CN101880295A - Constrained Geometry Rare Earth Complexes and Their Preparation and Application of the Complexes in Syndiotactic Polymerization of Styrene - Google Patents

Constrained Geometry Rare Earth Complexes and Their Preparation and Application of the Complexes in Syndiotactic Polymerization of Styrene Download PDF

Info

Publication number
CN101880295A
CN101880295A CN 201010122657 CN201010122657A CN101880295A CN 101880295 A CN101880295 A CN 101880295A CN 201010122657 CN201010122657 CN 201010122657 CN 201010122657 A CN201010122657 A CN 201010122657A CN 101880295 A CN101880295 A CN 101880295A
Authority
CN
China
Prior art keywords
title complex
complex
earth
preparation
sime
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201010122657
Other languages
Chinese (zh)
Other versions
CN101880295B (en
Inventor
崔冬梅
简忠保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun Institute of Applied Chemistry of CAS
Original Assignee
Changchun Institute of Applied Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Institute of Applied Chemistry of CAS filed Critical Changchun Institute of Applied Chemistry of CAS
Priority to CN2010101226577A priority Critical patent/CN101880295B/en
Publication of CN101880295A publication Critical patent/CN101880295A/en
Application granted granted Critical
Publication of CN101880295B publication Critical patent/CN101880295B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明涉及限制几何构型稀土配合物及制法和该配合物花苯乙烯间规聚合中的应用。该限制几何构型稀土配合物的分子式为[R1-(3-R2-4-R3-5-R4-6-R5)C5N]LnX2,结构式为:

Figure 201010122657.7_AB_0
由该限制几何构型稀上配合物与有机硼盐按mol比2∶1~1∶2组成的催化体系,在甲苯或氯苯溶剂中催化苯乙烯聚合制备间规聚苯乙烯。催化苯乙烯聚合时,在聚合温度-20~80℃范围内,单体转化率最高可达100%,活性最高可达1.25×107g molLn -1h-1,所合成的聚苯乙烯间规度最高可达100%,熔点在266~272℃范围内,数均分子量在4.6~100万范围内,分子量分布最低可达1.30。The invention relates to a rare earth complex with constrained geometry configuration, a preparation method and the application of the complex in syndiotactic polymerization of styrene. The molecular formula of the rare earth complex with constrained geometry is [R 1 -(3-R 2 -4-R 3 -5-R 4 -6-R 5 )C 5 N]LnX 2 , and the structural formula is:
Figure 201010122657.7_AB_0
Syndiotactic polystyrene is prepared by catalyzing the polymerization of styrene in toluene or chlorobenzene solvent by using the catalyst system composed of the rare complex of restricted geometric configuration and organic boron salt at a molar ratio of 2:1 to 1:2. When catalyzing the polymerization of styrene, the monomer conversion rate can reach up to 100% and the activity can reach up to 1.25×10 7 g mol Ln -1 h -1 at the polymerization temperature range of -20 to 80°C. The synthesized polystyrene The syndiotacticity can reach up to 100%, the melting point is in the range of 266-272°C, the number-average molecular weight is in the range of 4.6-1 million, and the molecular weight distribution can be as low as 1.30.

Description

限制几何构型稀土配合物及制法和该配合物在苯乙烯间规聚合中的应用 Constrained Geometry Rare Earth Complexes and Their Preparation and Application of the Complexes in Syndiotactic Polymerization of Styrene

技术领域technical field

本发明涉及限制几何构型稀土配合物及制法和该配合物在苯乙烯间规聚合中的应用。The present invention relates to a rare earth complex with constrained geometry configuration, a preparation method and the application of the complex in syndiotactic polymerization of styrene.

