CN101881936A - Holographical wave guide display and generation method of holographical image thereof - Google Patents

Holographical wave guide display and generation method of holographical image thereof Download PDF

Info

Publication number
CN101881936A
CN101881936A CN2010101911899A CN201010191189A CN101881936A CN 101881936 A CN101881936 A CN 101881936A CN 2010101911899 A CN2010101911899 A CN 2010101911899A CN 201010191189 A CN201010191189 A CN 201010191189A CN 101881936 A CN101881936 A CN 101881936A
Authority
CN
China
Prior art keywords
waveguide
image
display
holographic
hologram
Prior art date
Application number
CN2010101911899A
Other languages
Chinese (zh)
Other versions
CN101881936B (en
Inventor
谈顺毅
Original Assignee
谈顺毅
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 谈顺毅 filed Critical 谈顺毅
Priority to CN 201010191189 priority Critical patent/CN101881936B/en
Publication of CN101881936A publication Critical patent/CN101881936A/en
Application granted granted Critical
Publication of CN101881936B publication Critical patent/CN101881936B/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infra-red or ultra-violet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • G03H1/2205Reconstruction geometries or arrangements using downstream optical component
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infra-red or ultra-violet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2294Addressing the hologram to an active spatial light modulator
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2223/00Optical components
    • G03H2223/16Optical waveguide, e.g. optical fibre, rod

Abstract

The invention belongs to an image display device and a method, relating to a holographical wave guide display taking a planar wave guide as a display screen and a generation method of a holographical image adaptive to the holographical wave guide display. The holographical wave guide display comprises a wave guide serving as the display screen and a holographcal projection system used for inputting the holographical image to the wave guide; the wave guide is provided with a light input panel and a light output panel; the incident light ray can be transmitted in the wave guide until leaving the wave guide from the light output panel; and the emergent position of the light ray on the light output panel is mutually determined by the position of point of incidence and the incidence angle of the light ray on the incidence panel. The holographical wave guide display of the invention can display the holographical image, can adopt the wave guide as a display carrier to manufacture the display which has jumbotron, low cost and environment protection and is energy-saving, sturdy and durable.

Description

全息波导显示器及其全息图像的生成方法 Holographic display and a method for generating waveguide holographic image

技术领域 FIELD

[0001] 本发明属于图像显示装置及方法,涉及一种以平面波导为显示屏的全息波导显示器及与该全息波导显示器相适应的全息图像的生成方法。 [0001] The present invention pertains to apparatus and method relates to a planar waveguide is a waveguide holographic screen display and the holographic waveguide holographic image display method adapted to generating an image display.

背景技术 Background technique

[0002] 全息显示技术是一种将图像转换为其在某一特定距离的衍射图案,并使用一种或多种单色光源照射衍射图案的技术。 [0002] A holographic display technique is for converting the image diffraction pattern at a certain distance, and using the techniques of one or more monochromatic light source irradiating the diffraction pattern. 在经过特定距离的传播后,由于光的衍射及干涉效应, 该衍射图案可被还原成原目标图像。 After propagating a certain distance, due to diffraction and interference effects of light, the diffraction pattern can be restored to the original target image. 相比与普通投影以及液晶显示技术,全息投影具有以下优点: Compared with ordinary projector and a liquid crystal display technology, holographic projection has the following advantages:

[0003] 1.节能:与液晶显示遮挡不需要的光不同,全息显示调制并引导光,理论上所有入射的光能都将被有效利用。 [0003] 1. Energy: the liquid crystal display with different shielding unnecessary light, and guide the light modulated holographic display, theoretically all of the incident light energy will be effectively utilized. 据统计液晶显示的光能利用率在10-20%之间,而采用二元相位调制技术(binary-phase modulation)的全息显示光能利用率在40%以上,而多元相位调制技术(multi-phase modulation)能将光能利用率提高到90%以上。 According to the liquid crystal display energy usage statistics of between 10-20%, while the use of binary phase modulation (binary-phase modulation) of the holographic display energy efficiency above 40%, while the polyol phase modulation (Multi- phase modulation) can improve the utilization of light energy to 90%. 另外,相比传统投影技术所使用的白光灯泡,全息投影所使用的激光光源或光电二极管光源具有非常高的能量转换效率。 Further, the laser light source or a white light source lamp photodiode compared to conventional projection technology used, holographic projection used has a very high energy conversion efficiency.

[0004] 2.体积小,结构简单:相比于传统投影仪,显示图像的象差可由计算全息图本身纠正,由此省去了为矫正相差的而设置的庞大复杂且昂贵的透镜系统。 [0004] 2. Small volume, simple structure: Compared to a conventional projector, the display may be calculated as the difference between the hologram image correction itself, thereby eliminating the need for large, complex and expensive lens system is provided to correct the phase difference. 此外,对于彩色图像,全息投影仪使用红绿篮三种单色光源,其色差矫正也远比使用包含所有光谱的白光的普通投影简便。 Further, for color images, holographic projector using three kinds of red, green basket monochromatic light source, which is also far more color correction using white light containing all normal projection of the spectrum is simple.

[0005] 3.稳定性高:传统显示技术显示图像与投影芯片或显示器屏幕与显示影像为点对点的对应关系,若芯片或屏幕上有一个坏点,则显示影像便产生一个坏点。 [0005] 3. High stability: conventional display technologies to display an image projection screen with a chip or a display to display an image corresponding relationship between point to point, if there is a chip or dead pixels on the screen, the displayed image will produce a dead pixel. 而全息投影在空间光调制器(Spatial Light Modulator, SLM)上显示的是经过特殊计算的全息图,其基本原理保证了屏幕上将永远不会产生坏点。 Holographic projection in a spatial light modulator (Spatial Light Modulator, SLM) is displayed on the specially calculated hologram, which guarantees basic principle never produce dead pixels on the screen. 全息图像一个象素点对应屏幕图像上的某频谱信息而非特定象素点,假设空间光调制器分辨为1000x1000,共计100万个象素点,则其上1 个坏点对显示图像造成的变化为100万分之1而无对应坏点,肉眼根本无法察觉,即使空间光调制器上有数百个坏点,其对显示图像的影响也仅为几千分之一,肉眼不易察觉。 A holographic image corresponding to pixel dots of a particular pixel rather than spectral information point, assuming the spatial light modulator on a screen image resolution is 1000x1000, a total of 1,000,000 pixels point, on which a dead pixel of the display image caused by changes without a corresponding millionth of a dead pixel, the naked eye can not detect, even if there are hundreds of dead pixels on the spatial light modulator, which affect the display of only a few thousandths of an image, visually imperceptible.

[0006] 在专利CN1217539C中报道了应用常规投影仪的一种锥形波导显示器,其优点在于可以省去常规投影所需的光路,其厚度要比传统背投显示器来的薄,而可与液晶等离子等平板显示器相媲美。 [0006] Patent CN1217539C reported in a projector using the conventional tapered waveguide display, the advantage that the optical path of a conventional omitted desired projection, the thickness than conventional rear projection displays to thin, and the liquid crystal can be plasma flat panel display comparable. 由于波导可由便宜的光学玻璃或透明塑料板制造,相比与液晶,等离子等传统平板显示技术,在制作大尺寸屏幕时,其成本将会非常低廉。 Since the optical waveguide may be made of glass or transparent plastic plate inexpensive manufacture, as compared with conventional flat liquid crystal, plasma display technology, etc., in the production of large-sized screen, the cost will be very low. 此外由于波导本身不含任何电子元器件,相比液晶,等离子,光电二极管等显示器,波导显示器更为坚固,经久耐用。 Furthermore, since the waveguide itself does not contain any electronic components, compared to the liquid crystal, plasma, monitor photodiode, the waveguide display more robust and durable. 但现有的这种波导显示器使用常规投影,为纠正相差色差,波导的结构较为复杂而不易制造。 However, such a waveguide conventional displays using conventional projectors, color difference is correct, the waveguide structure is more complicated and difficult to manufacture. 此外常规投影仪庞大的体积以及复杂的透镜系统也限制了其在波导显示上的应用。 Further conventional projector bulky and complex lens system also limits its application in the display on the waveguide.

发明内容 SUMMARY

[0007] 本发明所要解决的技术问题是,提供一种可显示全息图像,同时可采用波导作为显示载体、可制造成超大屏幕、成本低廉、节能环保、坚固耐用的全息波导显示器及与该全息波导显示器相适应的全息图像的生成方法。 [0007] The present invention solves the technical problem is to provide a holographic image can be displayed while a display can be employed as a waveguide for the carrier, a large screen can be manufactured, low cost, energy saving, durable holographic display and the holographic waveguide the method of generating a holographic image display adapted waveguide.

[0008] 本发明的全息波导显示器包括一个作为显示屏的波导和用来向波导输入全息图像的全息投影系统;所述波导具有光输入面及光输出平面,入射光线可在波导中传播直至其从光输出平面离开波导,光线在光输出平面上的出射位置由其在入射面上的入射点位置及入射角度共同决定。 [0008] The waveguide holographic display of the invention includes a waveguide and a display screen for inputting a holographic projection system to a waveguide holographic image; the waveguide having a light input surface and a light output plane, the incident light can propagate in the waveguide until it away from the light output plane of the waveguide, the position in the light exit plane of the light output determined by a common point of incidence position and the incident angle surface.

