CN101893440B - Celestial autonomous navigation method based on star sensors - Google Patents

Celestial autonomous navigation method based on star sensors Download PDF

Info

Publication number
CN101893440B
CN101893440B CN 201010176280 CN201010176280A CN101893440B CN 101893440 B CN101893440 B CN 101893440B CN 201010176280 CN201010176280 CN 201010176280 CN 201010176280 A CN201010176280 A CN 201010176280A CN 101893440 B CN101893440 B CN 101893440B
Authority
CN
China
Prior art keywords
coordinate system
star sensor
optical axis
longitude
latitude
Prior art date
Application number
CN 201010176280
Other languages
Chinese (zh)
Other versions
CN101893440A (en
Inventor
刘睿
李清华
李葆华
王常虹
Original Assignee
哈尔滨工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尔滨工业大学 filed Critical 哈尔滨工业大学
Priority to CN 201010176280 priority Critical patent/CN101893440B/en
Publication of CN101893440A publication Critical patent/CN101893440A/en
Application granted granted Critical
Publication of CN101893440B publication Critical patent/CN101893440B/en

Links

Abstract

The invention provides a celestial autonomous navigation method based on star sensors, which comprises the following steps: calculating attitude information based on a geocentric inertial coordinate system, which is output by a star sensor; calculating the optical axis direction based on the geocentric inertial coordinate system; converting the optical axis direction based on the geocentric inertial coordinate system into optical axis direction based on a WGS84 coordinate system; reading the included angles alpha 0 and beta 0 between the X and Y directions of the star sensor and the horizontal direction from a laser level meter; calculating the direction in the WGS84 coordinate system when the optical axis direction is perpendicular to the horizontal level; calculating the longitude alphaand latitude beta of the underground point S of the carrier; and outputting the attitude q and the longitude alpha and latitude beta of the underground point of the carrier in the geocentric inertialcoordinate system. The invention avoids measurement and control errors caused by horizontal reference platforms, enhances the measuring accuracy, and simultaneously outputs the attitude of three axesand the longitude and latitude of the carrier in the geographic coordinate system in real time, thereby completely realizing celestial autonomous navigation.

Description

基于星敏感器的天文自主导航方法 Based Autonomous Navigation astronomical star sensor

(-)技术领域 (-) FIELD

[0001] 本发明涉及天文导航技术,具体说就是一种基于星敏感器的天文自主导航方法。 [0001] The present invention relates to a celestial navigation technology, specifically an autonomous navigation method is based on the astronomical star sensor. (二)背景技术 (B) Background Art

[0002] 上世纪六十年代末七十年代初,惯性技术开始应用于各种测绘工作。 [0002] In the late sixties early seventies, inertial technology began to be used a variety of surveying and mapping work. 美国研制出了惯性定位定向系统,简称PADS系统。 The United States developed the inertial positioning and orientation system, referred to as the PADS system. 装有惯性定位定向系统的运载汽车在地面行使了一段曲折路程之后,由系统确定的水平位置精度为20米,高度均方根误差为10米。 After orientation with an inertial positioning system ground car carrying a tortuous exercise distance, horizontal position accuracy is determined by the system is 20 m and a height of 10 meters rms error. 这一技术成果对惯性技术的应用来说显然具有重大意义。 This technology achievement is clearly of great significance for the application of inertial technology.

[0003] 惯性定位定向系统研制成功后,美国陆军先后又研制了惯性定位系统anertial Position System, IPS系统)。 [0003] After the inertial positioning and orientation system successfully developed, the US Army has also developed the inertial positioning system anertial Position System, IPS system). 惯性定位系统研制的目的是在惯性定位定向系统的基础上进一步提高定位精度。 Inertial positioning system developed in order to further improve the positioning accuracy on the basis of the inertial positioning and orientation system. 惯性定位系统确定方位是在陀螺罗盘指北的基础上由光电经纬仪实现的,该系统与外界不发生任何光、电联系。 Inertial Positioning System to determine the orientation of the finger is in gyrocompass on the basis of the North implemented by the theodolite, the system with the outside world any light, electrical contact does not occur. 因此隐蔽性好,工作不受环境条件的限制。 So good for hiding, working without restriction environmental conditions. 它可以提供初始对准所需要的方位基准。 It can provide initial alignment azimuth reference needs. 然而,用这种方法确定的方位基准精度主要取决于陀螺和加速度计的水平,一般只能达到几角分,其位置误差会随时间积累而增大。 However, the accuracy of the reference position determined by this method depends on the level of gyro and accelerometer, generally only up to a few minutes of arc, which would increase the position error accumulate over time. 这对短距离的导航系统来说可以满足要求;而对长距离的导航系统就不能满足精度要求了。 This meets the requirements for short-range navigation system; and long-distance navigation system can not meet the accuracy requirements. 因此单纯地依靠提高惯性仪表精度来提高定位精度非常困难。 So simply relying on inertia to improve the accuracy of the instrument to improve positioning accuracy is very difficult.

[0004] 无线电导航系统利用无线电引导飞行器沿着规定航线、在规定时间达到目的地的航行技术。 [0004] The radio navigation system using radio guiding the aircraft along a predetermined route, at a predetermined time to reach the destination of navigation technology. 典型的导航系统有罗兰A、罗兰C、奥米加、测向仪等。 A typical Loran navigation system A, C Loran, Omega, to the measuring instrument. 这些系统利用无线电波的传播特性可测定载体的导航参量(方位、距离和速度),算出与规定航线的偏差,从而使载体消除偏差以保持正确航线。 These systems utilize radio wave propagation characteristics of the carrier can be measured navigation parameters (azimuth, distance and speed), and the deviation is calculated a predetermined route, so that a carrier eliminate the deviation to maintain the correct course. 但是无线电导航系统作用距离有限、存在服务盲区、远程导航精度较低、易于遭受攻击,其应用和发展受到局限。 But the radio navigation system from a limited effect, there is blind service, remote navigation accuracy is low, and prone to attack, their application and development has been limited.