背景技术Background technique

聚苯乙烯的合成主要通过自由基聚合、阴离子聚合、阳离子聚合以及Ziegler-Natta催化剂催化聚合实现。根据立体构型的不同,聚苯乙烯可以分为无规聚苯乙烯、间规聚苯乙烯以及等规聚苯乙烯。传统的自由基聚合、阴离子聚合以及阳离子聚合主要得到无规聚苯乙烯,Ziegler-Natta催化剂催化苯乙烯聚合主要得到等规聚苯乙烯,而高间规聚苯乙烯直到1986年才由日本Idemitsu Kosan公司通过使用钛的茂金属催化剂催化聚合实现(N.Ishihara,T.Seimiya,M.Kuramoto and M.Uoi,Macromolecules,1986,19,2464;EP210615A2(1987);US5,252,693A1(1993))。间规聚苯乙烯由于其优越的性质,例如高熔点、高结晶性、高弹性模量、低介电常数、低损耗因子以及优良的耐热耐溶剂,已经在工业上成为一种非常有吸引力的材料。自从1986年日本Idemitsu Kosan公司第一个发明钛金属配合物能催化苯乙烯高间规聚合以来,研究者们已经开发了一系列钛催化体系,并申请了一系列专利,主要原因是钛金属配合物催化体系,如Cp*TiCl3/MAO和Cp*TiR3/B(C6F5)3,在对苯乙烯聚合时具有非常高的催化活性并同时具有非常高的间规度(N.Ishihara,M.Kuramoto and M.Uoi,Macromolecules,1988,21,3356;C.Pellecchia,D.Pappalardo,L.Oliva,and A.Zambelli,J.Am.Chem.Soc.,1995,117,6593;Q.Wang,R.Quyoum,D.J.Gillis,M.J.Tudoret,D.Jeremic,B.K.Hunter and M.C.Baird,Organometallics,1996,15,693;S.Ya.Knjazhanski,G.Cadenas,M.Garcia,C.M.Perez,I.E.Nifant′ev,I.A.Kashulin,P.V.Ivchenko and K.Lyssenko,Organometallics,2002,21,3094;A.Zambelli,L.Oliva and C.Pellecchia,Macromolecules,1989,22,2129;D.Liguori,R.Centore,A.Tuzi,F.Grisi,I.Sessa and A.Zambelli,Macromolecules,2003,36,5451等)。然而,对于稀土金属配合物催化苯乙烯聚合则仪仅有很少的报道。一些研究组报道了稀土金属配合物能以低至适中的活性聚合苯乙烯得到无规聚苯乙烯(Z.Shen,Polym.J.,1990,22,919;F.Yuan,Q.Shen and J.Sun,J.Organomet.Chem.,1997,538,241;A.V.Khvostov,V.K.Belsky,A.I.Sizov,B.M.Bulychev and N.B.Ivchenko,J.Organomet.Chem.,1997,531,19;S.Bogaert,J.F.Carpentier,T.Chenal,A.Mortreux and G.Ricart,Macromol.Chem.Phys.,2000,201,1813;K.C.Hultzsch,P.Voth,K.Beckerle and T.P.Spaniol,Organometallics,2000,19,228)。Yasuda研究组报道了单茂镧的烷基化合物以较低的活性聚合苯乙烯得到富间规聚苯乙烯(K.Tanaka,M.Furo,E.Ihara and H.Yasuda,J.Polym.Sci.A:Polym.Chem.,2001,39,1382)。2000年Wakatsuki研究组报道了钐配合物能以非常高的活性催化聚合苯乙烯,但得到的聚苯乙烯是无规的(Z.Hou,Y.Zhang,H.Tezuka,P.Xie,O.Tardif,T.A.Koizumi.H.Yamazaki and Y.Wakatsuki,J.Am.Chem.Soc.,2000,122,10533)。直到2004年,稀土金属配合物催化苯乙烯高间规聚合才取得了真正意义上的重大突破。Carpentier研究组报道了稀土金属烯丙基化合物[Cp-CMe2-Flu]Ln(C3H5)(THF)能在60℃的聚合温度下单组份催化苯乙烯高间规聚合,聚合反应具有很高的活性,得到的聚苯乙烯间规度(rrrr)最高可达100%,熔点在257~263℃范围内(E.Kirillov,C.W.Lehmann,A.Razavi and J.F.Carpentier,J.Am.Chem.Soc.,2004,126,12240;EP1582536 A1;US2006/0116278 A1;US7,241,849B2)。几乎同时,Hou研究组报道了单茂稀土金属烷基化合物(C5Me4SiMe3)Ln(CH2SiMe3)2(THF)在有机硼盐的作用下,能双组份催化苯乙烯高间规聚合,聚合活性高达1.36×107gmolLn -1h-1,得到的聚苯乙烯间规度(rrrr)最高可达100%,熔点在268~273℃范围内(Y.Luo,J.Baldamus and Z.Hou,J.Am.Chem.Soc.,2004,126,13910;US2007/0232758A1)。随后一些拥有茂或杂茂配体的稀土金属配合物也被报道在助催化剂作用下能催化苯乙烯高间规聚合(F.Jaroschik,T.Shima,X.Li,K.Mori,L.Ricard,X.F.Le Goff,F.Nief and Z.Hou,Organometallics,2007,26,5654;A.S.Rodrigues,E.Kirillov,C.W.Lehmann,T.Roisnel,B.Vuillemin,A.Razavi and J.F.Carpentier,Chem.Eur.J.,2007,13,5548;M.Nishiura,T.Mashiko and Z.Hou,Chem.Commun.,2008,2019;X.Xu,Y.Cheng and J.Sun,Chem.Eur.J.,2009,15,84;F.Bonnet,C.D.C.Violante,P.Roussel,A.Mortreux and M.Visseaux,Chem.Commun.,2009,3380;X.Fang,X.Li,Z.Hou,J.Assoudand R.Zhao,Organometallics,2009,28,517)。然而拥有限制几何构型配体的稀土金属配合物在有机硼盐助催化剂作用下能催化苯乙烯间规聚合的文献还未见报道。The synthesis of polystyrene is mainly realized by free radical polymerization, anionic polymerization, cationic polymerization and Ziegler-Natta catalyst catalyzed polymerization. Polystyrene can be classified into atactic polystyrene, syndiotactic polystyrene, and isotactic polystyrene according to different three-dimensional configurations. Traditional free radical polymerization, anionic polymerization and cationic polymerization mainly obtain atactic polystyrene, Ziegler-Natta catalyst catalyzed styrene polymerization mainly obtains isotactic polystyrene, and high syndiotactic polystyrene was not produced by Japan Idemitsu Kosan until 1986 The company realizes it by using a metallocene catalyst of titanium to catalyze polymerization (N. Ishihara, T. Seimiya, M. Kuramoto and M. Uoi, Macromolecules, 1986, 19, 2464; EP210615A2 (1987); US5,252,693A1 (1993)). Syndiotactic polystyrene has become a very attractive material in industry due to its superior properties, such as high melting point, high crystallinity, high elastic modulus, low dielectric constant, low dissipation factor, and excellent heat and solvent resistance. force material. Since the Japanese Idemitsu Kosan Company first invented titanium metal complexes to catalyze high-syndiotactic polymerization of styrene in 1986, researchers have developed a series of titanium catalyst systems and applied for a series of patents, mainly because titanium metal complexes Catalyst systems, such as Cp*TiCl 3 /MAO and Cp*TiR 3 /B(C 6 F 5 ) 3 , have very high catalytic activity in the polymerization of styrene and have very high syndiotacticity (N. Ishihara, M. Kuramoto and M. Uoi, Macromolecules, 1988, 21, 3356; C. Pellecchia, D. Pappalardo, L. Oliva, and A. Zambelli, J. Am. Chem. Soc., 1995, 117, 6593; Q.Wang, R.Quyoum, DJGillis, MJTudoret, D.Jeremic, BKHunter and MCBaird, Organometallics, 1996, 15, 693; S.Ya.Knjazhanski, G.Cadenas, M.Garcia, CMPerez, IENifant′ev, IA Kashulin, PV Vchenko and K. Lyssenko, Organometallics, 2002, 21, 3094; A. Zambelli, L. Oliva and C. Pellecchia, Macromolecules, 1989, 22, 2129; D. Liguori, R. Centore, A. Tuzi, F. Grisi, I. Sessa and A. Zambelli, Macromolecules, 2003, 36, 5451, etc.). However, there are only few reports on the polymerization of styrene catalyzed by rare earth metal complexes. Some research groups have reported that rare earth metal complexes can obtain atactic polystyrene (Z.Shen, Polym.J., 1990,22,919; F.Yuan, Q.Shen and J .Sun, J.Organomet.Chem., 1997, 538, 241; AVKhvostov, VKBelsky, AISizov, BMBulychev and NBIvchenko, J.Organomet.Chem., 1997, 531, 19; S.Bogaert, JFCarpentier, T.Chenal, A . Mortreux and G. Ricart, Macromol. Chem. Phys., 2000, 201, 1813; K CHultzsch, P. Voth, K. Beckerle and TPSpaniol, Organometallics, 2000, 19, 228). The Yasuda research group reported that the alkyl compound of monolanthanocene polymerized styrene with lower activity to obtain rich syndiotactic polystyrene (K.Tanaka, M.Furo, E.Ihara and H.Yasuda, J.Polym.Sci. A: Polym. Chem., 2001, 39, 1382). In 2000, the Wakatsuki research group reported that samarium complexes can catalyze the polymerization of styrene with very high activity, but the obtained polystyrene is random (Z.Hou, Y.Zhang, H.Tezuka, P.Xie, O. Tardif, TA Koizumi. H. Yamazaki and Y. Wakatsuki, J. Am. Chem. Soc., 2000, 122, 10533). It was not until 2004 that rare earth metal complexes catalyzed the high syndiotactic polymerization of styrene made a real breakthrough. The Carpentier research group reported that the rare earth metal allyl compound [Cp-CMe 2 -Flu]Ln(C 3 H 5 )(THF) can catalyze the high syndiotactic polymerization of styrene at a polymerization temperature of 60°C with one component, and the polymerization reaction There is very high activity, and the obtained polystyrene syndiotacticity (rrrr) can reach up to 100%, and the melting point is in the scope of 257~263 ℃ (E.Kirillov, CWLehmann, A.Razavi and JFCarpentier, J.Am.Chem. Soc., 2004, 126, 12240; EP1582536 A1; US2006/0116278 A1; US7,241,849B2). Almost at the same time, Hou's research group reported that the single rare earth metal alkyl compound (C 5 Me 4 SiMe 3 )Ln(CH 2 SiMe 3 ) 2 (THF) can catalyze the high Syndiotactic polymerization, the polymerization activity is as high as 1.36×10 7 gmol Ln -1 h -1 , the obtained polystyrene syndiotacticity (rrrr) can reach up to 100%, and the melting point is in the range of 268-273°C (Y.Luo, J . Baldamus and Z. Hou, J. Am. Chem. Soc., 2004, 126, 13910; US2007/0232758A1). Then some rare-earth metal complexes possessing alocene or heterocene ligands have also been reported to catalyze the high syndiotactic polymerization of styrene under the effect of cocatalysts (F.Jaroschik, T.Shima, X.Li, K.Mori, L.Ricard , XFLe Goff, F.Nief and Z.Hou, Organometallics, 2007, 26, 5654; AS Rodrigues, E.Kirillov, CW Lehmann, T.Roisnel, B.Vuillemin, A.Razavi and JF Carpentier, Chem.Eur.J., 2007 , 13, 5548; M.Nishiura, T.Mashiko and Z.Hou, Chem.Commun., 2008, 2019; X.Xu, Y.Cheng and J.Sun, Chem.Eur.J., 2009, 15, 84 ; F. Bonnet, CDC Violante, P. Roussel, A. Mortreux and M. Visseaux, Chem. Commun., 2009, 3380; X. Fang, X. Li, Z. Hou, J. Assoudand R. Zhao, Organometallics, 2009 , 28, 517). However, there are no reports on the syndiotactic polymerization of styrene catalyzed by rare earth metal complexes with ligands of constrained geometry under the action of organoboron salt cocatalysts.