[0009] 所述波导的侧面初始形状为三角型,前端顶角为α,为节约材料可将前端无用部分切除,使之成为楔形,其后端为一个与正面的光输出平面成β角的光输入面。 [0009] The initial shape of the side surface of the waveguide for the triangular tip apex angle [alpha], in order to save material the front end portion may be cut unnecessary, making wedge, with its rear end to a front plane of the light output angle β light input face.

[0010] 所述波导的前半段为显示区域,后半段为影像扩散区域,影像扩散区域可折叠至显示区域背面以节省空间占用。 [0010] The first half of the waveguide a display area, an image for the second half of the diffusion region, the diffusion region of the image to the back of the foldable to save space occupied by the display region.

[0011] 所述全息投影系统包括有光源、用来对光源进行相位或强度调制并输出所需图像的光源调制模块。 [0011] The holographic projection system comprising a light source, the light source for phase modulation or intensity modulation module and outputs a desired light source image.

[0012] 所述全息投影系统还包括有位于光源与光源调制模块输入部分之间的光源扩束校正模块。 The [0012] holographic projection system further comprises a light source and the light modulation module positioned between the light source portion input beam expander correction module.

[0013] 所述全息投影系统还可包括有位于光源调制模块输出部分的图像放大校正模块。 [0013] The holographic projection system may further include a light source positioned modulating module output portion of the enlarged image correction module.

[0014] 所述全息投影系统还包括有一个控制模块,控制模块控制光源的开关及输出强弱,当光源调制模块为可变换其上显示影像的器件时,则控制模块可接受输入影像,并相应的输出全息图像至光源调制模块,且使其与光源输出相同步。 [0014] The holographic projection system further comprises a control module, the control module controls the output intensity of the light source and the switch, when the light source modulation module to be transformed on image display device, the control module receives input image, and holographic image corresponding output to the light source modulation module, and output it in synchronism with the light source.

[0015] 所述控制模块还可包括有用来将普通影像同步转换为全息图像的全息图像生成模块。 [0015] The control module further comprises an image synchronization for ordinary holographic image generation module converts the holographic image. 当控制模块包含全息图像生成模块时,其可接收普通影像,再转换为全息图像;当控制模块不包含全息图像生成模块时,其可直接接收由外部系统生成的全息图像。 When the control module comprises a holographic image generation module may receive a common image, and then converted to a holographic image; When the control module does not comprise holographic image generating module may receive a holographic image that is generated by an external system directly.

[0016] 本发明的适应于上述楔形波导的全息图像生成方法运行在上述的全息图像生成模块或外部系统中,所述全息图像生成模块或外部系统可以是单片机、数字芯片(DSP)、场可编程门阵列(FPGA)等电子芯片或电脑。 [0016] adapted to the wedge-shaped waveguide holographic image generating method of operation of the invention in the above-described holographic image generating module or an external system, the holographic image generating module or an external system may be a single chip, a digital chip (DSP), field can programmable gate array (FPGA) chip or the like electronic computer.

[0017] 本发明的适应于上述楔形波导的全息图像生成方法包括一个波导逆变换,波导逆变换包括以下步骤: [0017] The present invention is adapted to the wedge-shaped waveguide holographic image generating method comprises a waveguide inverse transform, inverse transform waveguide comprising the steps of:

[0018] (1)对所需显示的影像加入相位因子; [0018] (1) addition of the video display desired phase factor;

[0019] (2)按照不同角度的光在不同区域出射的原则将全屏幕分为一个或多个区域; [0019] (2) According to the principle of light emission in different regions at different angles of the full screen is divided into one or more regions;

[0020] (3)将对应区域的影像做傅立叶变换或傅立叶逆变换,取结果的对应波段,得到其角频谱; [0020] (3) corresponding to an image region corresponding to the bands do Fourier transform or inverse Fourier transform, the results were, which angular spectrum obtained;

[0021] (4)逆传播(3)的结果々^。 [0021] Results (4) Back Propagation (3) 々 ^. . ),传播后的角频谱 ), The angular spectrum spread

2其中k = λ /2 π,λ 为入射光的波长; 2 where k = λ / 2 π, λ is the wavelength of incident light;

[0022] (5)将An' (fx,fx)逆向旋转π/2-2ηα ;(由于全息图像对旋转角度并不敏感,在大多情况下不用旋转也可获得较满意的图像质量,因此该步骤也可省略) [0022] (5) An '(fx, fx) reverse rotation of π / 2-2ηα; (since the holographic image is not sensitive to the rotation angle, the rotation can be obtained without satisfactory image quality in most cases, so that the step may be omitted)

[0023] (6)计算并补偿由于空气波导界面及透镜系统造成的影响; [0023] (6) is calculated and compensate for the effects due to the air interface of the waveguide and the lens system caused;

[0024] (7)将所有角频谱叠加,再做傅立叶逆变换或傅立叶变换,得到空间的幅度与相位分布。 [0024] (7) the angular spectrum of the superposition of all, do an inverse Fourier transform or Fourier transform, to obtain the amplitude and phase distribution space.

[0025] 上述波导逆变换的步骤中,可以将步骤(1)和步骤(2)的次序相交换。 [0025] Step inverse transform of said wave guide, it may be the order of steps (1) and step (2) is exchanged.

[0026] 上述波导逆变换的步骤中,还可以将步骤(6)〜(7)由下列步骤替换:[0027] a.计算并补偿不同界面造成的影响; [0026] The inverse transformation step of the waveguide, it is also possible to step (6) to (7) is replaced by the following steps: [0027] a calculation and compensate for the effects caused by different interfaces;.

[0028] b.将所有角频谱叠加,再做傅立叶逆变换或傅立叶变换,得到空间的幅度与相位分布; [0028] b all angular spectrum superimposed, do an inverse Fourier transform or Fourier transform, to obtain the amplitude and phase distribution space.;

[0029] c.计算并补偿透镜系统造成的影响。 [0029] c. Compensation is calculated and the influence caused by the lens system.

[0030] 为了提高图像的显示质量,本发明的全息图像生成方法还可以是:首先将输入图像通过波导逆变换计算得出全息图,将其量化,再通过波导变换计算量化后全息图在光输出平面的幅度与相位,取其相位,并加入到原输入图像;再重新计算全息图;重复以上步骤,直至满足设定的次数后,再将得到的全息图输出至光源调制模块;所述波导变换包括以下步骤: [0030] In order to improve the display quality of an image, the holographic image generating method according to the present invention may also be: first the input image obtained by the inverse transform calculation waveguide hologram, which is quantized, and then calculates the quantized by the hologram optical waveguide conversion the amplitude and phase of the output plane, whichever phase, and added to the original input image; recalculated hologram; above steps are repeated until the set number of times is met, then the resulting hologram output module to modulate the light source; a converting waveguide comprising the steps of:

[0031] (1)对全息图像做傅立叶逆变换或傅立叶变换得到其角频谱,并划分成一个或多个波段,得到各波段角频谱; [0031] (1) to make the inverse Fourier transform hologram or its Fourier transform angular spectrum, and is divided into one or more bands, each band angular spectrum obtained;

[0032] (2)计算并补偿透镜及不同界面造成的影响; [0032] (2) calculate and compensate for influence of the lens and due to different interfaces;

[0033] (3)将(2)中得到的结果旋转π/2-2ηα ;(由于全息图像对旋转角度并不敏感, 在大多情况下不用旋转也可获得较满意的图像质量,因此该步骤也可省略) [0033] (3) Results (2) obtained in the rotation π / 2-2ηα; (since the holographic image is not sensitive to the rotation angle, the rotation can be obtained without satisfactory image quality in most cases, this step It may be omitted)

[0034] (4)传播(3)的结果An(fx,fy),传播后的角频谱 [0034] (4) propagation (3) Results An (fx, fy), the spectrum after the propagation angle

其中k= λ/2 π, λ为入射光的波长; Where k = λ / 2 π, λ is the wavelength of incident light;

[0035] (5)对各波段分别做傅立叶变换或傅立叶变换,并只取其对应区域的幅度及相位分布; [0035] (5) for each band are the Fourier transform or Fourier transform, and choose only the region corresponding to the amplitude and phase distribution;

[0036] (6)将各区域幅度及相位分布叠加得到总幅度及相位分布。 [0036] (6) The regional distribution of the amplitude and phase amplitude and phase superposition of the total distribution.

[0037] 上述波导变换的步骤中,步骤(1)〜(2)可由下列步骤替换: [0037] The step of conversion of the waveguide, the step (1) and (2) replaced by the following steps:

[0038] a.计算并补偿透镜系统造成的影响; . [0038] a compensation is calculated and the influence caused by the lens system;

[0039] b.对全息图像做傅立叶逆变换或傅立叶变换得到其角频谱,并划分成一个或多个波段,得到各波段角频谱; . [0039] b hologram made of a Fourier transform or inverse Fourier transform to obtain its angular spectrum, and is divided into one or more bands, each band angular spectrum obtained;

[0040] c.计算并补偿不同界面造成的影响。 [0040] c. Calculated and compensate for the effects caused by different interfaces.