[0005] 卫星导航作为现代导航的主要方式,大大推进了科学技术的发展。 [0005] Modern satellite navigation as the primary means of navigation, greatly promoted the development of science and technology. 其优点是无线电波的传播基本不受地面气象、地形等因素的影响,台站的建立也不受地理条件的限制,距离也不受限制,因此可以很容易地建立起一个全球导航系统。 The advantage is the propagation of radio waves essentially unaffected by ground meteorological factors, topography, and establishing stations are not subject to geographical constraints, distance is unlimited, so you can easily establish a global navigation system. 然而卫星导航的共同特征是由特定信标以特定频率发播特定格式的导航电文,其导航信号极其微弱。 However, a common feature is a particular satellite navigation beacon broadcasts the specific format of the navigation data at a particular frequency, its navigation signal extremely weak. “三定一弱”决定了卫星导航系统易受攻击和操控的技术特征。 "Sanding a weak" satellite navigation system determines the technical features of vulnerable and manipulation.

[0006] 全球定位系统(GlcAal Position System, GPS)是美国研制的一种可以定时和测距的空间交会定点的导航系统,可向全球用户提供连续、实时、高精度的三维位置、三维速度和时间信息。 [0006] Global Positioning System (GlcAal Position System, GPS) is a space rendezvous point navigation system developed by the United States timing and ranging a way, the user can provide continuous global, real-time, high-accuracy three-dimensional position, three-dimensional velocity and time information.

[0007] 然而GPS信号是从空间传向地面的,它并不是万无一失,还是能够被干扰和破坏的。 [0007] However, the GPS signal is passed from space to the ground, it is not foolproof, or can be disturbed and destroyed. 在“盟军行动”中,GPS信号可能受到了美军电子战飞机(如EA-6B)和无人驾驶干扰机的非故意干扰,美国军事部门正在设法克服这个问题。 In "Operation Allied Force" in, GPS signal may have been unintentional interference US electronic warfare aircraft (such as the EA-6B) and unmanned jammer, the US military is trying to overcome this problem. 这说明只要采取合适的措施就可干扰GPS系统,降低其定位精度,使依赖GPS进行导航定位或制导的武器系统偏离航向。 This shows that as long as suitable measures can interfere with GPS systems to reduce the positioning accuracy, so dependent on GPS for navigation and positioning or guided weapons systems off course. 俄罗斯在1997年莫斯科航展上展出了一种GPS干扰机,这种干扰机能干扰GPS和GL0NASS卫星信号,能抑制数百公里以内接收机的正常工作。 Russia at the 1997 Moscow Air Show exhibit a GPS jammer, such interference function and GL0NASS GPS satellite signal interference, can inhibit the normal work within hundreds of kilometers receiver.

[0008] 同时随着对GPS的依赖程度越来越大,也必然会越来越担心其GPS卫星受到攻击。 [0008] and with the reliance on GPS is growing, it is also bound to become increasingly worried about the GPS satellites under attack. GPS卫星没有采取防核效应加固和防激光武器保护手段,没有防碰撞探测器,也没有机动变轨能力。 GPS satellites did not take anti-nuclear and anti-reinforcing effect of laser weapons means of protection, there is no anti-collision detectors, nor the orbit maneuver capability. 所以比较容易受到攻击,随着其作用的增大,它也必然会成为被攻击的目标。 It is more vulnerable to attack, with the increase of its role, it will inevitably become a target of attack.

[0009] 此外GPS由美国军方控制,其军码加密程度高,无法利用;其民码虽然可用,但抗干扰能力差;新研制的GPS卫星可能具有局部地区关闭功能。 [0009] In addition GPS, the US military is controlled by its high military code encryption degree, it can not be used; although its public code available, but anti-interference ability; newly developed GPS satellites may have some areas off function. 因而GPS的利用受到美国制约。 Thus the use of GPS by the US constrained.

[0010] 天文导航的重要部件是星敏感器。 [0010] is an important member celestial navigation star sensor. 星敏感器作为一种精度较高的姿态敏感器,被广泛应用于各种航天器上。 Star sensor as a high precision attitude sensor, it is widely used in a variety of spacecraft. 与惯性导航和GPS等其它卫星导航相比,具备的许多优点,比如精度高,不需要长时间的地面定位定向;而且,星敏感器在抗干扰方面有着GPS导航所不具备的优点。 Compared with other inertial navigation and GPS satellite navigation, etc., it has many advantages, such as high precision, require long terrestrial positioning orientation; Also, star sensor has the advantage of GPS navigation do not have immunity is concerned. 因此目前大部分学者采用利用天文参数修正测角陀螺的漂移;或者由惯导系统提供惯导信息,GPS提供位置或位置与速度信息,天文导航(星敏感器)提供姿态信息,将这些信息简单组合起来就得到组合导航信息,从而实现导航系统。 Thus most researchers currently use drift correction parameters using astronomical goniometric Gyroscope; or information provided by the INS inertial navigation systems, GPS location or to provide position and velocity information celestial navigation (star sensor) providing attitude information, this information simple combinations obtained by combining the navigation information to a navigation system. 然而这些系统仅仅利用了星敏感器输出高精度的姿态信息,也只能作为惯性导航的校准设备使用,没有作为一种独立的导航手段使用。 However, these systems pose information using only the precision of the output star sensor, an inertial navigation only calibration equipment, it is not used as an independent means of navigation.