发明内容Contents of the invention

本发明的目的之一是提供限制几何构型稀土配合物。One of the objects of the present invention is to provide constrained geometry rare earth complexes.

所述的限制几何构型稀土配合物,分子式为[R1-(3-R2-4-R3-5-R4-6-R5)C5N]LnX2,结构式为式1:The constrained geometry rare earth complex has a molecular formula of [R 1 -(3-R 2 -4-R 3 -5-R 4 -6-R 5 )C 5 N]LnX 2 , and a structural formula of formula 1:

Figure GSA00000052886900021
Figure GSA00000052886900021

式1Formula 1

式1中的R1为环戊二烯基衍生物C5A4、茚基衍生物C9A6或芴基衍生物C13A8,A为环戊二烯基的取代基、茚基的取代基或芴基上的取代基,A选自氢、脂族烃基或芳香族烃基;优选氢或甲基;R1优选四甲基环戊二烯基或茚基;R2为骨架吡啶环上的取代基,选自氢、甲基、乙基、异丙基、叔丁基或苯基,优选氢或甲基;R3为骨架吡啶环上的取代基,选自氢、甲基、乙基、异丙基、叔丁基或苯基,优选氢;R4为骨架吡啶环上的取代基,选自氢、甲基、乙基、异丙基、叔丁基或苯基,优选氢;R5为骨架吡啶环上的取代基,选自氢、甲基、乙基、异丙基、叔丁基、苯基、2,6-二甲基苯基、4-甲基苯基、均三甲基苯基、2,6-二异丙基苯基、2,4,6-三异丙基苯基或2,6-二叔丁基苯基,优选氢、甲基、苯基、2,6-二甲基苯基或2,4,6-三异丙基苯基;Ln代表稀土金属,选自Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb或Lu,优选Sc、Y、Nd、Gd或Lu;X选自CH2SiMe3、CH(SiMe3)2、1,3-C3H5、1,3-C3H4(Me)或1,3-C3H3(SiMe3)2,优选CH2SiMe3或1,3-C3H5R 1 in Formula 1 is a cyclopentadienyl derivative C 5 A 4 , an indenyl derivative C 9 A 6 or a fluorenyl derivative C 13 A 8 , and A is a substituent of a cyclopentadienyl, an indenyl The substituent or the substituent on the fluorenyl group, A is selected from hydrogen, aliphatic hydrocarbon group or aromatic hydrocarbon group; preferably hydrogen or methyl; R 1 is preferably tetramethylcyclopentadienyl or indenyl; R 2 is skeleton pyridine The substituent on the ring is selected from hydrogen, methyl, ethyl, isopropyl, tert-butyl or phenyl, preferably hydrogen or methyl; R3 is the substituent on the skeleton pyridine ring, selected from hydrogen, methyl , ethyl, isopropyl, tert-butyl or phenyl, preferably hydrogen; R is a substituent on the skeleton pyridine ring, selected from hydrogen, methyl, ethyl, isopropyl, tert-butyl or phenyl, Preferably hydrogen; R is a substituent on the skeleton pyridine ring selected from hydrogen, methyl, ethyl, isopropyl, tert-butyl, phenyl, 2,6-dimethylphenyl, 4-methylbenzene Trimethylphenyl, 2,6-diisopropylphenyl, 2,4,6-triisopropylphenyl or 2,6-di-tert-butylphenyl, preferably hydrogen, methyl, Phenyl, 2,6-dimethylphenyl or 2,4,6-triisopropylphenyl; Ln represents a rare earth metal selected from Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu , Gd, Tb, Dy, Ho, Er, Tm, Yb or Lu, preferably Sc, Y, Nd, Gd or Lu; X is selected from CH 2 SiMe 3 , CH(SiMe 3 ) 2 , 1,3-C 3 H 5. 1,3-C 3 H 4 (Me) or 1,3-C 3 H 3 (SiMe 3 ) 2 , preferably CH 2 SiMe 3 or 1,3-C 3 H 5 .

优选的限制几何构型稀土配合物为如下的1~28的配合物中的任意一个:The preferred constrained geometry rare earth complex is any one of the following complexes of 1 to 28:

配合物1:R1=C5Me4,R2=H,R3=H,R4=H,R5=H,Ln=Sc,X=CH2SiMe3Complex 1: R 1 =C 5 Me 4 , R 2 =H, R 3 =H, R 4 =H, R 5 =H, Ln=Sc, X=CH 2 SiMe 3 ;

配合物2:R1=C5Me4,R2=H,R3=H,R4=H,R5=H,Ln=Y,X=CH2SiMe3Complex 2: R 1 =C 5 Me 4 , R 2 =H, R 3 =H, R 4 =H, R 5 =H, Ln=Y, X=CH 2 SiMe 3 ;

配合物3:R1=C5Me4,R2=H,R3=H,R4=H,R5=H,Ln=Nd,X=CH2SiMe3Complex 3: R 1 =C 5 Me 4 , R 2 =H, R 3 =H, R 4 =H, R 5 =H, Ln=Nd, X=CH 2 SiMe 3 ;

配合物4:R1=C5Me4,R2=H,R3=H,R4=H,R5=H,Ln=Gd,X=CH2SiMe3Complex 4: R 1 =C 5 Me 4 , R 2 =H, R 3 =H, R 4 =H, R 5 =H, Ln=Gd, X=CH 2 SiMe 3 ;

配合物5:R1=C5Me4,R2=H,R3=H,R4=H,R5=H,Ln=Lu,X=CH2SiMe3Complex 5: R 1 =C 5 Me 4 , R 2 =H, R 3 =H, R 4 =H, R 5 =H, Ln=Lu, X=CH 2 SiMe 3 ;

配合物6:R1=C5Me4,R2=Me,R3=H,R4=H,R5=H,Ln=Sc,X=CH2SiMe3Complex 6: R 1 =C 5 Me 4 , R 2 =Me, R 3 =H, R 4 =H, R 5 =H, Ln=Sc, X=CH 2 SiMe 3 ;

配合物7:R1=C5Me4,R2=Me,R3=H,R4=H,R5=H,Ln=Lu,X=CH2SiMe3Complex 7: R 1 =C 5 Me 4 , R 2 =Me, R 3 =H, R 4 =H, R 5 =H, Ln=Lu, X=CH 2 SiMe 3 ;

配合物8:R1=C5Me4,R2=H,R3=H,R4=H,R5=Me,Ln=Sc,X=CH2SiMe3Complex 8: R 1 =C 5 Me 4 , R 2 =H, R 3 =H, R 4 =H, R 5 =Me, Ln=Sc, X=CH 2 SiMe 3 ;

配合物9:R1=C5Me4,R2=H,R3=H,R4=H,R5=Me,Ln=Lu,X=CH2SiMe3Complex 9: R 1 =C 5 Me 4 , R 2 =H, R 3 =H, R 4 =H, R 5 =Me, Ln=Lu, X=CH 2 SiMe 3 ;

配合物10:R1=C5Me4,R2=H,R3=H,R4=H,R5=2,4,6-(iPr)3C6H2,Ln=Sc,X=CH2SiMe3Complex 10: R 1 =C 5 Me 4 , R 2 =H, R 3 =H, R 4 =H, R 5 =2,4,6-( i Pr) 3 C 6 H 2 , Ln=Sc, X = CH2SiMe3 ;

配合物11:R1=C9H6,R2=H,R3=H,R4=H,R5=H,Ln=Sc,X=CH2SiMe3Complex 11: R 1 =C 9 H 6 , R 2 =H, R 3 =H, R 4 =H, R 5 =H, Ln=Sc, X=CH 2 SiMe 3 ;