[0041] 上述波导变换的步骤中,可将步骤(3)和(4)的顺序互换。 [0041] Step of converting said wave guide, may be a step (3) and (4) in order interchanged.

[0042] 为了进一步提高图像的显示质量,本发明的全息图像生成方法还可以对上述输出至光源调制模块的全息图像通过在短时间内快速显示多帧细微差别图像,利用人眼视觉残留效应,使其在视网膜上相叠加来减小误差,其具体步骤如下: [0042] In order to further improve the display quality of the image, the holographic image generating method according to the present invention may also be a holographic image of the output to the light source modulation module quickly in a short time by the multi-frame display image nuances, residual effects using the human vision, relative to the retina so as to reduce the error is superimposed, the specific steps are as follows:

[0043] (1)确定每帧显示图像由多少帧子图像组成,计为M ; [0043] (1) determines how many frames to display an image of each frame sub-image consists of, in terms of M;

[0044] (2)对输入图像加入相位因子,初始相位因子可取随即相位。 [0044] (2) Add phase factor to the input image, the initial phase immediately desirable phase factor. 确定每一子帧图像需迭代的次数N; Determining the number of times each sub-frame for an image iteration N;

[0045] (3)进行波导逆变换,得到所需全息图; [0045] (3) waveguide inverse transform, to give the desired hologram;

[0046] (4)根据所使用空间光调制器件对全息图进行量化,得到可在其上显示的量化全息图; [0046] (4) depending on the spatial light modulator device of the hologram is quantized to obtain quantized holograms may be displayed thereon;

[0047] (5)判断是否达到迭代次数,若是则运行步骤(6),若否则运行波导变换,得到 [0047] (5) determines whether the number of iterations is reached, if the operation step (6), if the waveguide is otherwise run transformation,

量化全息图对应的显示图像的幅度与相位分布,取其相位,加到原输入图像,并跳回步骤⑶; The amplitude and phase of the display image corresponding to the hologram distribution of quantization, whichever phase, was added to the original input image, and jumps back to step ⑶;

[0048] (6)将量化全息图作为一个子帧显示在光源调制模块上; [0048] (6) The hologram is quantized sub-frame display as a modulation on the light source module;

[0049] (7)判断是否完成此图像所有子帧的显示,若是则输入下一帧图像,跳回步骤(1);若否则运行波导变换,将所得图像的幅度与原输入图像的幅度进行比较,根据所得误差对原输入图像的强度进行修改,再跳回步骤(2)。 [0049] (7) determines whether the image display is completed for all sub-frames, if the input of the next frame image, jumps back to step (1); if otherwise, the waveguide conversion operation, the amplitude of the amplitude of the resulting image and the original input image comparison, to modify the original input intensity image according to the obtained error, and then jumps back to step (2).

[0050] 本发明的全息波导显示器相比与普通投影仪,具有体积小,成本低,节能环保,稳定不易损坏等优点。 [0050] The waveguide holographic display of the present invention compared with the conventional projector having a small size, low cost, energy saving, easy to damage stability advantages. 相比普通全息投影技术,本发明与波导显示相结合,使产品具有了屏幕,省去了投影仪所需的光路空间,而在外形及使用上与普通平板显示器无异。 Compared to ordinary holographic projection technology, the present invention is combined with the waveguide display, so that products with the screen, eliminating the need for the projector optical path space, and in the appearance and use no different from ordinary flat panel display. 此外与波导相结合可以使产品具有被改造成触摸屏,透明显示器,三维显示器等等未来应用的空间。 Furthermore the combination of the waveguide can be transformed into products with a touch screen, transparent display, like three-dimensional display space for future applications.

附图说明 BRIEF DESCRIPTION

[0051] 图1是显示了波导侧面结构的本发明的全息波导显示器实施例的结构示意图; [0051] FIG. 1 is a schematic diagram showing the structure of an embodiment of the present invention display a holographic waveguide side structure of the waveguide;

[0052] 图2是图1的俯视结构示意图; [0052] FIG. 2 is a schematic top view of the structure of Figure 1;

[0053] 图3是显示了波导侧面结构的本发明的全息波导显示器另一实施例的结构示意图; [0053] FIG. 3 is a schematic diagram showing the structure of another embodiment of a holographic display of the present invention, the waveguide side structure of the waveguide;

[0054] 图4是图3的俯视结构示意图; [0054] FIG. 4 is a schematic top view of the structure of Figure 3;

[0055] 图5是本发明一个实施例的全息投影系统原理图; [0055] FIG. 5 is a holographic projection system schematic diagram of an embodiment of the present invention;

[0056] 图6是本发明另一实施例的全息投影系统原理图; [0056] FIG. 6 is a holographic projection system diagram according to another embodiment of the present invention;

[0057] 图7是图6所示原理图的一种可实施的光路图; [0057] FIG. 7 is an embodiment schematic diagram of an optical path diagram shown in Figure 6;

[0058] 图8是楔形波导的全息图像生成原理图; [0058] FIG. 8 is a wedge-shaped waveguide holographic image generating schematic;

[0059] 图9是波导逆变换的流程图; [0059] FIG. 9 is a flowchart of an inverse transform of the waveguide;

[0060] 图10是波导变换的流程图; [0060] FIG. 10 is a flowchart of converting a waveguide;

[0061] 图11是一种减小全息图像误差的方法的原理图。 [0061] FIG. 11 is a holographic method for reducing image errors in a schematic diagram.

具体实施方式 Detailed ways

[0062] 如图1、2所示,本发明实施例的全息波导显示器包括一个作为显示屏的波导11 和用来向波导输入全息图像的全息投影系统12。 [0062] Figures 1 and 2, the hologram display of the embodiment of the waveguide of the present invention comprises a waveguide 11 and a display screen for inputting into the waveguide hologram holographic projection system 12. 波导的形状可如图1所示,侧面初始形状为三角型,其前端顶角为α,为节约材料可将前端无用部分切除,使之成为楔形,为便于光入射,波导后端经计算后可设计成一与出射面成β角的平面。 Shape of the waveguide may be as shown, the side of the triangular initial shape, the tip apex angle [alpha], in order to save material the front end portion may be cut unnecessary, making the wedge, for ease of incident light, the rear end of the waveguide 1 calculated It may be designed as a planar surface and an exit angle β. 其俯视图可为长方形,三角形,或其它便于显示的形状。 A plan view thereof may be rectangular, triangular, or other shape to facilitate display. 其后半部作为影像扩散区域111 (光传播区域),前半部作为显示区域112用来显示影像。 Thereafter halves diffusion region 111 as a video (optical propagation region), the front half as a display area 112 for displaying an image. 其中后半部也可折叠到前半部背面从而节省空间(如图3、 图4)),使波导显示器形状与普通平板显示器无异,其中影像扩散区域与屏幕之间有一层界面,可为空气或特殊介质,以确保光在此界面上只反射而不出射。 Wherein the rear half of the back of the front half can also be folded to save space (FIG. 3, FIG. 4)), so that the shape of the waveguide display no different from ordinary flat panel display, a layer wherein the interface between the diffusion region and the image screen, may be air or special media to ensure that only the light reflected on this interface without exiting. 在屏幕表面可镀上一层增透膜(抗反射薄膜),以确保光达到出射角度后能全部出射,消除因二次反射对影像造成的影响。 In the screen surface may be coated with a layer antireflection film (antireflection film), to ensure that the light can reach the exit angle of all outgoing, eliminate the influence by the reflection of the secondary image caused.

[0063] 如图5、图6所示,全息投影系统包括下列部分: [0063] As shown in FIG 5, as shown in FIG, 6 holographic projection system comprises the following parts:

[0064] 光源:光源采用单色光源,例如激光或光电二极管。 [0064] source: monochromatic light source, such as a laser or a photodiode. 通过使用红,绿,篮三种单色光源,即可得到彩色图像。 By the use of red, green, and blue three kinds of monochromatic light source, a color image can be obtained.

[0065] 光源扩束校正模块及图像放大校正模块:它们用于将激光扩束和校正以及对光源调制模块的输出影像进行放大和校正。 [0065] The light beam expander to enlarge the image correction module and correction module: They are used for correcting the beam expander and the output of the video source and modulation module for amplifying and correction. 例如可将扩束后的光源校正为平行光用来照射光调制模块,并使用透镜系统来放大输出的全息图。 The light source can be corrected, for example, the parallel light beam expander is used to illuminate the optical modulator module, and a lens system to output amplified hologram.

[0066] 光源调制模块:此模块用来对光源进行相位或强度调制并输出所需图像。 [0066] The light modulation module: This module is used for light intensity or phase modulation and the desired output image. 其可采用硅上液晶系统芯片(LCOS),数字微镜元件(DMD),或全息照片,光栅阵列等。 Which can be a silicon chip liquid crystal system (LCOS), digital micromirror device (the DMD), or a hologram, grating arrays. 若采用硅上液晶系统芯片(LCOS),数字微镜元件(DMD)等器件,则其上显示的全息图可通过控制模块进行高速切换,从而实现动态视频流的输出。 If the hologram chip system using liquid crystal on silicon (LCOS), digital micromirror device (DMD) and other devices, it may be displayed on the high-speed switching by the control module to achieve dynamic video output stream.