[0011] 为了充分利用星敏感器高精度信息。 [0011] In order to take full advantage of precision star sensor information. 很多学者采用惯性设备提供水平基准来实现一些天文自主定位,由于惯性设备部件的限制以及平台控制方法的限制,很难动态控制平台基准完全水平,从而降低了水平基准的精度。 Many scholars inertial device provides a horizontal reference astronomical autonomous positioning is achieved, due to limitations and restrictions inertia apparatus control method of the platform member, it is difficult to control the dynamic internet reference level completely, thereby reducing the accuracy of the reference level. 水平基准的误差降低导致导航精度的降低。 The horizontal reference navigation error reduction results in reduced accuracy. 这与高精度导航的客观要求不相适应。 This is incompatible with the objective requirements of high-precision navigation. 受水平基准限制已经成为天文导航向高精度发展的瓶颈。 Subject to the level of the reference limit celestial navigation has become a bottleneck to the development of precision.

[0012] 近些年,出现了基于星敏感器的星光折射自主导航。 [0012] In recent years, there have been stars based on star sensor refraction autonomous navigation. 该导航方式基本原理如下:在星敏感器上同时观测两颗恒星,一颗恒星的星光高度远大于大气层的高度,星光未受折射, 另一颗恒星的星光受到大气折射,这样两束星光之间的角距将不同于标称值,此角距的变化量即为星光折射角。 The navigation basic principle is as follows: while observing two stars on the star sensor, a star of stars is much greater than the height of the height of the atmosphere, the stars were not refracted, another star of the stars by atmospheric refraction, so that two beams of starlight will be different from the angle between the nominal value, the amount of change of this angle is the pitch angle of refraction starlight. 利用星光折射角与大气密度的关系和大气密度随高度变化也有现成的数学模型,从而确定出星光在大气层中的高度,这个高度反映了载体与地球之间的几何关系。 Starlight use the angle of refraction and atmospheric density relationships and atmospheric density varies with height also have an existing mathematical model to determine the height of the stars in the atmosphere, this reflects the high degree of geometric relationship between the carrier and the Earth. 这种导航方式要求大气密度随高度变化的数学模型比较精确。 This navigation claim atmospheric density variation with height of more precise mathematical model. 然而,受大气层的影响、季节的变化以及气候等因素的影响,国际上很难建立比较精确的大气数学模型。 However, affected by factors affecting the atmosphere, seasonal changes and climate, the atmosphere is difficult to establish a more precise mathematical model internationally. 而且采用该导航方法必须视场内部分恒星星光穿过大气层,造成这些恒星在星敏感器像平面的位置存在偏差,从而降低了星敏感器的输出姿态。 The navigation method and the use of part of the field of view must starlight sun through the atmosphere, there is a deviation caused by these stars in the star position of the image plane of the sensor, thereby reducing the output of the posture of the star sensor.

(三)发明内容 (Iii) Disclosure of the Invention

[0013] 本发明的目的在于提供一种实时输出三轴姿态、实时输出载体在地理坐标系下的经纬度的基于星敏感器的天文自主导航方法。 [0013] The object of the present invention is to provide a real-time three-axis attitude output, autonomous navigation method based on the astronomical star sensor in real-time output vector geographic latitude and longitude coordinate system.

[0014] 本发明的目的是这样实现的:所述的基于星敏感器的天文自主导航方法,步骤如下: [0014] The object of the present invention is implemented: the autonomous navigation method based on the astronomical star sensor, the following steps:

[0015] 步骤一:计算星敏感器输出基于地心惯性坐标系的姿态信息; [0015] Step a: star sensor output is calculated based on the posture information of the geocentric inertial coordinate system;

[0016] 步骤二:根据姿态信息计算基于地心惯性坐标系下的光轴指向; [0016] Step Two: an optical axis based on the geocentric inertial coordinate point calculated posture information;

[0017] 步骤三:把基于地心惯性坐标系下的光轴指向转换为基于WGS84坐标系下的光轴指向;从激光水平仪中读取星敏感器X和Y方向与水平方向的夹角和β。 [0017] Step three: the optical axis based on the geocentric inertial coordinate system based on the optical axis point to point converted in WGS84 coordinates; star sensor reading angle X and Y directions in the horizontal direction from the laser level instrument and β.

[0018] 步骤四:根据α Q和β Q计算光轴指向与水平垂直时在WGS84坐标系下的指向; [0018] Step Four: pointing vertically in WGS84 coordinate system is calculated according to a horizontal axis pointing in α Q and β Q;

[0019] 步骤五:计算载体地下点S的经度α和纬度β ;[0020] 步骤六:输出载体在地心惯性坐标系下的姿态q以及地下点经度α和纬度β。 [0019] Step Five: Underground vector calculating the point S latitude and longitude α β; [0020] Step Six: the output vector coordinates in the geocentric inertial attitude q and underground longitude and latitude α β.

[0021] 本发明基于星敏感器的天文自主导航方法,采用光电传感器来测量载体平台(即天文导航系统平台)与水平面的夹角,这样避免了由于水平基准平台带来的测量和控制误差,从而提高了测量精度。 [0021] The present invention is an autonomous navigation method based on the astronomical star sensor, a photoelectric sensor to measure the carrier platform (i.e. celestial navigation system platform) and the horizontal angle, which avoids the reference error level measurement and control of the platform brings due, thereby improve the measurement accuracy. 实时输出三轴姿态的同时,也能够实时输出载体在地理坐标系下的经度和纬度,所以完全实现天文自主导航。 While the real-time output three-axis attitude, but also be able to support real-time output latitude and longitude in the geographic coordinate system, so that the full realization of astronomical autonomous navigation.