配合物12:R1=C9H6,R2=H,R3=H,R4=H,R5=2,4,6-(iPr)3C6H2,Ln=Sc,X=CH2SiMe3Complex 12: R 1 =C 9 H 6 , R 2 =H, R 3 =H, R 4 =H, R 5 =2,4,6-( i Pr) 3 C 6 H 2 , Ln=Sc, X = CH2SiMe3 ;

配合物13:R1=C5Me4,R2=H,R3=H,R4=H,R5=H,Ln=Sc,X=1,3-C3H5Complex 13: R 1 =C 5 Me 4 , R 2 =H, R 3 =H, R 4 =H, R 5 =H, Ln=Sc, X=1, 3-C 3 H 5 ;

配合物14:R1=C5Me4,R2=H,R3=H,R4=H,R5=H,Ln=Y,X=1,3-C3H5Complex 14: R 1 =C 5 Me 4 , R 2 =H, R 3 =H, R 4 =H, R 5 =H, Ln=Y, X=1, 3-C 3 H 5 ;

配合物15:R1=C5Me4,R2=H,R3=H,R4=H,R5=H,Ln=Nd,X=1,3-C3H5Complex 15: R 1 =C 5 Me 4 , R 2 =H, R 3 =H, R 4 =H, R 5 =H, Ln=Nd, X=1, 3-C 3 H 5 ;

配合物16:R1=C5Me4,R2=H,R3=H,R4=H,R5=H,Ln=Gd,X=1,3-C3H5Complex 16: R 1 =C 5 Me 4 , R 2 =H, R 3 =H, R 4 =H, R 5 =H, Ln=Gd, X=1, 3-C 3 H 5 ;

配合物17:R1=C5Me4,R2=H,R3=H,R4=H,R5=H,Ln=Lu,X=1,3-C3H5Complex 17: R 1 =C 5 Me 4 , R 2 =H, R 3 =H, R 4 =H, R 5 =H, Ln=Lu, X=1, 3-C 3 H 5 ;

配合物18:R1=C5Me4,R2=Me,R3=H,R4=H,R5=H,Ln=Sc,X=1,3-C3H5Complex 18: R 1 =C 5 Me 4 , R 2 =Me, R 3 =H, R 4 =H, R 5 =H, Ln=Sc, X=1, 3-C 3 H 5 ;

配合物19:R1=C5Me4,R2=Me,R3=H,R4=H,R5=H,Ln=Lu,X=1,3-C3H5Complex 19: R 1 =C 5 Me 4 , R 2 =Me, R 3 =H, R 4 =H, R 5 =H, Ln=Lu, X=1, 3-C 3 H 5 ;

配合物20:R1=C5Me4,R2=H,R3=H,R4=H,R5=Me,Ln=Sc,X=1,3-C3H5Complex 20: R 1 =C 5 Me 4 , R 2 =H, R 3 =H, R 4 =H, R 5 =Me, Ln=Sc, X=1, 3-C 3 H 5 ;

配合物21:R1=C5Me4,R2=H,R3=H,R4=H,R5=Me,Ln=Lu,X=1,3-C3H5Complex 21: R 1 =C 5 Me 4 , R 2 =H, R 3 =H, R 4 =H, R 5 =Me, Ln=Lu, X=1, 3-C 3 H 5 ;

配合物22:R1=C5Me4,R2=H,R3=H,R4=H,R5=C6H5,Ln=Sc,X=1,3-C3H5Complex 22: R 1 =C 5 Me 4 , R 2 =H, R 3 =H, R 4 =H, R 5 =C 6 H 5 , Ln=Sc, X=1, 3-C 3 H 5 ;

配合物23:R1=C5Me4,R2=H,R3=H,R4=H,R5=2,6-(Me)2C6H3,Ln=Sc,X=1,3-C3H5Complex 23: R 1 =C 5 Me 4 , R 2 =H, R 3 =H, R 4 =H, R 5 =2, 6-(Me) 2 C 6 H 3 , Ln=Sc, X=1 , 3-C 3 H 5 ;

配合物24:R1=C5Me4,R2=H,R3=H,R4=H,R5=2,4,6-(iPr)3C6H2,Ln=Sc,X=1,3-C3H5Complex 24: R 1 =C 5 Me 4 , R 2 =H, R 3 =H, R 4 =H, R 5 =2,4,6-( i Pr) 3 C 6 H 2 , Ln=Sc, X=1,3- C3H5 ;

配合物25:R1=C9H6,R2=H,R3=H,R4=H,R5=H,Ln=Sc,X=1,3-C3H5Complex 25: R 1 =C 9 H 6 , R 2 =H, R 3 =H, R 4 =H, R 5 =H, Ln=Sc, X=1, 3-C 3 H 5 ;

配合物26:R1=C9H6,R2=H,R3=H,R4=H,R5=H,Ln=Lu,X=1,3-C3H5Complex 26: R 1 =C 9 H 6 , R 2 =H, R 3 =H, R 4 =H, R 5 =H, Ln=Lu, X=1, 3-C 3 H 5 ;

配合物27:R1=C9H6,R2=H,R3=H,R4=H,R5=2,4,6-(iPr)3C6H2,Ln=Sc,X=1,3-C3H5Complex 27: R 1 =C 9 H 6 , R 2 =H, R 3 =H, R 4 =H, R 5 =2,4,6-( i Pr) 3 C 6 H 2 , Ln=Sc, X=1,3- C3H5 ;

配合物28:R1=C9H6,R2=H,R3=H,R4=H,R5=2,4,6-(iPr)3C6H2,Ln=Lu,X=1,3-C3H5Complex 28: R 1 =C 9 H 6 , R 2 =H, R 3 =H, R 4 =H, R 5 =2,4,6-( i Pr) 3 C 6 H 2 , Ln=Lu, X=1,3- C3H5 .

本发明的目的之二是提供限制几何构型稀土配合物的制法,包括:(1)限制几何构型稀土烷基配合物的制法;(2)限制几何构型稀土烯丙基配合物的制法;分别介绍如下:The second object of the present invention is to provide a method for preparing rare earth complexes of constrained geometry, including: (1) a method for preparing rare earth alkyl complexes of constrained geometry; (2) a rare earth allyl complex of constrained geometry The method of making; respectively introduced as follows:

(1)限制几何构型稀土烷基配合物的制法:(1) The preparation method of rare earth alkyl complexes with restricted geometry configuration:

合成路线如下:The synthetic route is as follows:

Figure GSA00000052886900041
Figure GSA00000052886900041

条件和步骤如下:在N2保护下,把限制几何构型配体R1H-(3-R2-4-R3-5-R4-6-R5)C5N溶于四氢呋喃并置于-78~0℃,加入所述的限制几何构型配体的mol的1倍量的浓度为1.0~2.0mol/L正丁基锂的正已烷溶液,反应1小时后,加入所述的限制几何构型配体的mol的1倍量的稀土三氯化物,反应4小时后,加入所述的限制几何构型配体的mol的2倍量的LiCH2SiMe3,室温反应4小时后,除去溶剂,用己烷萃取,浓缩己烷,得到限制几何构型稀土烷基配合物;所述的稀土三氯化物的化学式是为LnCl3,其中Ln同式1中的Ln。The conditions and steps are as follows: under the protection of N 2 , the restricted geometry ligand R 1 H-(3-R 2 -4-R 3 -5-R 4 -6-R 5 )C 5 N was dissolved in THF and Put it at -78~0℃, add the n-hexane solution of 1.0~2.0mol/L n-butyllithium in the amount of 1 times the mol of the constrained geometry ligand, react for 1 hour, add the Rare earth trichloride in an amount 1 times the mol of the constrained geometry ligand, after reacting for 4 hours, add LiCH 2 SiMe 3 in an amount 2 times the mol of the constrained geometry ligand, and react at room temperature for 4 After 1 hour, the solvent was removed, extracted with hexane, and the hexane was concentrated to obtain a rare earth alkyl complex in a constrained geometry; the chemical formula of the rare earth trichloride was LnCl 3 , wherein Ln was the same as Ln in Formula 1.