[0067] 控制模块:控制模块用于控制光源的开关及输出强弱,其可由单片机,数字芯片(DSP),场可编程门阵列(FPGA)等电子芯片及电路构成。 [0067] Control module: module for controlling the switch, and an output intensity of the light source, which may be microcontroller, digital chip (DSP), field programmable gate array (FPGA) chip and the electronic circuit. 若空间光调制模块采用硅上液晶系统芯片(LCOS),数字微镜元件(DMD)等可实现变换其上显示影像的器件,则控制模块将接受输入影像,并相应的输出全息图至空间光调制模块,且使其与光源输出相同步。 If the spatial light modulator module system using liquid crystal on silicon chips (LCOS), digital micromirror device (DMD) and the like which may be implemented on the transformed image display device, the control module will receive the input image, and the corresponding output to the spatial light hologram modulation module, and output it in synchronism with the light source. 此外, 若输入为普通影像,则控制模块将包含全息图生成模块,实现普通视频至全息图的实时同步转换后,再将生成的全息图输出至空间光调制模块,并保持光源与其同步(如图5)。 Further, if the input image is normal, the control module comprising a module generating a hologram, to achieve the normal video holograms in real-time synchronous conversion, and then outputs the generated hologram to the spatial light modulator module, and holding the light source in synchronization with (e.g. Figure 5). 若控制模块的输入为全息影像,则此模块可不含有全息图转换模块。 If the input control module hologram, the hologram containing this module may conversion module. 控制模块直接将输入全息影像输出到空间光调制模块,并使光源强弱与相应影像保持同步(如图6),而普通视频流至全息图视频流的转换过程可由外部的计算机完成。 Directly to the input control module hologram module output to a spatial light modulator, the light source intensity and the corresponding synchronized image (FIG. 6), the conversion process to the normal video stream of the video stream by the hologram external computer is completed.

[0068] 图7所示为图5所示原理图的一种可行的具体实现光路。 5 is a schematic diagram shown in FIG. [0068] Figure 7 a practical realization the optical path. 其中光源使用红、绿、篮三种单色激光,光源扩束校正及图像放大校正模块由透镜1〜透镜5构成。 Wherein the light source of red, green, and blue three kinds of monochromatic laser light source beam expander to enlarge the image correction and lens correction module is constituted by the lens 1 ~ 5. 透镜1、2、3为光源校正透镜,使相应光源由非平面波转换为平面波。 1,2,3 lens correction lens as a light source, the light source is converted by the corresponding non-planar wave as a plane wave. 透镜4,5构成反向望远镜结构,用于放大光源调制模块输出的全息影像。 4 and 5 which reverse telescope lens structure, the light source modulation module for amplifying the output of the hologram. 空间光调制模块使用硅上液晶系统芯片(LCOS)加入偏振片后可实现对光的相位调制。 The spatial light modulator module system using liquid crystal on silicon chips (LCOS) can achieve phase modulation of light after addition of the polarizer. 控制模块使用数字芯片(DSP)或场可编程门阵列(FPGA), 实现将输入的普通影像实时同步转换为全息图像的功能,并同步光源与全息图像的输出。 The control module using a digital chip (DSP) or a field programmable gate array (the FPGA), to achieve the normal video input real-time synchronization function of converting a holographic image, and a light source output in synchronization with the holographic image.

[0069] 可有多种光路实现图5或6的原理,图7仅为其中一种方案。 [0069] There may be a variety of optical path to achieve the principles of FIG. 5 or 6, FIG. 7 only one embodiment. 图5或6的原理也可通过每种颜色的激光各配置一个光源调制器件而实现,例如整个系统中含有3块硅上液晶系统芯片(LCOS)分别调制红、绿、篮三种光源从而提高图像质量。 Schematic 5 or 6 may also be configured each by a laser light source for each color modulation device is achieved, for example, the entire system is contained on the system chip 3 liquid crystal on silicon (LCOS) modulators respectively red, green, and blue three light thereby improving Image Quality.

[0070] 光在波导中的传播不同于自由空间中的传播方式。 [0070] The light propagation in the waveguide propagation mode different from that in free space. 因此波导中的全息图生成也将区别与自由空间中的生成方法。 Thus generated waveguide hologram generation method will be different from the free space. 本发明的楔形结构的波导,不同角度的入射光可被等效成投影在旋转不同角度的出射平面上。 The wedge structure of the waveguide of the present invention, the different angles of incident light may be projected to be equivalent in different angles of rotation of the exit plane. 图8为楔形波导的侧视图,其表面有镀膜,波导顶角为α,高为H,长为L。 FIG 8 is a side view of the wedge-shaped waveguide, its surface coating, the waveguide apex angle [alpha], height H, length L. 光进入波导后入射角为θ,经计算,角度属于(0in,θίη+2α]的光的投影可等效于投影在旋转2ma后的波导表面上,而角度属于(θίη-2α,θ J的光等效于投影在旋转2(m+l) α后的波导表面上。 After the incident angle of light into the waveguide [theta], it is calculated, the angle belongs (0in, projection θίη + 2α] may be equivalent to light on a projection surface of the waveguide 2ma after rotation, and the angle belongs (θίη-2α, θ J of It is equivalent to the light projected on the rotation 2 (m + l) of the waveguide surface after α.

[0071] 图9为一种生成波导全息图像的方法,本发明中称为波导逆变换。 [0071] FIG. 9 is a method of generating a holographic image of the waveguide, the waveguide according to the present invention is referred to an inverse transform. 其步骤如下: It comprises the following steps:

[0072] 1.对所需显示的影像T(x,y)加入相位因子T(x,y) Xeji>(x'y),初始相位因子Φ (χ, y)可为随机相位; [0072] 1. Image T (x, y) is added the desired display phase factor T (x, y) Xeji> (x'y), the initial phase factor Φ (χ, y) may be a random phase;

[0073] 2.按照不同角度的光在不同区域出射的原则将全屏幕分为N个区域(区域间可 [0073] 2. The principle of light emission in different regions at different angles of the full screen is divided into N regions (interregional may

部分重叠,即不同角度的入射光因入射点不同而在屏幕上同一点出射),分别对应角频谱上 Partially overlapping, i.e. different angles of incident light due to the incident point differs with the exit point on the screen), respectively corresponding to the angular spectrum

N 个波段 N bands

,其中= ; : p 起空间滤波 Wherein =;: p spatial filtering from

0 (υ) € Rn 0 (υ) € Rn

器作用,Rn为对应的屏幕区域; Acting, Rn corresponding area of ​​the screen;

[0074] 3.将区域η的影像做傅立叶变换或傅立叶逆变换,并只取结果的η波段,得到其角频谱,An(fx,fy) = F{Tn(x, y)}XQn(fx, fy),其中F{}其中为傅立叶或傅立叶逆变换, [0074] 3. The region η images do η band Fourier transform or inverse Fourier transform, and taking only the results obtained which angular spectrum, An (fx, fy) = F {Tn (x, y)} XQn (fx, FY), where F {} is Fourier or wherein inverse Fourier transform,

Λ (fx,fv)eS„ Λ (fx, fv) eS "

Qn(LJy) = X0 JJ)^ S,起角谱滤波器的作用,Sn为对应的波段;[0075] 4.逆传播An(fx,fy)。 Qn (LJy) = X0 JJ) ^ S, act as angular spectral filter, Sn corresponding band; [0075] 4. Back Propagation An (fx, fy). 传播后的角频谱4 Angular spread spectrum after 4

其中k = λ /2 π,λ为入射光的波长; Where k = λ / 2 π, λ is the wavelength of incident light;

[0076] 5.计算An' (fx,fx)逆向旋转π/2-2ηα后的结果(若旋转角度不大,此步骤也可省略); [0076] 5. Calculate An '(fx, fx) after the result of reverse rotation π / 2-2ηα (when the rotation angle is not, this step may be omitted);

[0077] 6.计算并补偿空由于空气波导界面及透镜系统造成的影响; [0077] 6. calculate and compensate for effects due to the air space of the waveguide and the lens system caused by the interface;

[0078] 7.将所有角频谱叠加,再做傅立叶逆变换或傅立叶变换,得到空间的幅度与相位分布。 [0078] 7. The angular spectrum of the superposition of all, do an inverse Fourier transform or Fourier transform, to obtain the amplitude and phase distribution space.

[0079] 此方法中步骤的顺序可做出调整,以适应不同系统。 Sequence [0079] This process step may be to make adjustments to adapt to different systems. 最后选择幅度或相位之一并根据所使用的空间光调制器量化生成全息图,例如,对于二元相位调制的空间光调制器,一种量化方法是采取令所有相位大于0的点取π /2,小于0的点取_ π /2,从而得到一张二元全息图。 Finally, select one of the amplitude or phase hologram and generates quantized spatial light modulator is used, for example, the spatial light modulator for binary phase modulation of a quantization method is adopted that all the phases greater than 0 point to take π / 2, point of less than 0 is taken _ π / 2, thereby obtaining a Binary hologram.