(四)附图说明 (Iv) Brief Description of Drawings

[0022] 图1为本发明的系统原理图; [0022] FIG. 1 is schematic diagram of the system of the present invention;

[0023] 图2为本发明基于星敏感器的天文自主导航方法工作流程图; [0023] FIG 2 is a flowchart of astronomical autonomous navigation based on a star sensor of the present invention;

[0024] 图3为本发明的采用某型号卫星星敏感器测试结果波形图; A star type satellite sensor waveform diagram showing the test results using [0024] FIG. 3 of the present invention;

[0025] 图4为本发明的根据星敏感器连续输出三轴姿角和测角器件计算的当地经度和纬度误差; Continuous output triaxial goniometer angle and attitude calculation device according to star sensor local longitude and latitude errors [0025] FIG. 4 of the present invention;

[0026] 图5为本发明应用于某载体的工作流程框图; [0026] The working flow diagram of FIG. 5 of the present invention is applied to a carrier;

[0027] 图6为本发明应用于某载体的示意图,Os-XsYJs:星敏感器像空间坐标系, Os' -Xs' Ys, Zs':星敏感器像空间坐标系的平移,其中0/是点Os在地表面上的投影点, OhXhYhZh :以0S'为原点的一个水平坐标系。 [0027] FIG. 6 is a schematic view of the present invention is applied to a carrier, Os-XsYJs: star sensor image space coordinates, Os' -Xs' Ys, Zs': translation star sensor image space coordinate system, wherein 0 / Os projected point is a point on the ground surface, OhXhYhZh: to 0S 'level as the origin of a coordinate system.

(五)具体实施方式 (E) Detailed Description

[0028] 下面结合附图举例对本发明作进一步说明。 [0028] conjunction with the accompanying drawings illustrative of the present invention will be further described.

[0029] 实施例1 :结合图1、图2本发明一种基于星敏感器的天文自主导航方法,步骤如下: [0029] Example 1: in conjunction with FIG. 1, FIG. 2 of the present invention an autonomous navigation method based on the astronomical star sensor, the following steps:

[0030] 步骤一:计算星敏感器输出基于地心惯性坐标系的姿态信息; [0030] Step a: star sensor output is calculated based on the posture information of the geocentric inertial coordinate system;

[0031] 步骤二:根据姿态信息计算基于地心惯性坐标系下的光轴指向; [0031] Step Two: an optical axis based on the geocentric inertial coordinate point calculated posture information;

[0032] 步骤三:把基于地心惯性坐标系下的光轴指向转换为基于WGS84坐标系下的光轴指向;从激光水平仪中读取星敏感器X和Y方向与水平方向的夹角和β。 [0032] Step three: the optical axis based on the geocentric inertial coordinate system based on the optical axis point to point converted in WGS84 coordinates; star sensor reading angle X and Y directions in the horizontal direction from the laser level instrument and β.

[0033] 步骤四:根据α Q和β Q计算光轴指向与水平垂直时在WGS84坐标系下的指向; [0033] Step Four: pointing vertically in WGS84 coordinate system is calculated according to a horizontal axis pointing in α Q and β Q;

[0034] 步骤五:计算载体地下点S的经度α和纬度β ; [0034] Step Five: α is calculated longitude and latitude of the point S subterranean β carrier;

[0035] 步骤六:输出载体在地心惯性坐标系下的姿态q以及地下点经度α和纬度β。 [0035] Step Six: the output vector coordinates in the geocentric inertial attitude q and underground longitude and latitude α β.

[0036] 实施例2 :结合图1-图4,天文导航系统要真正实现自主导航,主要解决的问题是: 摆脱由惯性设备提供水平基准的束缚和求载体导航信息的量测物理量。 [0036] Example 2: in conjunction with Figures 1-4, celestial navigation system to realize autonomous navigation, the main problem is: to provide a horizontal reference rid constraints and requirements of the carrier device by the inertial navigation information measured physical quantity. 由此可见,摆脱水平基准的制约,另外寻求载体导航信息的量测物理量,是实现高精度天文导航的必然。 Thus, to get rid of the constraints of the reference level, while seeking to measure the physical carrier of navigation information, it is to achieve high-precision astronomical navigation inevitable. 本发明的目的是:建立基于星敏感器的天文自主导航系统。 Object of the present invention are: to establish autonomous navigation system based astronomical star sensor. 整个系统如图1所示。 The system shown in Figure 1. 各个坐标系定义如下: Each coordinate system is defined as follows:

[0037] 地心惯性坐标系Otl-Kyc^ :坐标原点Otl在地球质量中心,X0轴指向Ttl时刻的平春分点,Ztl轴指向Ttl时刻的平极,Y0轴在Ttl时刻的平赤道面内,向东组成右手坐标系。 [0037] geocentric inertial coordinate system Otl-Kyc ^: coordinate origin Otl Earth center of mass, X0 axis points Ttl time mean equinox, ZTL axis pointing flat Ttl time pole, Y0 axis in the flat equatorial plane Ttl time, east composition right-handed. 经常采用贝塞耳年(Bessel年,或称为假年。其长度为平回归年的长度,即365. 2421988平太阳日。 常用的贝塞耳历元是指太阳平黄经等于观0的时刻,例如1950.0,并不是1950年1月1日0时,而是1949年12月31日22时09分2秒)首作为Τ。 Often used in Bessel (Bessel years, called a false or years. Regression of flat longitudinal length, i.e., 365.2421988 mean solar day. Bessel common epoch mean longitude of the sun is equal to 0 Viewpoint moments, such as 1950.0, not 1950 at 0:00 on January 1, but December 31, 1949 22 09 minutes 2 seconds) as the first Τ. ,例如施密松星表(Smi thsonian AstrophysicalObservatory Star Catalog)采用2000. ◦为TQ,称为历元2000. 0 (简称J2000. 0)。 , E.g. pine Schmid catalog (Smi thsonian AstrophysicalObservatory Star Catalog) using 2000. ◦ as TQ, called epochs 2000.0 (abbreviated J2000. 0). 本方案采用J2000. 0惯性坐标系。 The program uses J2000. 0 inertial coordinate system.