(2)限制几何构型稀土烯丙基配合物的制法:(2) The preparation method of rare earth allyl complexes with restricted geometry configuration:

合成路线如下:The synthetic route is as follows:

Figure GSA00000052886900042
Figure GSA00000052886900042

条件和步骤如下:在N2保护下,把限制几何构型配体R1H-(3-R2-4-R3-5-R4-6-R5)C5N溶于四氢呋喃并置于-78~0℃,加入所述的限制几何构型配体的mol的1倍量的浓度为1.0~2.0mol/L正丁基锂的正己烷溶液,反应1小时后,加入所述的限制几何构型配体的mol的1倍量的稀土三氯化物,反应4小时后,加入所述的限制几何构型配体的mol的2倍量的C3H5MgCl,室温反应12小时后,除去溶剂,用甲苯萃取,浓缩甲苯,得到限制几何构型稀土烯丙基配合物;所述的稀土氯化物的化学式是为LnCl3,其中Ln同式1中的Ln。The conditions and steps are as follows: under the protection of N 2 , the restricted geometry ligand R 1 H-(3-R 2 -4-R 3 -5-R 4 -6-R 5 )C 5 N was dissolved in THF and Put it at -78~0°C, add the n-hexane solution whose concentration is 1.0~2.0mol/L n-butyllithium in an amount of 1 times the mol of the constrained geometry ligand, and react for 1 hour, then add the Rare earth trichloride in an amount 1 times the mol of the constrained geometry ligand, after reacting for 4 hours, add C 3 H 5 MgCl in an amount 2 times the mol of the constrained geometry ligand, and react at room temperature for 12 After 1 hour, remove the solvent, extract with toluene, and concentrate the toluene to obtain a rare earth allyl complex in a restricted geometry; the chemical formula of the rare earth chloride is LnCl 3 , where Ln is the same as Ln in formula 1.

上述所得的限制几何构型稀土烷基配合物以及限制几何构型稀土烯丙基配合物均经过核磁、单晶衍射以及元素分析的表征。具体见实施例。The above obtained constrained geometry configuration rare earth alkyl complexes and constrained geometry configuration rare earth allyl complexes were characterized by NMR, single crystal diffraction and elemental analysis. See the examples for details.

本发明的目的之三是提供限制几何构型稀土配合物在苯乙烯间规聚合中的应用。The third object of the present invention is to provide the application of the constrained geometry configuration rare earth complex in the syndiotactic polymerization of styrene.

所述的限制几何构型稀土配合物用于苯乙烯间规聚合的催化体系;该催化体系是由限制几何构型稀土配合物与有机硼盐两组分按mol比2∶1~1∶2组成;The constrained geometry rare earth complex is used in a catalytic system for the syndiotactic polymerization of styrene; the catalytic system is composed of a constrained geometry rare earth complex and an organoboron salt in a molar ratio of 2:1 to 1:2 composition;

所述的有机硼盐为:[Ph3C][B(C6F5)4]、[PhNMe2H][BPh4]、[PhNMe2H][B(C6F5)4]或B(C6F5)3,优选[Ph3C][B(C6F5)4]。The organic boron salts are: [Ph 3 C][B(C 6 F 5 ) 4 ], [PhNMe 2 H][BPh 4 ], [PhNMe 2 H][B(C 6 F 5 ) 4 ] or B(C 6 F 5 ) 3 , preferably [Ph 3 C][B(C 6 F 5 ) 4 ].

所述的用于苯乙烯间规聚合的催化体系的制备方法的步骤和条件如下:The steps and conditions of the preparation method of the catalytic system for the syndiotactic polymerization of styrene are as follows:

将分子式为[R1-(3-R2-4-R3-5-R4-6-R5)C5N]LnX2的限制几何构型稀土配合物及是所选用的限制几何构型稀土配合物0.5~2倍mol量的有机硼盐,按配比在C6~C7的芳香烃溶剂中混合均匀,得到均相的苯乙烯间规聚合的催化体系。The rare earth complex with the molecular formula [R 1 -(3-R 2 -4-R 3 -5-R 4 -6-R 5 )C 5 N]LnX 2 and the selected restricted geometry 0.5-2 times the mole amount of the type rare earth complex organic boron salt is uniformly mixed in a C 6 -C 7 aromatic hydrocarbon solvent according to the proportion to obtain a homogeneous catalyst system for syndiotactic polymerization of styrene.

所述的用于苯乙烯间规聚合的催化体系,用于制备间规聚苯乙烯的方法的步骤和条件如下:The described catalytic system for the syndiotactic polymerization of styrene, the steps and conditions for the method for preparing syndiotactic polystyrene are as follows:

取由所述的用于苯乙烯间规聚合的催化体系的甲苯或氯苯溶液,置于经过无水、无氧处理的反应器中,所述的溶剂的体积L与所述的催化体系中限制几何构型稀土配合物的mol数比为100∶1~1000∶1;加入苯乙烯单体,苯乙烯单体与所述的催化体系中的限制几何构型稀土配合物的mol比为250∶1~4000∶1,聚合反应在-20~80℃下进行1~30分钟。加入体积浓度为10%的盐酸乙醇溶液终止聚合反应,将反应溶液倒入甲醇中沉降,得聚苯乙烯白色固体粉末,再将该聚苯乙烯白色固体粉末置于真空干燥箱中干燥,得到干燥的聚苯乙烯白色固体粉末。Get the toluene or chlorobenzene solution that is used for the catalytic system of styrene syndiotactic polymerization, be placed in the reactor through anhydrous, anaerobic treatment, the volume L of described solvent and described catalytic system The molar ratio of the rare earth complex of the restricted geometry configuration is 100:1 to 1000:1; adding styrene monomer, the molar ratio of the styrene monomer and the rare earth complex of the restricted geometry configuration in the catalytic system is 250 : 1 to 4000: 1, the polymerization reaction is carried out at -20 to 80°C for 1 to 30 minutes. Adding ethanol solution of hydrochloric acid with a volume concentration of 10% terminates the polymerization reaction, pours the reaction solution into methanol for sedimentation, and obtains a white solid powder of polystyrene, and then places the white solid powder of polystyrene in a vacuum drying oven to dry to obtain a dry polystyrene white solid powder.

上述所得的间规聚苯乙烯的数均分子量以及分子量分布用高温凝胶渗透色谱仪(GPC)测定,熔点用DSC测定,聚苯乙烯的间规度(rrrr)用核磁共振氢谱(1H NMR)和碳谱(13C NMR)波谱计算。具体见实施例。The number-average molecular weight and molecular weight distribution of the above-mentioned syndiotactic polystyrene obtained are measured by high-temperature gel permeation chromatography (GPC), the melting point is measured by DSC, and the syndiotacticity (rrrr) of polystyrene is measured by proton nuclear magnetic resonance ( 1 H NMR) and carbon spectrum ( 13 C NMR) spectrum calculations. See the examples for details.