[0080] 步骤3,4,6在数学上可表示为 [0080] Step 3,4,6 mathematically can be expressed as

[0081 ] [0081]

[0082] [0082]

[0083] 其中*为卷积运算,因为 [0083] where * is the convolution operation, since

与具体图像无关,所以可事 Has nothing to do with the specific image, it is possible to do

先计算并存储,所以可使用一次卷积计算代替两次傅立叶变换,从而提高运算速度。 To calculate and store, it can be used once instead of twice convoluting the Fourier transform, thereby increasing processing speed.

[0084] 另外上述方法可逆,只需进行些微修改,便可得计算全息图在屏幕显示的波导变换(图10): [0084] Further the method described above is reversible only be slightly modified, can be calculated to obtain the hologram screen conversion waveguide (FIG. 10):

[0085] (1)对全息图做傅立叶逆变换或傅立叶变换得到其角频谱,并划分成一个或多个波段,得到各波段角频谱; [0085] (1) hologram to make the inverse Fourier transform or Fourier transform its angular spectrum, and is divided into one or more bands, each band angular spectrum obtained;

[0086] (2)计算并补偿透镜及不同界面造成的影响; [0086] (2) calculate and compensate for influence of the lens and due to different interfaces;

[0087] (3)将(2)中得到的结果旋转π/2-2ηα (若旋转角度不大,此步骤也可省略); [0087] (3) The result of the rotation (2) obtained in the π / 2-2ηα (when the rotation angle is not, this step may be omitted);

[0088] (4)传播(3)的结果An(fx,fy), 得角频谱 [0088] (4) propagation (3) Results An (fx, fy), angular spectrum obtained

为入射光的波长; It is a wavelength of incident light;

[0089] (5)对各波段分别做傅立叶变换或傅立叶变换,并只取其对应区域的幅度及相位分布; [0089] (5) for each band are the Fourier transform or Fourier transform, and choose only the region corresponding to the amplitude and phase distribution;

[0090] (6)将各区域幅度及相位分布叠加得到总幅度及相位分布。 [0090] (6) The regional distribution of the amplitude and phase amplitude and phase superposition of the total distribution.

[0091] 上述步骤的顺序可根据情况调整。 [0091] The order of the above steps can be adjusted according to the situation.

[0092] 量化过程将产生误差,为提高图像质量,可利用人眼的视觉残留效应以及电子空间光调制器的高刷新率来实现图像的快速显示来减小由于全息图在电子空间光调制器上量化而造成的误差。 [0092] The quantization process will generate an error, to improve image quality, with a high refresh rate can be visually residual effects of the human eye and electronic spatial light modulator to display an image fast because the hologram to reduce an electronic spatial light modulator the quantization error caused. 例如,一块刷新率为每秒1024赫兹的硅上液晶系统芯片(LC0S),每秒可显示1024帧图像,按普通视频一秒24帧图像记,则每帧图像可由42帧子图像组成,子图像间存在细微差别以弥补彼此间的误差,由于人眼的视觉残留效应,最后观测到的图像将具有很高的质量。 For example, a refresh rate of 1024 Hz per second on a silicon chip liquid crystal system (LC0S), frame image 1024 may be displayed per second, one second as ordinary video image 24 in mind, each frame image may be composed of 42 sub-images, the sub- slight differences between the images to compensate for the error between each other, since the effect of the human eye's persistence of vision, the final observed image of a high quality. (专利申请CN101310225A中介绍了一种在自由空间中二维全息投影的象差校正方法。本发明中所使用的相差校正基于波导变换而非简单的傅立叶变换,与其存在明显不同),本发明的波导全息图校正方法如图11 : (CN101310225A patent application introduces a method for the two-dimensional aberration correction holographic projection in free space. The present invention is based on the use of deskew waveguide transform rather than simply the Fourier transform, their differences exist), the present invention The method of correcting the waveguide holograms 11:

[0093] 1.输入一帧新图像,确定其由多少帧子图像组成,计为M[0094] 2.对输入图像加入相位因子,初始相位因子可取随即相位。 [0093] 1. Enter a new image, which determines how many sub-image consists of a frame, in terms of M [0094] 2. Add phase factor to the input image, the initial phase immediately desirable phase factor. 确定计算每一子帧图像需迭代的次数N。 Determining the number of times each sub-frame image is calculated for an iteration N.

[0095] 3.进行波导逆变换,得到所需全息图 [0095] 3. waveguide inverse transform, to give the desired hologram

[0096] 4.根据空间光调制器件进行全息图量化,得到可在其上显示的量化全息图 [0096] 4. The hologram quantized spatial light modulation device, to give quantifiable hologram display thereon

[0097] 5.判断是否达到迭代次数,若是则运行步骤6,若否则运行波导变换,得到量化全息图所对应显示图像的幅度与相位分布,取相位分布,加到2中输入图像,并跳回步骤3 [0097] The determining whether the number of iterations, step 6 if you run, or running if the waveguide transform, quantization corresponding to the hologram display the amplitude and phase distribution of the image, taking the phase distribution added to the input image 2, and jumping back to step 3

[0098] 6.将量化全息图作为一个子帧显示在空间光调制器上 [0098] 6. The hologram as a quantized sub-frame display on a spatial light modulator

[0099] 7.判断是否完成此图像所有子帧的显示,若是则输入下一帧图像,跳回步骤1。 [0099] 7. determined whether or not the image display all sub-frames, if the input of the next frame image, jumps back to step 1. 若否则运行波导变换,将所得图像的幅度与原输入图像的幅度进行比较,根据所得误差通过特殊方法对原输入图像的强度进行细微修改,再跳回步骤2。 Otherwise, if the waveguide conversion operation, the amplitude of the amplitude of the resulting image and the original input image comparison, minor modifications of the original intensity image according to the input error obtained by a special method, and then jumps back to step 2.

[0100] 步骤2至5类似计算普通全息图时可采用的盖师贝格-撒克斯通(Gerchberg-Saxton)或刘-泰(Liu-Taghizadeh)方法,利用相位自由度,通过迭代来优化相位,从而得到质量更高的全息图。 2-5 may be employed when a similar [0100] Step calculating Normal Normal hologram cover Berg - Thacker Stone (Gerchberg-Saxton) or Liu - Thailand (Liu-Taghizadeh) method, using phase freedom optimized by an iterative phase, resulting in higher quality of the hologram. 步骤7实现将量化产生的误差反馈给输入图像,并通过特殊方法来修改下一子帧所显示的图像,以期弥补当前子帧图像的误差。 Step 7 to achieve error feedback generated quantized input image, and modify the sub-image of the next frame is displayed in a special way in order to compensate the error of the current sub-frame image.

Claims (17)