[0038] WGS-84坐标系0w_Xwywzw坐标原点Ow为地球质心,其地心空间直角坐标系的Zw轴指向BIH(国际时间)1984. 0定义的协议地球极(CTP)方向,Xw轴指向BIH 1984. 0的零子午面和CTP赤道的交点,yw轴与Zw轴、Xw轴垂直构成右手坐标系; [0038] WGS-84 coordinate system 0w_Xwywzw coordinate origin Ow of geocenter which Zw axis geocentric spatial rectangular coordinate system point BIH (International time) 1984.0 protocol defined earth electrode (CTP) direction, Xw-axis pointing BIH 1984 zero meridian plane 0 and the intersection of the equator CTP, yw axis and Zw axis, Xw axis perpendicular right-handed configuration;

[0039] 地理坐标系(东北天坐标系)0eieyeze :坐标原点Oe运动物体和地球中心连线与地球表面交点(或取运动体在地球表面上的投影点),^轴在当地水平面内指向东,轴在当地水平面内指向北,%轴沿当地地垂线方向并且指向天顶。 [0039] The geographic coordinate system (coordinate system Northeast days) 0eieyeze: Oe coordinate origin of the moving object and the center of the earth connection with the (projected point on a moving body or take the Earth's surface) the intersection of the Earth's surface, ^ east axis pointing in the local horizontal plane , North axis points in the local horizontal plane along the axis of the local% vertical direction and directed to zenith. 是地平面或水平面; A ground plane or a horizontal plane;

[0040] 星敏感器像空间坐标系0sisyszs =Os为星敏感器像平面中心,xs、ys分别为平行于像平面坐标的两个轴,xs> ys> Zs构成右手定则。 [0040] The star sensor image space coordinates 0sisyszs = Os star sensor as the image plane center, xs, ys, respectively parallel to the two axes of the image plane coordinates, xs> ys> Zs constituting right-hand rule.

[0041] 设载体地下点S的经度a(0<a<23i;i0<a<Ji时为东经,当π≤a <271时为西经。下同)和纬度β (-JI/2≤β < JI/2;当-JI/2≤β <0时为南纬,当0≤β < π/2时为北纬。下同)。 [0041] The set point vector S subterranean longitude a (0 <a <23i;. I0 <a <Ji when longitude, when π≤a <271 west longitude same applies hereinafter) and latitude β (-JI / 2≤ β <JI / 2; when -JI / 2≤β <0 when latitude when 0≤β <π / 2 latitude same applies hereinafter). 那么S在WGS-84坐标系下的方向矢量为: Then in S direction WGS-84 coordinate system vector:

[0042] [0042]

Figure CN101893440BD00061

[0043] 根据星敏感器的识别结果以及激光水平测量部件分别测量星敏感器的两个像平面轴Xs和[与水平方向的夹角分别为a C1和β 0。 [0043] Recognition of the star sensor and a laser level measuring means results are measured according to two star sensor image plane angle and the axis Xs [the horizontal direction, respectively a C1 and β 0. 来推导出计算载体在WGS-84坐标系下的方向矢量的数学模型,再根据 The mathematical model to calculate the direction of the carrier in the WGS-84 coordinate system vector, and then in accordance with

[0044] (1)即可求出载体地表面点S的经度α和纬度β,从而实现对载体的定位。 [0044] (1) to determine the longitude and latitude α β support point S of the ground surface, thereby realizing the positioning of the carrier. 所以该系统输出载体姿态的同时,又可以输出载体的位置。 Therefore, while the output of the system carrier posture, but also the output position of the carrier.

[0045] 本发明提出基于星敏感器的天文自主导航方法,主要内容如下: [0045] The present invention provides a method for autonomous navigation based on the astronomical star sensor, the following major elements:

[0046] 对于同一参考坐标系,由于载体(一般指飞行器)姿态是唯一确定的,姿态参数描述体现在参考坐标轴方向的物理量,称为姿态参数,有多种形式。 [0046] For the same reference coordinate system, since the carrier (generally of an aircraft) is uniquely determined attitude, attitude parameters reflected in the physical quantity is described with reference to the coordinate axis, it referred to attitude parameters, in many forms. 最一般性的姿态参数是本体坐标轴与参考坐标轴之间的方向余弦Α。 The most general attitude parameters are the body axis direction between the coordinate axes and the reference cosine Α.

[0047] 根据方向余弦的定义,载体坐标系在参考坐标系中的几何方向可确定为: [0048] [0047] According to the definition of the direction cosine of the direction vector geometric coordinates in the reference coordinate system can be determined as: [0048]

Figure CN101893440BD00062

[0049] 其中下标ο,0表示载体坐标系和参考坐标系, [0049] where the subscripts o, 0 represents a vector coordinate system and the reference coordinate system,

[0050] [0050]

Figure CN101893440BD00063

[0051] 在载体三轴姿态确定问题中,因为矩阵A完全确定了载体在参考坐标系中的状态,故称方向余弦矩阵A为姿态矩阵。 [0051] The problem of determining three-axis attitude in the carrier, since the matrix A completely determined state vector in the reference coordinate system, so that the direction cosine matrix A is a matrix posture.

[0052] 各种形式的姿态参数之间可以相互转换。 [0052] The interchangeable between various forms of pose parameters. 因此方向余弦矩阵A又可以表示如下: Direction cosine matrix A and thus may be expressed as:

[0053] [0053]

Figure CN101893440BD00064

[0054] 其中q = qii+q2j+q3k+q4,是星敏感器在地心惯性坐标系下的姿态信息。 [0054] wherein posture information q = qii + q2j + q3k + q4, a star sensor in the geocentric inertial coordinate system.