有益效果:本发明的限制几何构型稀土配合物具有合成简单,收率较高达41%~64%。其与有机硼盐组成的催化体系催化苯乙烯间规聚合反应具有可控聚合的特征。催化苯乙烯聚合时,单体转化率最高可达100%,活性最高可达1.25×107g molLn -1h-1,所合成的聚苯乙烯间规度(rrrr)最高可达100%,熔点在266~272℃范围内,数均分子量在4.6~100万范围内,分子量分布最低可达1.30。Beneficial effects: the rare earth complex with constrained geometric configuration is simple to synthesize, and the yield is as high as 41% to 64%. The catalytic system composed of it and organoboron salt catalyzes the syndiotactic polymerization of styrene and has the characteristics of controllable polymerization. When catalyzing styrene polymerization, the monomer conversion rate can reach up to 100%, the activity can reach up to 1.25×10 7 g mol Ln -1 h -1 , and the synthesized polystyrene syndiotacticity (rrrr) can reach up to 100%. , the melting point is in the range of 266-272°C, the number-average molecular weight is in the range of 4.6-1 million, and the molecular weight distribution can reach as low as 1.30.

具体实施方式Detailed ways

配合物制备实施例如下:Complex preparation examples are as follows:

配合物制备实施例1配合物1的制备Complex Preparation Example 1 Preparation of Complex 1

Figure GSA00000052886900061
Figure GSA00000052886900061

在-78℃条件下,将浓度为1.0mol/L的正丁基锂的正己烷溶液(1.2mL,1.2mmol)滴加到1-(2-吡啶基)-2,3,4,5-四甲基环戊二烯(0.24g,1.2mmol)的四氢呋喃(20mL)的溶液中。反应液在此温度下反应1小时后将ScCl3(0.18g,1.2mmol)加到上述反应液中,反应4小时后,将LiCH2SiMe3(0.23g,2.4mmol)加入,室温反应4小时后,真空抽去溶剂,残余物用己烷萃取,浓缩己烷溶液得到红色晶体配合物1共0.27g,产率54%。元素分析目标物分子式为C22H38NSi2Sc(%):C,62.84;H,9.25;N,3.28。At -78°C, a n-hexane solution (1.2 mL, 1.2 mmol) of n-butyllithium with a concentration of 1.0 mol/L was added dropwise to 1-(2-pyridyl)-2,3,4,5- Tetramethylcyclopentadiene (0.24 g, 1.2 mmol) in THF (20 mL). After the reaction solution was reacted at this temperature for 1 hour, ScCl 3 (0.18g, 1.2mmol) was added to the above reaction solution, and after 4 hours of reaction, LiCH 2 SiMe 3 (0.23g, 2.4mmol) was added, and the reaction was carried out at room temperature for 4 hours Finally, the solvent was removed in vacuo, the residue was extracted with hexane, and the hexane solution was concentrated to obtain 0.27 g of complex 1 as red crystals, with a yield of 54%. The molecular formula of the target substance in elemental analysis is C 22 H 38 NSi 2 Sc (%): C, 62.84; H, 9.25; N, 3.28.

配合物制备实施例2配合物2-5的制备Preparation of complexes Example 2 Preparation of complexes 2-5

配合物2-5的制备方法中,除了反应物稀土三氯化物的改变,其它的条件和步骤同配合物制备实施例1,得到的限制几何构型稀土烷基配合物2-5及结果如表1:In the preparation method of the complex 2-5, except for the change of the reactant rare earth trichloride, other conditions and steps are the same as the complex preparation example 1, and the obtained restricted geometry rare earth alkyl complex 2-5 and the results are as follows Table 1:

表1限制几何构型稀土烷基配合物2-5Table 1 Constrained Geometry Rare Earth Alkyl Complexes 2-5

  配合物Complex   稀土三氯化物Rare earth trichloride   目标物分子式Target Molecular Formula   元素分析(%) Elemental analysis(%)   产率(%) Yield(%)   2 2   YCl3 YCl3   C22H38NSi2YC 22 H 38 NSi 2 Y   C,56.87;H,8.36;N,2.97C, 56.87; H, 8.36; N, 2.97   4848   33   NdCl3 NdCl 3   C22H38NSi2NdC 22 H 38 NSi 2 Nd   C,49.81;H,7.46;N,2.61C, 49.81; H, 7.46; N, 2.61   4545   44   GdCl3 GdCl3   C22H38NSi2GdC 22 H 38 NSi 2 Gd   C,49.52;H,7.30;N,2.56C, 49.52; H, 7.30; N, 2.56   6363   55   LuCl3 LuCl3   C22H38NSi2LuC 22 H 38 NSi 2 Lu   C,47.86;H,7.05;N,2.48C, 47.86; H, 7.05; N, 2.48   6161

配合物制备实施例3配合物6的制备Complex Preparation Example 3 Preparation of Complex 6

在-40℃条件下,将浓度为1.5mol/L的正丁基锂的正己烷溶液(0.8mL,1.2mmol)滴加到1-[2-(3-甲基)吡啶基]-2,3,4,5-四甲基环戊二烯(0.26g,1.2mmol)的四氢呋喃(20mL)的溶液中。反应液在此温度下反应1小时后将ScCl3(0.18g,1.2mmol)加到上述反应液中,反应4小时后,将LiCH2SiMe3(0.23g,2.4mmol)加入,室温反应4小时后,真空抽去溶剂,残余物用己烷萃取,浓缩己烷溶液得到浅红色晶体配合物6共0.30g,产率58%。元素分析目标物分子式为C23H40NSi2Sc(%):C,63.54;H,9.42;N,3.15。At -40°C, a n-hexane solution (0.8 mL, 1.2 mmol) of n-butyllithium with a concentration of 1.5 mol/L was added dropwise to 1-[2-(3-methyl)pyridyl]-2, 3,4,5-Tetramethylcyclopentadiene (0.26g, 1.2mmol) in tetrahydrofuran (20mL). After the reaction solution was reacted at this temperature for 1 hour, ScCl 3 (0.18g, 1.2mmol) was added to the above reaction solution, and after 4 hours of reaction, LiCH 2 SiMe 3 (0.23g, 2.4mmol) was added, and the reaction was carried out at room temperature for 4 hours Finally, the solvent was removed in vacuo, the residue was extracted with hexane, and the hexane solution was concentrated to obtain 0.30 g of light red crystal complex 6 with a yield of 58%. The molecular formula of the target substance in elemental analysis is C 23 H 40 NSi 2 Sc (%): C, 63.54; H, 9.42; N, 3.15.

配合物制备实施例4配合物7的制备Complex Preparation Example 4 Preparation of Complex 7

Figure GSA00000052886900071
Figure GSA00000052886900071

在-40℃条件下,将浓度为1.5mol/L的正丁基锂的正己烷溶液(0.8mL,1.2mmol)滴加到1-[2-(3-甲基)吡啶基]-2,3,4,5-四甲基环戊二烯(0.26g,1.2mmol)的四氢呋喃(20mL)的溶液中。反应液在此温度下反应1小时后将LuCl3(0.34g,1.2mmol)加到上述反应液中,反应4小时后,将LiCH2SiMe3(0.23g,2.4mmol)加入,室温反应4小时后,真空抽去溶剂,残余物用己烷萃取,浓缩己烷溶液得到浅红色晶体配合物7共0.41g,产率61%。元素分析目标物分子式为C23H40NSi2Lu(%):C,48.93;H,7.00;N,2.38。At -40°C, a n-hexane solution (0.8 mL, 1.2 mmol) of n-butyllithium with a concentration of 1.5 mol/L was added dropwise to 1-[2-(3-methyl)pyridyl]-2, 3,4,5-Tetramethylcyclopentadiene (0.26g, 1.2mmol) in tetrahydrofuran (20mL). After the reaction solution was reacted at this temperature for 1 hour, LuCl 3 (0.34 g, 1.2 mmol) was added to the above reaction solution, and after 4 hours of reaction, LiCH 2 SiMe 3 (0.23 g, 2.4 mmol) was added, and the reaction was carried out at room temperature for 4 hours Finally, the solvent was removed in vacuo, the residue was extracted with hexane, and the hexane solution was concentrated to obtain 0.41 g of light red crystal complex 7 with a yield of 61%. The molecular formula of the target object in elemental analysis is C 23 H 40 NSi 2 Lu (%): C, 48.93; H, 7.00; N, 2.38.