  1. 一种全息波导显示器,其特征是:它包括一个作为显示屏的波导(11)和用来向波导输入全息图像的全息投影系统(12);所述波导具有光输入面及光输出平面,入射光线可在波导中传播直至其从光输出平面离开波导,光线在光输出平面上的出射位置由其在入射面上的入射点位置及入射角度共同决定。 A holographic display waveguide, characterized in that: it comprises a waveguide as a display screen (11) and a holographic projection system is used to enter (12) to guide the holographic image; the waveguide having a light input surface and a light output plane, the incident light can propagate until it exits the light output from the plane of the waveguide in the waveguide, the position in the light exit plane of the light output determined by a common point of incidence position and the incident angle surface.
  2. 2.根据权利要求1所述的全息波导显示器,其特征是:所述波导的侧面形状为楔形,其后端为光输入面,正面为光输出平面。 The waveguide hologram display according to claim 1, characterized in that: said waveguide is wedge-shaped side shape, a rear end of the light input face, a front light output plane.
  3. 3.根据权利要求2所述的全息波导显示器,其特征是:根据所述波导的前半段为显示区域(112),后半段为影像扩散区域(111),影像扩散区域折叠至显示区域背面。 3. The waveguide hologram display according to claim 2, characterized in that: a front half of the display area of ​​the waveguide (112), the second half of an image diffusion region (111), a diffusion region of the image to the display area is folded back surface .
  4. 4.根据权利要求1〜3之一所述的全息波导显示器,其特征是:所述全息投影系统包括有光源、用来对光源进行相位或强度调制并输出所需图像的光源调制模块。 Waveguide according to claim holographic display according to one of ~ 3, wherein: the holographic projection system comprising a light source for the light source is intensity-modulated or phase-modulated light source module and outputs a desired image.
  5. 5.根据权利要求4所述的全息波导显示器,其特征是:所述全息投影系统包括有位于光源与光源调制模块输入部分之间的光源扩束校正模块。 5. The waveguide holographic display of claim 4, wherein: the holographic projection system includes a light source positioned between the light source and the light modulation module of the expander portion correction module input.
  6. 6.根据权利要求4所述的全息波导显示器,其特征是:所述全息投影系统包括有位于光源调制模块输出部分的图像放大校正模块。 6. The waveguide holographic display of claim 4, wherein: the holographic projection system includes a light source positioned modulating module outputs an enlarged image portion correction module.
  7. 7.根据权利要求4所述的全息波导显示器,其特征是:所述全息投影系统还包括有一个控制模块,控制模块控制光源的开关及输出强弱,当光源调制模块为可变换其上显示影像的器件时,则控制模块可接受输入影像,并相应的输出全息图像至光源调制模块,且使其与光源输出相同步。 7. The waveguide holographic display of claim 4, wherein: the holographic projection system further comprises a control module, the control module controls the switch and the output intensity of the light source, the light source when the modulating module is switchable on display when the image device, the control module receives input image, and outputs corresponding to the light source modulation hologram module, and output it in synchronism with the light source.
  8. 8.根据权利要求7所述的全息波导显示器,其特征是:所述控制模块包括有用来将普通影像同步转换为全息图像的全息图像生成模块。 8. The waveguide hologram display according to claim 7, wherein: said control module comprises a normal image is used to synchronize a holographic image generation module converts the holographic image.
  9. 9. 一种适应于权利要求2或3所述波导显示器的全息图像生成方法,其特征是:它包括一个波导逆变换,波导逆变换包括以下步骤:(1)对所需显示的影像加入相位因子;(2)按照不同角度的光在不同区域出射的原则将全屏幕分为一个或多个区域;(3)将对应区域的影像做傅立叶变换或傅立叶逆变换,取结果的对应波段,得到其角频谱;(4)逆传播(3)的结果An(fx,fy),传播后的角频谱An(ZxJx)=式(y;'y;)xZsin2"Wi-(从)2-(场)2 其中k = χ /2 Ή,χ 为入射光的波长;(5)将 kn' (fx, fx)逆向旋转π /2-2η α ;(6)计算并补偿由于空气波导界面及透镜系统造成的影响;(7)将所有角频谱叠加,再做傅立叶逆变换或傅立叶变换,得到空间的幅度与相位分布。 A hologram is adapted to generating method of claim 23 or the display waveguide claims, characterized in that: it comprises a waveguide inverse transform, inverse transform waveguide comprising the steps of: (1) addition of the video display desired phase factor; (2) according to the principle of light emission in different regions at different angles of the full screen is divided into one or more regions; (3) the image region corresponding to the Fourier transform or inverse Fourier transform, the results were bands corresponding to afford its angular spectrum; (4) back propagation (3) results An (fx, fy), the angular spread spectrum An (ZxJx) = formula (y; 'y;) xZsin2 "Wi- (from) 2- (field) 2 where k = χ / 2 Ή, χ is the wavelength of incident light; and kn '(fx, fx) reverse rotation of π / 2-2η α (5); (6) calculates the compensation and cause the air interface of the waveguide and the lens system effects; (7) the angular spectrum of the superposition of all, do an inverse Fourier transform or Fourier transform, to obtain the amplitude and phase distribution space.
  10. 10.根据权利要求9所述的适应于权利要求2或3所述波导显示器的全息图像生成方法,其特征是:所述的波导逆变换是在其步骤中将所述的步骤(5)省略。 According to claim 9 adapted to the holographic image generating method according to claim 23 of the waveguide display, as claimed in claim wherein: said waveguide is in the inverse transform steps in said step (5) is omitted .
  11. 11.根据权利要求9所述的适应于权利要求2或3所述波导显示器的全息图像生成方法,其特征是:所述的波导逆变换是在其步骤中将步骤(1)和步骤(2)的次序相交换。 According to claim 9 adapted to the holographic image generating method according to claim 23 of the waveguide display, as claimed in claim wherein: said waveguide is in the inverse transform step in the steps (1) and (2 ) exchanged order.
  12. 12.根据权利要求9所述的适应于权利要求2或3所述波导显示器的全息图像生成方法,其特征是:所述的波导逆变换是在其步骤中将步骤(6)〜(7)由下列步骤替换:a.计算并补偿不同界面造成的影响;b.将所有角频谱叠加,再做傅立叶逆变换或傅立叶变换,得到空间的幅度与相位分布;c.计算并补偿透镜系统造成的影响。 According to claim 9 adapted to the holographic image generating method of claim 23 or the display waveguide claims, characterized in that: said waveguide is in the inverse transform step in the step of (6) to (7) Alternatively by the following steps:. a compensation is calculated and the impact of the different interfaces; B all angular spectrum superimposed, do an inverse Fourier transform or Fourier transform, to obtain the amplitude and phase distribution space; C and calculating the compensation caused by the lens system. influences.
  13. 13. —种适应于权利要求2或3所述波导显示器的全息图像生成方法,其特征是:首先将输入图像按照权利要求9〜12之一所述的波导逆变换计算得出全息图,将其量化,再通过波导变换计算量化后全息图在光输出平面的幅度与相位,取其相位,并加入到原输入图像;再重新计算全息图;重复以上步骤,直至满足设定的次数后,再将得到的全息图输出至光源调制模块;所述波导变换包括以下步骤:(1)对全息图像做傅立叶逆变换或傅立叶变换得到其角频谱,并划分成一个或多个波段,得到各波段角频谱;(2)计算并补偿透镜及不同界面造成的影响;(3)将(2)中得到的结果旋转π/2-2ηα ;(4)传播(3)的结果々^^,^),传播后的角频谱AXfxJx)=式(人,力)xe_购Μ—丨_(从)2_(场)2其中k = χ /2 π,λ为入射光的波长;(5)对各波段分别做傅立叶变换或傅立叶变换,并只取其对应 13. - adapted to the kind of the holographic image generating method of claim 23 or the display waveguide claims, characterized in that: the first input image as claimed in any one of the inverse transform calculating claims 9~12 waveguide hologram obtained, the its quantized, and then the hologram is calculated by converting the light waveguide outputs the quantized amplitude and phase plane, whichever phase, and added to the original input image; recalculated hologram; above steps are repeated until the set number of times met, then the resulting hologram output module to modulate the light source; converting the waveguide comprising the steps of: (1) to make the inverse Fourier transform hologram or its Fourier transform to obtain the angular spectrum, and is divided into one or more bands, each band obtained angle spectrum; (2) calculate and compensate for influence of the lens and cause different interfaces; and (3) the result (2) obtained in the rotation π / 2-2ηα; (4) propagation (3) results 々 ^^, ^), spread spectrum angle after AXfxJx) = formula (human force) xe_ available Μ- Shu _ (from) 2_ (field) 2 where k = χ / 2 π, λ is the wavelength of incident light; (5) for each band They are the Fourier transform or Fourier transform, and finish with the corresponding 区域的幅度及相位分布;(6)将各区域幅度及相位分布叠加得到总幅度及相位分布。 Amplitude and phase distribution in the region; (6) the amplitude and phase of the regional distribution of the total amplitude and superposition phase distribution.
  14. 14.根据权利要求13所述的适应于权利要求2或3所述波导显示器的全息图像生成方法,其特征是:所述的波导变换是在其步骤中将步骤(3)省略。 According to claim 13 adapted to the holographic image generating method as claimed in claim 2 or claim 3 monitor waveguide, wherein: said waveguide is omitted in the step of conversion in the step (3).
  15. 15.根据权利要求13所述的适应于权利要求2或3所述波导显示器的全息图像生成方法,其特征是:所述的波导变换是在其步骤中将步骤(1)〜(2)由下列步骤替换:a.计算并补偿透镜系统造成的影响;b.对全息图像做傅立叶逆变换或傅立叶变换得到其角频谱,并划分成一个或多个波段,得到各波段角频谱;c.计算并补偿不同界面造成的影响。 According to claim 13 adapted to the holographic image generating method of claim 23 or the display waveguide claims, characterized in that: said waveguide is a step in the conversion steps (1) - (2) following steps in place: a calculation and compensate for the effects of the lens system caused; b. holographic image make the inverse Fourier transform or Fourier transform its angular spectrum, and is divided into one or more bands, to give each band angular spectrum; C is calculated and... compensate for the effects caused by different interfaces.
  16. 16.根据权利要求13所述的适应于权利要求2或3所述波导显示器的全息图像生成方法,其特征是:所述的波导变换是在其步骤中将步骤(3)和⑷的顺序互换。 According to claim 13 adapted to the holographic image generating method as claimed in claim 2 or claim 3 monitor waveguide, wherein: said waveguides are mutually transform (3) and the step in the sequence in which ⑷ step change.
  17. 17.根据权利要求13〜16之一所述的全息图像生成方法,其特征是:对输出至光源调制模块的全息图像,进行进行如下步骤的处理:(1)确定每帧显示图像由多少帧子图像组成,计为M ;(2)对输入图像加入相位因子,初始相位因子可取随即相位。 17. A holographic image generating method according to any one of claims 13~16, wherein: modulating the light source output to the hologram module performs the following processing steps: (1) determining a frame number of each frame of an image displayed by the sub-picture composition, in terms of M; (2) added to the input image phase factor, then the initial phase of the phase factor is desirable. 确定每一子帧图像需迭代的次数N;(3)进行波导逆变换,得到所需全息图;(4)根据所使用空间光调制器件对全息图进行量化,得到可在其上显示的量化全息图; Determining whether each sub-frame for an image of the number of iterations N; (3) perform an inverse transform of the waveguide, to give the desired hologram; (4) The hologram is quantized spatial light modulation device is used, can be quantified displayed thereon holograms; (5)判断是否达到迭代次数,若是则运行步骤(6),若否则运行波导变换,得到量化全息图对应的显示图像的幅度与相位分布,取其相位,加到原输入图像,并跳回步骤(3);(6)将量化全息图作为一个子帧显示在光源调制模块上;(7)判断是否完成此图像所有子帧的显示,若是则输入下一帧图像,跳回步骤(1);若否则运行波导变换,将所得图像的幅度与原输入图像的幅度进行比较,根据所得误差对原输入图像的强度进行修改,再跳回步骤(2)。 (5) determines whether the number of iterations is reached, if the operation step (6), if no, the waveguide conversion operation, to obtain the amplitude and phase distribution of the display image corresponding to the hologram quantization, whichever phase, was added to the original input image, and jump back step (3); (6) as a hologram is quantized sub-frame display module on the light source modulation; (7) determined whether all of the image sub-frame display, if the input of the next frame image, jumps back to step (1 ); if otherwise, the waveguide conversion operation, the amplitude of the amplitude of the resulting image and comparing the original input image, to modify the original input intensity image according to the obtained error, and then jumps back to step (2).
CN 201010191189 2010-06-04 2010-06-04 Holographical wave guide display and generation method of holographical image thereof CN101881936B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010191189 CN101881936B (en) 2010-06-04 2010-06-04 Holographical wave guide display and generation method of holographical image thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 201010191189 CN101881936B (en) 2010-06-04 2010-06-04 Holographical wave guide display and generation method of holographical image thereof
PCT/CN2011/075268 WO2011150863A1 (en) 2010-06-04 2011-06-03 Holographic wave guide display and generation method of holographic image thereof