[0055] 所以星敏感器光轴指向在地心惯性坐标系下的単位矢量为:[0056] [0055] Therefore, the optical axis star sensor pointing at the geocentric inertial coordinate system. Unit vector: [0056]

Figure CN101893440BD00071

[0057] 计算星敏感器光轴指向在WGS84坐标系下矢量:[0058] [0057] Calculation axis star sensor pointing vector in the WGS84 coordinate system: [0058]

Figure CN101893440BD00072

[0059] 其中[ER]是地球自转矩阵,表示为: [0059] wherein [the ER] Earth's rotation matrix is ​​expressed as:

[0060] [ER]=Rz(eg) (7)[0061] 其中Rz( ez)表示绕Z轴旋转ez角的坐标变换矩阵。 [0060] [ER] = Rz (eg) (7) [0061] where Rz of (ez) around the Z axis represents the coordinate transformation matrix ez rotation angle. [0062] [0062]

Figure CN101893440BD00073

[0063] eg(単位:弧度)是真恒星吋,可表示为:[0064] [0063] eg (unit: rad) is the true star inch, can be expressed as: [0064]

Figure CN101893440BD00074

[0065] g是平黄赤交角,计算公式为:[0066] [0065] g is flat ecliptic, is calculated as: [0066]

Figure CN101893440BD00075

[0067] Tu是从2000. 0起算的儒略世纪数。 [0067] Tu is slightly centuries of Confucianism starting from 2000.0. 表示如下;[0068] Expressed as follows; [0068]

Figure CN101893440BD00076

[0069] JD (t)表示计算时刻t对应的儒略天。 [0069] JD (t) represents the time t is calculated corresponding to Julian days.

[0070] Og (単位:弧度)格林尼治平恒星吋,计算公式如下:[0071] [0070] Og (unit: radian) Greenwich mean sidereal inch, calculated as follows: [0071]

Figure CN101893440BD00077

[0072][0073] A £,AV分别是交角章动和黄经章动。 [0072] [0073] A £, AV are longitude and obliquity nutation nutation. 计算表达式如下:[0074] Calculation expression as follows: [0074]

Figure CN101893440BD00078

[0075][0076] 其中Ai, A' ^BijB' ^kij是常数,可在IAU1980章动序列表中查到。 [0075] [0076] where Ai, A '^ BijB' ^ kij is a constant, can be found in Chapter IAU1980 movable Sequence Listing. t是载体时间。 t is the time vector.

[0077] 再根据载体两轴与水平面的夹角分别为a。 [0077] The angle between the vector and then the two horizontal axes, respectively a. 和Ptl,可计算光轴垂直于水平面时在WGS84坐标系下的指向矢量:[0078] And Ptl, calculated perpendicular to the horizontal axis vector pointing in WGS84 coordinate system: [0078]

Figure CN101893440BD00079

[0079] 其中Rx(Ptl)表示绕X轴旋转3。 [0079] wherein Rx (Ptl) 3 represents the rotation around the X axis. 角的坐标变换矩阵。 Angular coordinate transformation matrix. 即:[0080] That is: [0080]

Figure CN101893440BD00081

[0081] Rv(a0)表示绕y轴旋转a ^角的坐标变换矩阵。 [0081] Rv (a0) represented by coordinate transformation matrix around the y axis rotation angle a ^. which is

[0082] [0082]

Figure CN101893440BD00082

[0083] 根据^j,+,就可以计算载体地表面点S的经度α和纬度β。 [0083] According ^ j, +, we can calculate the longitude and latitude β α S carrier the surface points.

[0084] 主要性能指标: [0084] The main performance indicators:

[0085] 我们选用某型号卫星星敏感器作为天文导航系统的姿态输出部件(表中四元数为q = q(1*i+qi*j+q2*k+q3),采用XXX型号的激光水平测角部件来测量星敏感器X轴和Y轴与水平方向的夹角。 [0085] We use a certain type of satellite star sensor as the posture of the output member celestial navigation system (Table Quaternion q = q (1 * i + qi * j + q2 * k + q3), using XXX types of laser horizontal angle member star sensor to measure the angle between the X-axis and Y-axis in the horizontal direction.

[0086] 由于星敏感器可以直接输出载体的三轴姿态,星敏感器系统本身决定了姿态的精度和可靠性,采用某型号的导航设备分别在某观测站进行了外场实验。 [0086] Since the star sensor may be directly output three-axis attitude vector, star sensor system itself determines the accuracy and reliability of the posture, the navigation apparatus using a model field experiments were carried out at some stations. 利用这些实验结果分别计算出当地地表的经度和纬度,为了验证这些数据的可行性和可靠性,把该导航系统放置于某地,长时间运行后,保存测试数据。 These results were calculated using the latitude and longitude of the local surface, in order to verify the feasibility and reliability of these data, to be placed in any of the navigation system, after a long run, save test data. 在某观测站连续1046秒实验,经分析,该导航系统在经度和纬度方向的精度分别为0. 9637281519" (3 σ )和1. 3609644735〃(3 σ )。 In a second experiment consecutive stations 1046, by analysis, the navigation system accuracy in longitudinal and latitudinal directions were 0. 9637281519 "(3 σ) and 1. 3609644735〃 (3 σ).

[0087] 实施例3 :结合图5、图6,本发明一种基于星敏感器的天文自主导航方法,包含三个子系统:星敏感器系统和两个激光水平测量系统。 [0087] Example 3: in conjunction with FIG. 5, FIG. 6, the present invention is an autonomous navigation method based on the astronomical star sensor, comprising three subsystems: star sensor system and two laser level measurement system. 星敏感器主要载体的三轴姿态;两个激光水平测量系统主要测量载体两轴与水平面的夹角。 Three-axis attitude of the main carrier star sensor; two laser measuring system measuring the angle between the major axis and two horizontal carriers.