配合物制备实施例5配合物8的制备Complex Preparation Example 5 Preparation of Complex 8

Figure GSA00000052886900072
Figure GSA00000052886900072

在40℃条件下,将浓度为1.5mol/L的正丁基锂的正己烷溶液(0.8mL,1.2mmol)滴加到1-[2-(6-甲基)吡啶基]-2,3,4,5-四甲基环戊二烯(0.26g,1.2mmol)的四氢呋喃(20mL)的溶液中。反应液在此温度下反应1小时后将ScCl3(0.18g,1.2mmol)加到上述反应液中,反应4小时后,将LiCH2SiMe3(0.23g,2.4mmol)加入,室温反应4小时后,真空抽去溶剂,残余物用己烷萃取,浓缩己烷溶液得到浅红色晶体配合物8共0.25g,产率48%。元素分析目标物分子式为C23H40NSi2Sc(%):C,63.48;H,9.38;N,3.19。At 40°C, a n-hexane solution (0.8 mL, 1.2 mmol) of n-butyllithium with a concentration of 1.5 mol/L was added dropwise to 1-[2-(6-methyl)pyridyl]-2,3 , in a solution of 4,5-tetramethylcyclopentadiene (0.26 g, 1.2 mmol) in tetrahydrofuran (20 mL). After the reaction solution was reacted at this temperature for 1 hour, ScCl 3 (0.18g, 1.2mmol) was added to the above reaction solution, and after 4 hours of reaction, LiCH 2 SiMe 3 (0.23g, 2.4mmol) was added, and the reaction was carried out at room temperature for 4 hours Finally, the solvent was removed in vacuo, the residue was extracted with hexane, and the hexane solution was concentrated to obtain 0.25 g of light red crystal complex 8 with a yield of 48%. The molecular formula of the target substance in elemental analysis is C 23 H 40 NSi 2 Sc (%): C, 63.48; H, 9.38; N, 3.19.

配合物制备实施例6配合物9的制备Complex Preparation Example 6 Preparation of Complex 9

Figure GSA00000052886900081
Figure GSA00000052886900081

在-40℃条件下,将浓度为1.5mol/L的正丁基锂的正己烷溶液(0.8mL,1.2mmol)滴加到1-[2-(6-甲基)吡啶基]-2,3,4,5-四甲基环戊二烯(0.26g,1.2mmol)的四氢呋喃(20mL)的溶液中。反应液在此温度下反应1小时后将LuCl3(0.34g,1.2mmol)加到上述反应液中,反应4小时后,将LiCH2SiMe3(0.23g,2.4mmol)加入,室温反应4小时后,真空抽去溶剂,残余物用己烷萃取,浓缩己烷溶液得到浅红色晶体配合物9共0.31g,产率46%。元素分析目标物分子式为C23H40NSi2Lu(%):C,49.00;H,6.97;N,2.35。At -40°C, a n-hexane solution (0.8 mL, 1.2 mmol) of n-butyllithium with a concentration of 1.5 mol/L was added dropwise to 1-[2-(6-methyl)pyridyl]-2, 3,4,5-Tetramethylcyclopentadiene (0.26g, 1.2mmol) in tetrahydrofuran (20mL). After the reaction solution was reacted at this temperature for 1 hour, LuCl 3 (0.34 g, 1.2 mmol) was added to the above reaction solution, and after 4 hours of reaction, LiCH 2 SiMe 3 (0.23 g, 2.4 mmol) was added, and the reaction was carried out at room temperature for 4 hours Finally, the solvent was removed in vacuo, the residue was extracted with hexane, and the hexane solution was concentrated to obtain 0.31 g of light red crystal complex 9 with a yield of 46%. The molecular formula of the target object in elemental analysis is C 23 H 40 NSi 2 Lu (%): C, 49.00; H, 6.97; N, 2.35.

配合物制备实施例7配合物10的制备Complex Preparation Example 7 Preparation of Complex 10

在-40℃条件下,将浓度为1.5mol/L的正丁基锂的正己烷溶液(0.8mL,1.2mmol)滴加到1-{2-[6-(2,4,6-三异丙基苯基)]吡啶基}-2,3,4,5-四甲基环戊二烯(0.48g,1.2mmol)的四氢呋喃(20mL)的溶液中。反应液在此温度下反应1小时后将ScCl3(0.18g,1.2mmol)加到上述反应液中,反应4小时后,将LiCH2SiMe3(0.23g,2.4mmol)加入,室温反应4小时后,真空抽去溶剂,残余物用己烷萃取,浓缩己烷溶液得到浅红色晶体配合物10共0.32g,产率42%。元素分析目标物分子式为C37H60NSi2Sc(%):C,71.48;H,9.65;N,2.18。At -40°C, a n-hexane solution (0.8 mL, 1.2 mmol) of n-butyllithium with a concentration of 1.5 mol/L was added dropwise to 1-{2-[6-(2,4,6-triiso Propylphenyl)]pyridyl}-2,3,4,5-tetramethylcyclopentadiene (0.48g, 1.2mmol) in tetrahydrofuran (20mL). After the reaction solution was reacted at this temperature for 1 hour, ScCl 3 (0.18g, 1.2mmol) was added to the above reaction solution, and after 4 hours of reaction, LiCH 2 SiMe 3 (0.23g, 2.4mmol) was added, and the reaction was carried out at room temperature for 4 hours Finally, the solvent was removed in vacuo, the residue was extracted with hexane, and the hexane solution was concentrated to obtain 0.32 g of light red crystal complex 10 with a yield of 42%. The molecular formula of the target object in elemental analysis is C 37 H 60 NSi 2 Sc (%): C, 71.48; H, 9.65; N, 2.18.

配合物制备实施例8配合物11的制备Complex Preparation Example 8 Preparation of Complex 11

在-20℃条件下,将浓度为2.0mol/L的正丁基锂的正己烷溶液(0.6mL,1.2mmol)滴加到1-(2-吡啶基)茚(0.23g,1.2mmol)的四氢呋喃(20mL)的溶液中。反应液在此温度下反应1小时后将ScCl3(0.18g,1.2mmol)加到上述反应液中,反应4小时后,将LiCH2SiMe3(0.23g,2.4mmol)加入,室温反应4小时后,真空抽去溶剂,残余物用己烷萃取,浓缩己烷溶液得到深红色晶体配合物11共0.26g,产率53%。元素分析目标物分子式为C22H32NSi2Sc(%):C,63.98;H,7.69;N,3.31。At -20°C, a n-hexane solution of n-butyllithium (0.6 mL, 1.2 mmol) with a concentration of 2.0 mol/L was added dropwise to 1-(2-pyridyl) indene (0.23 g, 1.2 mmol) solution in tetrahydrofuran (20 mL). After the reaction solution was reacted at this temperature for 1 hour, ScCl 3 (0.18g, 1.2mmol) was added to the above reaction solution, and after 4 hours of reaction, LiCH 2 SiMe 3 (0.23g, 2.4mmol) was added, and the reaction was carried out at room temperature for 4 hours Finally, the solvent was removed in vacuo, the residue was extracted with hexane, and the hexane solution was concentrated to obtain 0.26 g of deep red crystal complex 11 with a yield of 53%. The molecular formula of the target substance in elemental analysis is C 22 H 32 NSi 2 Sc (%): C, 63.98; H, 7.69; N, 3.31.