Publications (2)

Publication Number Publication Date
CN101881936A true CN101881936A (en) 2010-11-10
CN101881936B CN101881936B (en) 2013-12-25

Family

ID=43053972

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010191189 CN101881936B (en) 2010-06-04 2010-06-04 Holographical wave guide display and generation method of holographical image thereof

Country Status (2)

Country Link
CN (1) CN101881936B (en)
WO (1) WO2011150863A1 (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011150863A1 (en) * 2010-06-04 2011-12-08 江苏慧光电子科技有限公司 Holographic wave guide display and generation method of holographic image thereof
WO2012006952A1 (en) * 2010-07-14 2012-01-19 Tan Shunyi Optical system
WO2012079469A1 (en) * 2010-12-18 2012-06-21 Tan Shunyi Holograph generating method
CN103323947A (en) * 2012-03-19 2013-09-25 江苏慧光电子科技有限公司 Head up display device based on laser holographic projection imaging
WO2013178029A1 (en) * 2012-05-29 2013-12-05 Yang Wenjun Planar waveguide display and system
CN103562802A (en) * 2012-04-25 2014-02-05 罗克韦尔柯林斯公司 Holographic wide angle display
CN103885184A (en) * 2014-04-10 2014-06-25 北京理工大学 Projection type planar waveguide helmet-mounted displayer
CN104035157A (en) * 2014-05-26 2014-09-10 北京理工大学 Waveguide display based on diffractive optical element
CN104205037A (en) * 2012-03-23 2014-12-10 微软公司 Light guide display and field of view
WO2015000380A1 (en) * 2013-07-04 2015-01-08 杨文君 Method for manufacturing display screen
US9244280B1 (en) 2014-03-25 2016-01-26 Rockwell Collins, Inc. Near eye display system and method for display enhancement or redundancy
US9244281B1 (en) 2013-09-26 2016-01-26 Rockwell Collins, Inc. Display system and method using a detached combiner
US9274339B1 (en) 2010-02-04 2016-03-01 Rockwell Collins, Inc. Worn display system and method without requiring real time tracking for boresight precision
US9507150B1 (en) 2011-09-30 2016-11-29 Rockwell Collins, Inc. Head up display (HUD) using a bent waveguide assembly
US9519089B1 (en) 2014-01-30 2016-12-13 Rockwell Collins, Inc. High performance volume phase gratings
US9523852B1 (en) 2012-03-28 2016-12-20 Rockwell Collins, Inc. Micro collimator system and method for a head up display (HUD)
CN106249245A (en) * 2015-06-08 2016-12-21 江苏慧光电子科技有限公司 Laser ranging system and ranging method thereof
US9674413B1 (en) 2013-04-17 2017-06-06 Rockwell Collins, Inc. Vision system and method having improved performance and solar mitigation
US9684174B2 (en) 2012-02-15 2017-06-20 Microsoft Technology Licensing, Llc Imaging structure with embedded light sources
US9715067B1 (en) 2011-09-30 2017-07-25 Rockwell Collins, Inc. Ultra-compact HUD utilizing waveguide pupil expander with surface relief gratings in high refractive index materials
US9715110B1 (en) 2014-09-25 2017-07-25 Rockwell Collins, Inc. Automotive head up display (HUD)
US9726887B2 (en) 2012-02-15 2017-08-08 Microsoft Technology Licensing, Llc Imaging structure color conversion
US9779643B2 (en) 2012-02-15 2017-10-03 Microsoft Technology Licensing, Llc Imaging structure emitter configurations
US9807381B2 (en) 2012-03-14 2017-10-31 Microsoft Technology Licensing, Llc Imaging structure emitter calibration
US9933684B2 (en) 2012-11-16 2018-04-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration
US9977247B1 (en) 2011-09-30 2018-05-22 Rockwell Collins, Inc. System for and method of displaying information without need for a combiner alignment detector
US10018844B2 (en) 2015-02-09 2018-07-10 Microsoft Technology Licensing, Llc Wearable image display system
US10088675B1 (en) 2015-05-18 2018-10-02 Rockwell Collins, Inc. Turning light pipe for a pupil expansion system and method
US10108010B2 (en) 2015-06-29 2018-10-23 Rockwell Collins, Inc. System for and method of integrating head up displays and head down displays
US10126552B2 (en) 2015-05-18 2018-11-13 Rockwell Collins, Inc. Micro collimator system and method for a head up display (HUD)
US10156681B2 (en) 2015-02-12 2018-12-18 Digilens Inc. Waveguide grating device
US10192358B2 (en) 2012-12-20 2019-01-29 Microsoft Technology Licensing, Llc Auto-stereoscopic augmented reality display
US10191515B2 (en) 2012-03-28 2019-01-29 Microsoft Technology Licensing, Llc Mobile device light guide display
US10241330B2 (en) 2014-09-19 2019-03-26 Digilens, Inc. Method and apparatus for generating input images for holographic waveguide displays
US10247943B1 (en) 2015-05-18 2019-04-02 Rockwell Collins, Inc. Head up display (HUD) using a light pipe
US10295824B2 (en) 2017-01-26 2019-05-21 Rockwell Collins, Inc. Head up display with an angled light pipe
US10317677B2 (en) 2015-02-09 2019-06-11 Microsoft Technology Licensing, Llc Display system
US10359736B2 (en) 2015-08-05 2019-07-23 Digilens Inc. Method for holographic mastering and replication

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8989535B2 (en) 2012-06-04 2015-03-24 Microsoft Technology Licensing, Llc Multiple waveguide imaging structure

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1309779A (en) * 1998-07-17 2001-08-22 布罗克哈文科学协会 Small inlet optical panel and method of making small inlet optical panel
CN1317097A (en) * 1998-08-28 2001-10-10 布罗克哈文科学协会 Thin display optical projector
CN1419784A (en) * 2000-03-20 2003-05-21 坎布里奇三维显示有限公司 Waveguide display
CN1539245A (en) * 2001-08-02 2004-10-20 剑桥平投影显示有限公司 Plat-panel display using tapered waveguide
US20070081783A1 (en) * 2005-09-28 2007-04-12 Jyh-Long Chen Waveguide device for planar display device and related planar display device
CN101116020A (en) * 2005-02-05 2008-01-30 剑桥平投影显示有限公司 Flat-panel lens
GB2448132A (en) * 2007-03-30 2008-10-08 Light Blue Optics Ltd Holographic head up display having image correction
CN101300452A (en) * 2005-11-04 2008-11-05 昭和电工株式会社 Light guide member, planar light source device using the light guide member, and display apparatus
CN101543066A (en) * 2007-01-30 2009-09-23 F.珀斯扎特胡有限公司 Image transfer apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6487350B1 (en) * 1998-07-16 2002-11-26 Brookhaven Science Associates Multi-clad black display panel
US7907342B2 (en) * 2005-09-07 2011-03-15 Bae Systems Plc Projection display
GB2438026A (en) * 2006-05-11 2007-11-14 Univ Cambridge Tech Phase retrevial in hologram generation using amplitude and phase feedback
CN101881936B (en) * 2010-06-04 2013-12-25 江苏慧光电子科技有限公司 Holographical wave guide display and generation method of holographical image thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1309779A (en) * 1998-07-17 2001-08-22 布罗克哈文科学协会 Small inlet optical panel and method of making small inlet optical panel
CN1317097A (en) * 1998-08-28 2001-10-10 布罗克哈文科学协会 Thin display optical projector
CN1419784A (en) * 2000-03-20 2003-05-21 坎布里奇三维显示有限公司 Waveguide display
CN1539245A (en) * 2001-08-02 2004-10-20 剑桥平投影显示有限公司 Plat-panel display using tapered waveguide
CN101116020A (en) * 2005-02-05 2008-01-30 剑桥平投影显示有限公司 Flat-panel lens
US20070081783A1 (en) * 2005-09-28 2007-04-12 Jyh-Long Chen Waveguide device for planar display device and related planar display device
CN101300452A (en) * 2005-11-04 2008-11-05 昭和电工株式会社 Light guide member, planar light source device using the light guide member, and display apparatus
CN101543066A (en) * 2007-01-30 2009-09-23 F.珀斯扎特胡有限公司 Image transfer apparatus
GB2448132A (en) * 2007-03-30 2008-10-08 Light Blue Optics Ltd Holographic head up display having image correction