[0088] 工作过程:恒星通过星敏感器光学镜头,成像在星敏感器像平面上(比如C⑶或者APS),成像电路把像平面中恒星的电信号转化为一幅完整的星图,并保存在存储器中;星像提取软件读取存储器中的星图数据,并从星图中提取星像坐标;星图识别软件采用全天球识别算法根据保存在星敏感器中的星表信息,对这些星像坐标进行识别(如果星敏感器有先验信息,星图识别软件采用星跟踪算法);姿态计算软件采用相应的姿态计算算法和识别结果,并根据这些星图识别结果,并利用已识别的观测星,计算星敏感器在地心惯性坐标系下的姿态信息q。 [0088] Working procedure: stars by star sensor optical lens, an imaging in the image plane star sensors (such as the APS or C⑶), the imaging circuit electrical signals into the image plane of a complete star chart, and save in a memory; star chart image extracting software reads data in the memory, and extracts from the image the coordinates of the star chart; day star pattern recognition software uses ball recognition algorithm in accordance with the table information stored in the satellite's star sensor, for these stars image coordinate recognition performed (if the star sensor has a priori information, star pattern identification software uses satellite tracking algorithm); pose calculation software using the corresponding pose calculation algorithm and the recognition result, and the star identification based on these results, and the use has identification observed star, star sensor orientation information calculated in the q geocentric inertial coordinate system. 根据激光水平测量部件分别测量星敏感器的两个像平面轴与水平方向的夹角,计算光轴垂直于水平面时在WGS84坐标系下的指向矢量。 Laser level measuring means were measured two star sensor according to the angle of the image plane axis in the horizontal direction, a horizontal plane perpendicular to the optical axis is calculated in the vector pointing WGS84 coordinate system. 并输出该矢量和星敏感器在地心惯性坐标系下的姿态信息。 And outputs the pose information and the star sensor vector in the geocentric inertial coordinate system. 这些信息就是自主导航信息。 This information is autonomous navigation information.

[0089] 本发明提出的基于星敏感器的天文自主导航方法是根据星敏感器的识别结果,可以计算星敏感器Os-h轴在地球惯性坐标系下的方向矢量之,,经坐标转换即可得在WGS-84 坐标系下的方向矢量乏„,。利用激光水平测量部件分别测量星敏感器的两个像平面轴Xs和ys与水平方向的夹角分别为^和^^。方向矢量之分别绕xs轴和ys轴旋转β C1和a ^角度后的方向矢量之<„就是3在WGS-84坐标系下的方向矢量,再代入(1)即可求出载体地表面点S的经度α和纬度β,从而实现对载体的定位。 [0089] The autonomous navigation method based on the astronomical star sensor proposed by the present invention is the recognition result of the star sensor may be calculated to the satellite sensor Os-h in the earth's axis vector of the inertial coordinate system by coordinate transformation ,, i.e. available under the direction WGS-84 coordinate system vector lack "using two laser level measuring member were measured as the angle between the star sensor plane axes Xs and ys are the horizontal direction and ^ ^^. direction vector the shaft and are wound xs ys axis and a ^ β C1 direction vector angle after < '3 is a vector in the direction of the WGS-84 coordinate system, and then into (1) to obtain the vector of the surface point S longitude and latitude α β, in order to achieve positioning of the carrier. 所以,该导航系统不但输出载体三轴姿态,而且输出载体的位置。 Therefore, not only the navigation system outputting three-axis attitude vector, and the output position of the carrier. 从而实现天文自主导航。 In order to achieve astronomical autonomous navigation.

Claims (1)

1. 一种基于星敏感器的天文自主导航方法,其特征在于:步骤如下: 步骤一:计算星敏感器输出基于地心惯性坐标系的姿态信息; 步骤二:根据姿态信息计算基于地心惯性坐标系下的光轴指向; 步骤三:把基于地心惯性坐标系下的光轴指向转换为基于WGS84坐标系下的光轴指向;从激光水平仪中读取星敏感器的两个像平面轴与水平方向的夹角和^tl ; 步骤四:根据α Q和β Q计算光轴指向与水平垂直时在WGS84坐标系下的指向; 步骤五:计算载体地下点S的经度α和纬度β ;步骤六:输出载体在地心惯性坐标系下的姿态q以及地下点经度α和纬度β。 CLAIMS 1. A method for autonomous navigation based on the astronomical star sensor, characterized in that: the following steps: Step 1: calculate the star sensor output of the posture information based on the geocentric inertial coordinate system; Step two: The posture information calculated based on the geocentric inertial the optical axis of the coordinate system point; step three: the optical axis based on the geocentric inertial coordinate system is converted into points on the optical axis in the WGS84 coordinate point; star sensor reading laser level from the image plane of the two axes the angle between the horizontal direction and ^ tl; step four: calculating a horizontal axis pointing in accordance α Q and β Q pointing vertically when in WGS84 coordinate system; step five: calculated longitude and latitude beta] [alpha] vector subsurface point S; step six: output vector coordinates in the geocentric inertial attitude q and underground longitude and latitude α β.
CN 201010176280 2010-05-19 2010-05-19 Celestial autonomous navigation method based on star sensors CN101893440B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010176280 CN101893440B (en) 2010-05-19 2010-05-19 Celestial autonomous navigation method based on star sensors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010176280 CN101893440B (en) 2010-05-19 2010-05-19 Celestial autonomous navigation method based on star sensors

Publications (2)

Publication Number Publication Date
CN101893440A CN101893440A (en) 2010-11-24
CN101893440B true CN101893440B (en) 2011-12-14

Family

ID=43102702

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010176280 CN101893440B (en) 2010-05-19 2010-05-19 Celestial autonomous navigation method based on star sensors

Country Status (1)

