数据分组或SV消息,也能判断出遇到了对方,从而启动数据分组和SV消息的发送过程。如果一个节点收到Hello消息但没有数据分组和SV消息要发给对方节点,则广播一个Hello消息向对方节点报告自己的出现。 The existing routing method based on the infection mechanism uses the IMEP protocol as the default encounter node perception mechanism. This protocol uses control messages such as Hello and Echo and operations such as two handshakes, and there is a certain amount of redundant overhead. We found through research that, in fact, the Echo message is not necessary in the process of node encounter perception. A node receives other packets sent by another node, such as data packets, and can also perceive the occurrence of node encounter events. Based on this principle, we no longer use the IMEP protocol in the present invention, but only use periodic hello messages to sense the encounter nodes. The specific sensing process is as follows: when the network is running, the nodes periodically broadcast Hello messages locally. The period is T Hello ; if a node receives the Hello message broadcast by another node, it judges that it has encountered the other party, so it starts the sending process of data packets and SV messages; if a node receives the destination node sent by another node is Its own data packet or SV message can also determine that it has encountered the other party, thereby starting the process of sending the data packet and SV message. If a node receives the Hello message but has no data packet and SV message to send to the other node, it broadcasts a Hello message to report its own appearance to the other node.
在本发明具体应用的过程中,可以按照上文所述2个阶段7个步骤所确定的规律和方法,通过结合硬件条件的软件编程来实现本发明提出的基于分组索引增量传送的机会网络路由方法。 In the process of the specific application of the present invention, the opportunistic network based on packet index incremental transmission proposed by the present invention can be realized through software programming combined with hardware conditions according to the rules and methods determined in the above-mentioned 2 stages and 7 steps routing method.
本发明具有以下有益效果: The present invention has the following beneficial effects:
1. 在节点相遇期间的数据分组索引信息发送过程中,只发送分组索引的增量信息,减少了发送的信息量,从而降低了无线信道带宽和节点资源的消耗; 1. During the transmission of data packet index information during the node encounter, only the incremental information of the packet index is sent, which reduces the amount of information sent, thereby reducing the consumption of wireless channel bandwidth and node resources;
2. 一个节点遇到其它节点后首先发送目的节点为对方的数据分组,既能降低数据分组的端到端时延,又能减小因为相遇时间有限带来的分组丢失风险,有助于提高传送成功率; 2. After a node encounters other nodes, it first sends data packets whose destination node is the other node, which can not only reduce the end-to-end delay of data packets, but also reduce the risk of packet loss due to the limited encounter time, which helps to improve transmission success rate;
3. 按需使用Request消息携带已到达目的节点数据分组的索引信息,不需要专门的控制分组便能实现已达目的节点数据分组信息的发布,也避免了全局广播和周期性发送控制分组的冗余开销;同时,通过删除已到达目的节点的数据分组,减少了分组缓存中数据分组的数量,降低了存储开销; 3. Use the Request message to carry the index information of the data packet that has reached the destination node as needed, and can realize the release of the data packet information that has reached the destination node without special control packets, and also avoid the redundancy of global broadcasting and periodic sending of control packets. At the same time, by deleting the data packets that have reached the destination node, the number of data packets in the packet cache is reduced, and the storage overhead is reduced;
4. 用hello消息进行相遇节点感知,不再使用Echo消息,在保障相遇节点感知功能和效果的前提下,减少了控制分组的种类和数量,降低了控制开销。 4. The hello message is used for encounter node perception instead of the Echo message. On the premise of ensuring the function and effect of encounter node perception, the types and quantities of control groups are reduced, and the control overhead is reduced.
附图说明 Description of drawings
图1为感染机制示意图。 Figure 1 is a schematic diagram of the infection mechanism.
节点A与节点B相遇后,它先将包含有数据分组索引信息的SV消息发送给B;B收到SV消息后通过比对运算得到需要A传送的数据分组的索引信息:Request=SVA+SVB;然后将这些索引信息装入Request消息发送给A;A收到Request消息后将其中的索引信息对应的数据分组发送给B。 After node A meets node B, it first sends the SV message containing the data packet index information to B; B receives the SV message and obtains the index information of the data packet to be transmitted by A through comparison operation: Request=SV A + SV B ; then load these index information into a Request message and send it to A; A sends the data packet corresponding to the index information therein to B after receiving the Request message.
图2为基于分组索引增量传送的机会网络路由方法的步骤示意图。 Fig. 2 is a schematic diagram of the steps of an opportunistic network routing method based on packet index incremental transmission.
基于分组索引增量传送的机会网络路由方法由节点未相遇和节点相遇两个交替出现的阶段内的7个操作步骤组成,这7个步骤是:①Hello消息周期性广播;②节点相遇感知;③目的节点为相遇节点的数据分组发送;④SV消息发送;⑤Request消息发送与处理;⑥数据分组发送;⑦Hello消息按需广播。 The opportunistic network routing method based on group index incremental transmission is composed of 7 operation steps in two alternate stages of node not meeting and node meeting. These 7 steps are: ①Hello message periodic broadcast; The destination node is the data packet sending of the meeting node; ④SV message sending; ⑤Request message sending and processing; ⑥Data packet sending; ⑦Hello message broadcasting on demand.