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SHUNYI TAN等: "A new type holographic display based on a wedge-shaped waveguide and its keystone predistortion", 《PROC. OF SPIE》 *
无: "便携全息投影机", 《个人电脑》 *
科视公司: "科视开启3D全息投影的新维度", 《现代电影技术》 *

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9274339B1 (en) 2010-02-04 2016-03-01 Rockwell Collins, Inc. Worn display system and method without requiring real time tracking for boresight precision
WO2011150863A1 (en) * 2010-06-04 2011-12-08 江苏慧光电子科技有限公司 Holographic wave guide display and generation method of holographic image thereof
WO2012006952A1 (en) * 2010-07-14 2012-01-19 Tan Shunyi Optical system
CN102330950A (en) * 2010-07-14 2012-01-25 江苏慧光电子科技有限公司 Optical system
WO2012079469A1 (en) * 2010-12-18 2012-06-21 Tan Shunyi Holograph generating method
US9715067B1 (en) 2011-09-30 2017-07-25 Rockwell Collins, Inc. Ultra-compact HUD utilizing waveguide pupil expander with surface relief gratings in high refractive index materials
US9507150B1 (en) 2011-09-30 2016-11-29 Rockwell Collins, Inc. Head up display (HUD) using a bent waveguide assembly
US9977247B1 (en) 2011-09-30 2018-05-22 Rockwell Collins, Inc. System for and method of displaying information without need for a combiner alignment detector
US9599813B1 (en) 2011-09-30 2017-03-21 Rockwell Collins, Inc. Waveguide combiner system and method with less susceptibility to glare
US9779643B2 (en) 2012-02-15 2017-10-03 Microsoft Technology Licensing, Llc Imaging structure emitter configurations
US9726887B2 (en) 2012-02-15 2017-08-08 Microsoft Technology Licensing, Llc Imaging structure color conversion
US9684174B2 (en) 2012-02-15 2017-06-20 Microsoft Technology Licensing, Llc Imaging structure with embedded light sources
US9807381B2 (en) 2012-03-14 2017-10-31 Microsoft Technology Licensing, Llc Imaging structure emitter calibration
CN103323947A (en) * 2012-03-19 2013-09-25 江苏慧光电子科技有限公司 Head up display device based on laser holographic projection imaging
CN104205037A (en) * 2012-03-23 2014-12-10 微软公司 Light guide display and field of view
US10191515B2 (en) 2012-03-28 2019-01-29 Microsoft Technology Licensing, Llc Mobile device light guide display
US9523852B1 (en) 2012-03-28 2016-12-20 Rockwell Collins, Inc. Micro collimator system and method for a head up display (HUD)
US9341846B2 (en) 2012-04-25 2016-05-17 Rockwell Collins Inc. Holographic wide angle display
CN103562802A (en) * 2012-04-25 2014-02-05 罗克韦尔柯林斯公司 Holographic wide angle display
CN103562802B (en) * 2012-04-25 2016-08-17 罗克韦尔柯林斯公司 Wide-angle holographic display
US9671571B2 (en) 2012-05-29 2017-06-06 Wenjun Yang Flat panel waveguide display and system
CN103454847B (en) * 2012-05-29 2016-05-18 杨文君 And a display system planar waveguide
WO2013178029A1 (en) * 2012-05-29 2013-12-05 Yang Wenjun Planar waveguide display and system
CN103454847A (en) * 2012-05-29 2013-12-18 杨文君 Planar waveguide display and system thereof
US9933684B2 (en) 2012-11-16 2018-04-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration
US10192358B2 (en) 2012-12-20 2019-01-29 Microsoft Technology Licensing, Llc Auto-stereoscopic augmented reality display
US9674413B1 (en) 2013-04-17 2017-06-06 Rockwell Collins, Inc. Vision system and method having improved performance and solar mitigation
US9679367B1 (en) 2013-04-17 2017-06-13 Rockwell Collins, Inc. HUD system and method with dynamic light exclusion
WO2015000380A1 (en) * 2013-07-04 2015-01-08 杨文君 Method for manufacturing display screen
CN104282229A (en) * 2013-07-04 2015-01-14 杨文君 Manufacturing method for display screen
US9244281B1 (en) 2013-09-26 2016-01-26 Rockwell Collins, Inc. Display system and method using a detached combiner
US9519089B1 (en) 2014-01-30 2016-12-13 Rockwell Collins, Inc. High performance volume phase gratings
US9244280B1 (en) 2014-03-25 2016-01-26 Rockwell Collins, Inc. Near eye display system and method for display enhancement or redundancy
US9766465B1 (en) 2014-03-25 2017-09-19 Rockwell Collins, Inc. Near eye display system and method for display enhancement or redundancy
CN103885184A (en) * 2014-04-10 2014-06-25 北京理工大学 Projection type planar waveguide helmet-mounted displayer
CN104035157A (en) * 2014-05-26 2014-09-10 北京理工大学 Waveguide display based on diffractive optical element
US10241330B2 (en) 2014-09-19 2019-03-26 Digilens, Inc. Method and apparatus for generating input images for holographic waveguide displays
US9715110B1 (en) 2014-09-25 2017-07-25 Rockwell Collins, Inc. Automotive head up display (HUD)
US10317677B2 (en) 2015-02-09 2019-06-11 Microsoft Technology Licensing, Llc Display system
US10018844B2 (en) 2015-02-09 2018-07-10 Microsoft Technology Licensing, Llc Wearable image display system
US10156681B2 (en) 2015-02-12 2018-12-18 Digilens Inc. Waveguide grating device
US10126552B2 (en) 2015-05-18 2018-11-13 Rockwell Collins, Inc. Micro collimator system and method for a head up display (HUD)
US10088675B1 (en) 2015-05-18 2018-10-02 Rockwell Collins, Inc. Turning light pipe for a pupil expansion system and method
US10247943B1 (en) 2015-05-18 2019-04-02 Rockwell Collins, Inc. Head up display (HUD) using a light pipe
CN106249245A (en) * 2015-06-08 2016-12-21 江苏慧光电子科技有限公司 Laser ranging system and ranging method thereof
US10108010B2 (en) 2015-06-29 2018-10-23 Rockwell Collins, Inc. System for and method of integrating head up displays and head down displays
US10359736B2 (en) 2015-08-05 2019-07-23 Digilens Inc. Method for holographic mastering and replication
US10295824B2 (en) 2017-01-26 2019-05-21 Rockwell Collins, Inc. Head up display with an angled light pipe

Also Published As

Publication number Publication date
WO2011150863A1 (en) 2011-12-08
CN101881936B (en) 2013-12-25

Similar Documents

Publication Publication Date Title
US20190094536A1 (en) Methods and systems for generating virtual content display with a virtual or augmented reality apparatus
Maimone et al. Holographic near-eye displays for virtual and augmented reality
JP5191730B2 (en) Two-dimensional image forming apparatus
US9715215B2 (en) 2D/3D holographic display system
US7746559B2 (en) Image projecting device and method
US9270978B2 (en) Method and device for 3-D display based on random constructive interference
JP4344612B2 (en) Pulsed laser system and method for creating a holographic stereogram
JP3962088B2 (en) Phase contrast image formation
JP4606831B2 (en) Light pattern forming method and apparatus, as well as optical tweezers
JP4763038B2 (en) Reduction of speckle and interference pattern for the laser projector
Zhang et al. Elimination of a zero-order beam induced by a pixelated spatial light modulator for holographic projection
CN105705981B (en) Configured for tiling the display waveguide grating
CN102576115B (en) Lighting device for a direct viewing display
Sasaki et al. Large size three-dimensional video by electronic holography using multiple spatial light modulators
CN1541483A (en) Image projecting device and method
CN103890637B (en) Bending and focusing light having a diffraction grating near-eye display
KR20110042319A (en) Holographic image display systems
CN101512445B (en) Method for generating video holograms in real time by means of subholograms
WO2008089417A3 (en) A polarized head-mounted projection display
Shimobaba et al. Lensless zoomable holographic projection using scaled Fresnel diffraction
KR20110117719A (en) Laser-based image display system
EP2615494A1 (en) Projection-type footage display device
EP1346252A2 (en) A method and an apparatus for generating a phase-modulated wave front of electromagnetic radiation
JP4635102B2 (en) Projection-type image display device
US9939781B2 (en) Image phase retrieval

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 200333 PUTUO, SHANGHAI TO: 215513 SUZHOU, JIANGSU PROVINCE

ASS Succession or assignment of patent right

Owner name: JIANGSU HUIGUANG ELECTRONIC TECHNOLOGY CO., LTD.

Free format text: FORMER OWNER: TAN SHUNYI

Effective date: 20110905

C14 Grant of patent or utility model