Country Link
CN (1) CN101893440B (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102081360B (en) * 2011-02-25 2012-12-05 哈尔滨工业大学 Inertial astronomical combined navigation semi-physical experimentt system
CN102288175B (en) * 2011-05-10 2012-11-28 哈尔滨工业大学 Independent forecasting method suitable for star sensor
CN102261921B (en) * 2011-06-14 2013-01-30 哈尔滨工业大学 Method for correcting influence of atmospheric refraction on precision of star sensor
CN102279002B (en) * 2011-06-27 2013-06-05 哈尔滨工业大学 Calibration method of transformation matrix of star sensor measuring coordinate system and carrier coordinate system
CN102288201B (en) * 2011-07-06 2012-08-22 清华大学 Precision measurement method for star sensor
CN102288200B (en) * 2011-07-06 2012-07-18 清华大学 Accuracy measurement system for star sensor
CN102426017A (en) * 2011-11-03 2012-04-25 北京航空航天大学 Star-sensor-based method for determining attitude of carrier relative to geographical coordinate system
CN102538819B (en) * 2011-12-08 2015-04-22 北京控制工程研究所 Autonomous navigation semi-physical simulation test system based on biconical infrared and star sensors
CN102661746B (en) * 2012-05-23 2015-04-08 北京科技大学 Sensor main mounting boxes and passive optical sensor
CN102901485B (en) * 2012-10-31 2015-06-10 中国科学院长春光学精密机械与物理研究所 Quick and autonomous orientation method of photoelectric theodolite
CN103033196B (en) * 2012-12-11 2015-05-27 北京控制工程研究所 Electronic star simulator for APS star sensor
CN103344256B (en) * 2013-06-19 2015-07-08 哈尔滨工业大学 Laboratory testing method for multi-field-of-view star sensor
CN103727937B (en) * 2013-11-20 2017-01-11 中国人民解放军海军大连舰艇学院 Star sensor based naval ship attitude determination method
CN103616028B (en) * 2013-11-29 2016-12-07 哈尔滨工程大学 A kind of starlight refraction autonomous navigation of satellite method based on single star sensor
CN105526951B (en) * 2016-01-30 2018-08-21 武汉大学 A kind of star sensor original observed data preprocess method and system
CN106382927B (en) * 2016-08-19 2019-10-18 哈尔滨工业大学 A kind of star sensor autonomous navigation method based on satellite identification
CN107478234B (en) * 2017-09-05 2019-08-30 上海航天控制技术研究所 A kind of satellite Autonomous localization method and autonomous navigation of satellite method
CN107976169A (en) * 2017-11-08 2018-05-01 中国人民解放军63686部队 A kind of boat-carrying inertial navigation attitude angle time-series rules method based on star observation
CN108489483A (en) * 2018-02-28 2018-09-04 北京控制工程研究所 A kind of boat-carrying Stellar orientation instrument list star suboptimum correction algorithm

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1995915A (en) 2006-12-27 2007-07-11 北京航空航天大学 Deep space probe UPF celestial self-navigation method based on starlight angle
CN101078936A (en) 2007-06-08 2007-11-28 北京航空航天大学 High precision combined posture-determining method based on optimally genetic REQUEST and GUPF
CN101196398A (en) 2007-05-25 2008-06-11 北京航空航天大学 Spacecraft posture confirming method based on Euler-q algorithm and DD2 filtering

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1995915A (en) 2006-12-27 2007-07-11 北京航空航天大学 Deep space probe UPF celestial self-navigation method based on starlight angle
CN101196398A (en) 2007-05-25 2008-06-11 北京航空航天大学 Spacecraft posture confirming method based on Euler-q algorithm and DD2 filtering
CN101078936A (en) 2007-06-08 2007-11-28 北京航空航天大学 High precision combined posture-determining method based on optimally genetic REQUEST and GUPF

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
周罡等.一种高精度的天文导航姿态与航向解算模型.《舰船科学技术》.2009,第31卷(第5期),72-75.
李葆华等.天文导航中的星敏感器技术.《光学精密工程》.2009,第17卷(第7期),1615-1619.
杨博等.一种航天器天文自主定轨方法.《中国惯性技术学报》.2000,第8卷(第3期),33-36.

Also Published As

Publication number Publication date
CN101893440A (en) 2010-11-24

Similar Documents

Publication Publication Date Title
Lundquist et al. Geodetic parameters for a 1966 Smithsonian Institution standard Earth
JP3012854B2 (en) Satellite system relative location method and apparatus of the secondary receiving antenna with respect to a reference receiving antenna in the positioning system
Hofmann-Wellenhof et al. Navigation
AU2011258700B2 (en) Determining spatial orientation information of a body from multiple electromagnetic signals
US6463366B2 (en) Attitude determination and alignment using electro-optical sensors and global navigation satellites
CN101413800B (en) Navigating and steady aiming method of navigation / steady aiming integrated system
US4405986A (en) GSP/Doppler sensor velocity derived attitude reference system
US20120290199A1 (en) Apparatus, system and method for self orientation
CN101788296B (en) SINS/CNS deep integrated navigation system and realization method thereof
JPH065170B2 (en) Apparatus for positioning the pixels in the satellite camera images
CN101514899B (en) Optical fibre gyro strapdown inertial navigation system error inhibiting method based on single-shaft rotation
US6784840B2 (en) Method for determining azimuth and elevation angles using a single axis direction finding system
WO2013070518A1 (en) Solar timer using gps technology
US5749545A (en) Autonomous on-board satellite control system
Li et al. Autonomous navigation and guidance for landing on asteroids
US20110004405A1 (en) Earth horizon sensor
Thomas et al. Attitude Determination and Prediction of Spin‐Stabilized Satellites
KR20070046081A (en) Method and apparatus for determining a location associated with an image
CN104422948A (en) Embedded type combined navigation system and method thereof
Zhang Star identification
CN103234512B (en) Triaxial air bearing table high-precision attitude angle and angular velocity measuring device
US6594582B1 (en) GPS compound eye attitude and navigation sensor and method
CN101344391A (en) Lunar vehicle pose self-confirming method based on full-function sun-compass
US9658071B2 (en) System and method of determining a position of a remote object via one or more images
KR100446195B1 (en) Apparatus and method of measuring position of three dimensions

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted
C17 Cessation of patent right