图3为本发明设计的节点相遇感知的流程图。 FIG. 3 is a flow chart of node encounter perception designed in the present invention.
在本发明中,一个节点可以通过收到广播的Hello消息、收到目的节点为自己的数据分组和收到发给自己的SV消息来感知并确定与其它节点相遇。 In the present invention, a node can perceive and determine that it has encountered other nodes by receiving the broadcast Hello message, receiving the data packet from the destination node for itself, and receiving the SV message sent to itself.
图4为数据分组索引增量信息处理与发送流程图。 Fig. 4 is a flow chart of processing and sending of data packet index increment information.
数据分组索引增量信息处理与发送操作主要包括判断有无新存入数据分组、发送新分组索引信息和在数据分组缓存中记录下最新分组的位置等步骤。 The processing and sending operation of the incremental information of the data packet index mainly includes the steps of judging whether there is a new data packet stored, sending the new packet index information, and recording the position of the latest packet in the data packet cache.
图5为Request消息发送流程图。 Fig. 5 is a flow chart of sending a Request message.
节点将SV消息中装载的数据分组索引信息与自己存储的数据分组索引信息进行比对之后,能够获得需要对方发送和删除的数据分组的索引信息;然后,节点将这些信息分别装入Request消息并发送给对方;如果没有信息,则不发送Request消息。 After the node compares the data packet index information loaded in the SV message with the data packet index information stored by itself, it can obtain the index information of the data packet that needs to be sent and deleted by the other party; then, the node loads these information into the Request message and Send to the other party; if there is no information, the Request message will not be sent.
图6为Hello消息按需广播操作流程图。 FIG. 6 is a flow chart of an on-demand broadcast operation of a Hello message.
Hello消息按需广播的目的是为了及时告知对方节点自己的出现。当收到对方节点广播的Hello消息,但自己又没有目的节点为对方的数据分组或SV消息要发送给对方时,便广播一个Hello消息,让对方节点感知自己的出现,为对方节点后续的数据分组发送提供条件。 The purpose of the on-demand broadcast of the Hello message is to inform the other node of its own appearance in time. When you receive the Hello message broadcast by the other node, but you have no destination node for the other party's data packet or SV message to send to the other party, you will broadcast a Hello message to let the other node perceive your own appearance, and provide subsequent data for the other node. Packet sending provides conditions.
具体实施方式 Detailed ways
本发明适用于采用基于感染机制的路由技术的机会网络领域。一个具体实施的方式为:在节点数不小于3的使用基于感染机制的路由技术的机会网络中,节点处于间歇或长期的运动状态,它们之间有数据需要传送。在数据传送的过程中,可以使用本发明提出的基于分组索引增量传送的机会网络路由方法,通过本发明设计的分组索引增量传送、数据分组优先发送、用Request消息按需携带已达目的节点分组的信息和用Hello消息进行相遇节点感知等机制,在实现数据分组成功传送的同时,减少控制开销,降低数据分组端到端时延,同时减少节点的存储开销。在本发明中Hello消息的广播周期T Hello 的值可以根据具体的网络条件进行设置,按照现有的国际标准文稿RFC3561(Ad hoc On-Demand Distance Vector (AODV) Routing)的内容,T Hello 的缺省值可以设置为1秒。 The invention is applicable to the field of opportunistic networks adopting routing technology based on infection mechanism. A specific implementation method is: in an opportunistic network using infection-based routing technology with no less than 3 nodes, the nodes are in intermittent or long-term motion, and there is data to be transmitted between them. In the process of data transmission, the opportunistic network routing method based on packet index incremental transmission proposed by the present invention can be used, through the incremental transmission of packet index designed by the present invention, priority transmission of data packets, and on-demand carrying of Request messages to achieve the purpose Mechanisms such as node grouping information and meeting node perception using Hello messages reduce control overhead, reduce data packet end-to-end delay, and reduce node storage overhead while achieving successful data packet transmission. In the present invention, the value of the broadcast period T Hello of the Hello message can be set according to specific network conditions. The save value can be set to 1 second.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010102606253A CN101895954B (en) | 2010-08-24 | 2010-08-24 | Opportunistic network routing method based on incremental transmission of packet index |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010102606253A CN101895954B (en) | 2010-08-24 | 2010-08-24 | Opportunistic network routing method based on incremental transmission of packet index |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101895954A CN101895954A (en) | 2010-11-24 |
CN101895954B true CN101895954B (en) | 2012-04-18 |
Family
ID=43104975
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010102606253A Expired - Fee Related CN101895954B (en) | 2010-08-24 | 2010-08-24 | Opportunistic network routing method based on incremental transmission of packet index |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101895954B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102065472B (en) * | 2010-12-09 | 2013-02-06 | 重庆邮电大学 | Method for Determining Participating Groups of Wireless Network Coding Based on Cross-Layer Design |
CN102056233B (en) * | 2010-12-28 | 2013-05-08 | 重庆邮电大学 | Queue management scheduling method of opportunity network based on message importance degree |
CN102438276B (en) * | 2011-12-31 | 2014-04-16 | 重庆邮电大学 | High-performance routing method for opportunistic network based on adaptive summery vector (SV) compression |
CN102711208B (en) * | 2012-05-31 | 2014-12-03 | 重庆邮电大学 | Method for storing and transmitting opportunistic network low-expense immunologic information based on summary vector |
CN103560966B (en) * | 2013-11-13 | 2016-08-31 | 重庆邮电大学 | Opportunistic network mixed logic dynamic method based on network code and duplication |
CN104661275B (en) * | 2014-12-11 | 2018-01-30 | 北京邮电大学 | A Data Transmission Method in Opportunistic Networks |
CN107371211B (en) * | 2017-08-07 | 2020-10-02 | 重庆邮电大学 | An opportunistic network routing method with low overhead and high transaction success rate |
CN111585893A (en) * | 2020-04-30 | 2020-08-25 | 长安大学 | Routing performance analysis method based on opportunity network in Internet of vehicles environment |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101695179A (en) * | 2009-10-16 | 2010-04-14 | 天津大学 | Method for forwarding messages on DTN or ICN network in way of self-adoption changeable probability |
CN101784067A (en) * | 2010-01-14 | 2010-07-21 | 重庆邮电大学 | Method for quickly sensing meeting nodes based on cross-layer triggering in opportunistic network |
-
2010
- 2010-08-24 CN CN2010102606253A patent/CN101895954B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101695179A (en) * | 2009-10-16 | 2010-04-14 | 天津大学 | Method for forwarding messages on DTN or ICN network in way of self-adoption changeable probability |
CN101784067A (en) * | 2010-01-14 | 2010-07-21 | 重庆邮电大学 | Method for quickly sensing meeting nodes based on cross-layer triggering in opportunistic network |
Non-Patent Citations (1)
Title |
---|
任智 等.机会网络路由协议.《计算机应用》.2010,第30卷(第3期),723-728. * |
Also Published As
Publication number | Publication date |
---|---|
CN101895954A (en) | 2010-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101895954B (en) | Opportunistic network routing method based on incremental transmission of packet index | |
Heinzelman et al. | Adaptive protocols for information dissemination in wireless sensor networks | |
Chen et al. | Mobile Agent Based Wireless Sensor Networks. | |
Khabbazian et al. | Local broadcast algorithms in wireless ad hoc networks: Reducing the number of transmissions | |
CN102883397B (en) | Data forwarding method of delay/disruption tolerant network (DTN) facing space environment | |
CN103068002B (en) | A kind of HR-WPAN Mesh network method for routing efficiently | |
CN102595504A (en) | Dynamic multi-path OLSR (Optimized Link State Routing) routing method based on link congestion degree | |
Rajesh et al. | Constructing Well-Organized Wireless Sensor Networks with Low-Level Identification | |
Liu et al. | Social-aware computing based congestion control in delay tolerant networks | |
Martins et al. | Ant-DYMO: A bio-inspired algorithm for MANETS | |
CN103560966B (en) | Opportunistic network mixed logic dynamic method based on network code and duplication | |
Mu | An improved AODV routing for the zigbee heterogeneous networks in 5G environment | |
CN100512231C (en) | Routing method | |
CN103346975B (en) | Data Forwarding and Storage Method Based on Wireless Sensor Network | |
Varsha et al. | Development of QoS optimized routing using Artificial bee colony and TABU-GA with a mobile base station in Wireless Sensor Network | |
CN103037436B (en) | Network coding perception wireless mesh routing protocol based on hybrid wireless mesh protocol (HWMP) | |
CN101951657B (en) | Data routing method and sensor node | |
Liu et al. | A reliable multi-path routing approach for medical wireless sensor networks | |
CN109874162A (en) | Design and optimization method of hybrid routing protocol for high-altitude and high-speed mobile node ad hoc network | |
CN106330536A (en) | A method for collecting network state information of wmSDN | |
CN110166292A (en) | Based on the chance method for routing for delivering prediction with copy self-adapting in opportunistic network | |
CN112910779A (en) | Ad Hoc network-based cross-layer routing optimization protocol | |
Chao et al. | A fault-tolerant routing protocol in wireless sensor networks | |
CN102438276B (en) | High-performance routing method for opportunistic network based on adaptive summery vector (SV) compression | |
CN103338490A (en) | Network data routing method and network node |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20170401 Address after: 518053 Guangdong city of Shenzhen province Nanshan District overseas Chinese town in Eastern Industrial Zone H3 building 501B Patentee after: Shenzhen Tinno Wireless Technology Co., Ltd. Address before: 400065 Chongqing Nan'an District huangjuezhen pass Chongwen Road No. 2 Patentee before: Chongqing University of Posts and Telecommunications |
|
TR01 | Transfer of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120418 Termination date: 20190824 |
|
CF01 | Termination of patent right due to non-payment of annual fee |