配合物制备实施例9配合物12制备Complex Preparation Example 9 Preparation of Complex 12

Figure GSA00000052886900091
Figure GSA00000052886900091

在0℃条件下,将浓度为2.0mol/L的正丁基锂的正己烷溶液(0.6mL,1.2mmol)滴加到1-{2-[6-(2,4,6-三异丙基苯基)]吡啶基}茚(0.48g,1.2mmol)的四氢呋喃(20mL)的溶液中。反应液在此温度下反应1小时后将ScCl3(0.18g,1.2mmol)加到上述反应液中,反应4小时后,将LiCH2SiMe3(0.23g,2.4mmol)加入,室温反应4小时后,真空抽去溶剂,残余物用己烷萃取,浓缩己烷溶液得到深红色晶体配合物12共0.52g,产率42%。元素分析目标物分子式为C37H54NSi2Sc(%):C,72.18;H,8.69;N,2.17。At 0°C, a n-hexane solution (0.6 mL, 1.2 mmol) of n-butyllithium with a concentration of 2.0 mol/L was added dropwise to 1-{2-[6-(2,4,6-triisopropyl phenyl)]pyridyl}indene (0.48 g, 1.2 mmol) in tetrahydrofuran (20 mL). After the reaction solution was reacted at this temperature for 1 hour, ScCl 3 (0.18g, 1.2mmol) was added to the above reaction solution, and after 4 hours of reaction, LiCH 2 SiMe 3 (0.23g, 2.4mmol) was added, and the reaction was carried out at room temperature for 4 hours Finally, the solvent was removed in vacuo, the residue was extracted with hexane, and the hexane solution was concentrated to obtain 0.52 g of deep red crystal complex 12 with a yield of 42%. The molecular formula of the target object in elemental analysis is C 37 H 54 NSi 2 Sc (%): C, 72.18; H, 8.69; N, 2.17.

配合物制备实施例10配合物13的制备Complex Preparation Example 10 Preparation of Complex 13

Figure GSA00000052886900092
Figure GSA00000052886900092

在-78℃条件下,将浓度为1.0mol/L的正丁基锂的正己烷溶液(1.2mL,1.2mmol)滴加到1-(2-吡啶基)-2,3,4,5-四甲基环戊二烯(0.24g,1.2mmol)的四氢呋喃(20mL)的溶液中。反应液在此温度下反应1小时后将ScCl3(0.18g,12mmol)加到上述反应液中,反应4小时后,将C3H5MgCl(1.2mL,2.4mmol,2Min THF)加入,室温反应12小时后,真空抽去溶剂,残余物用甲苯萃取,浓缩甲苯溶液得到红黄色晶体配合物13共0.25g,产率64%。元素分析目标物分子式为C20H26NSc(%):C,73.52;H,7.90;N,4.18。At -78°C, a n-hexane solution (1.2 mL, 1.2 mmol) of n-butyllithium with a concentration of 1.0 mol/L was added dropwise to 1-(2-pyridyl)-2,3,4,5- Tetramethylcyclopentadiene (0.24 g, 1.2 mmol) in THF (20 mL). After the reaction solution was reacted at this temperature for 1 hour, ScCl 3 (0.18g, 12mmol) was added to the above reaction solution. After 4 hours of reaction, C 3 H 5 MgCl (1.2mL, 2.4mmol, 2Min THF) was added, room temperature After reacting for 12 hours, the solvent was removed in vacuo, the residue was extracted with toluene, and the toluene solution was concentrated to obtain 0.25 g of red-yellow crystal complex 13 with a yield of 64%. The molecular formula of the elemental analysis target is C 20 H 26 NSc (%): C, 73.52; H, 7.90; N, 4.18.

配合物制备实施例11配合物14的制备Complex Preparation Example 11 Preparation of Complex 14

Figure GSA00000052886900101
Figure GSA00000052886900101

在-78℃条件下,将浓度为1.0mol/L的正丁基锂的正己烷溶液(1.2mL,1.2mmol)滴加到1-(2-吡啶基)-2,3,4,5-四甲基环戊二烯(0.24g,1.2mmol)的四氢呋喃(20mL)的溶液中。反应液在此温度下反应1小时后将YCl3(0.23g,1.2mmol)加到上述反应液中,反应4小时后,将C3H5MgCl(12mL,2.4mmol,2Min THF)加入,室温反应12小时后,真空抽去溶剂,残余物用甲苯萃取,浓缩甲苯溶液得到红黄色晶体配合物14共0.26g,产率58%。元素分析目标物分子式为C20H26NY(%):C,64.80;H,7.01;N,3.68。At -78°C, a n-hexane solution (1.2 mL, 1.2 mmol) of n-butyllithium with a concentration of 1.0 mol/L was added dropwise to 1-(2-pyridyl)-2,3,4,5- Tetramethylcyclopentadiene (0.24 g, 1.2 mmol) in THF (20 mL). After the reaction solution was reacted at this temperature for 1 hour, YCl 3 (0.23g, 1.2mmol) was added to the above reaction solution. After 4 hours of reaction, C 3 H 5 MgCl (12mL, 2.4mmol, 2Min THF) was added, room temperature After reacting for 12 hours, the solvent was removed in vacuo, the residue was extracted with toluene, and the toluene solution was concentrated to obtain 0.26 g of red-yellow crystal complex 14 with a yield of 58%. The molecular formula of the target object in elemental analysis is C 20 H 26 NY (%): C, 64.80; H, 7.01; N, 3.68.

配合物制备实施例12配合物15的制备Complex Preparation Example 12 Preparation of Complex 15

在-40℃条件下,将浓度为1.0mol/L的正丁基锂的正己烷溶液(1.2mL,1.2mmol)滴加到1-(2-吡啶基)-2,3,4,5-四甲基环戊二烯(0.24g,1.2mmol)的四氢呋喃(20mL)的溶液中。反应液在此温度下反应1小时后将NdCl3(0.30g,1.2mmol)加到上述反应液中,反应4小时后,将C3H5MgCl(1.2mL,2.4mmol,2Min THF)加入,室温反应12小时后,真空抽去溶剂,残余物用甲苯萃取,浓缩甲苯溶液得到红黄色晶体配合物15共0.28g,产率55%。元素分析目标物分子式为C20H26NNd(%):C,56.37;H,6.06;N,3.21。At -40°C, a 1.0 mol/L n-butyl lithium n-hexane solution (1.2 mL, 1.2 mmol) was added dropwise to 1-(2-pyridyl)-2,3,4,5- Tetramethylcyclopentadiene (0.24 g, 1.2 mmol) in THF (20 mL). After the reaction solution was reacted at this temperature for 1 hour, NdCl 3 (0.30 g, 1.2 mmol) was added to the above reaction solution, and after 4 hours of reaction, C 3 H 5 MgCl (1.2 mL, 2.4 mmol, 2Min THF) was added, After reacting at room temperature for 12 hours, the solvent was removed in vacuo, the residue was extracted with toluene, and the toluene solution was concentrated to obtain 0.28 g of red-yellow crystal complex 15 with a yield of 55%. The molecular formula of the target substance in elemental analysis is C 20 H 26 NNd (%): C, 56.37; H, 6.06; N, 3.21.

配合物制备实施例13配合物16的制备Complex Preparation Example 13 Preparation of Complex 16

在-20℃条件下,将浓度为1.0mol/L的正丁基锂的正己烷溶液(1.2mL,1.2mmol)滴加到1-(2-吡啶基)-2,3,4,5-四甲基环戊二烯(0.24g,1.2mmol)的四氢呋喃(20mL)的溶液中。反应液在此温度下反应1小时后将GdCl3(0.32g,1.2mmol)加到上述反应液中,反应4小时后,将C3H5MgCl(1.2mL,2.4mmol,2Min THF)加入,室温反应12小时后,真空抽去溶剂,残余物用甲苯萃取,浓缩甲苯溶液得到红黄色晶体配合物16共0.32g,产率61%。元素分析目标物分子式为C20H26NGd(%):C,54.58;H,5.89;N,3.11。At -20°C, a n-hexane solution (1.2 mL, 1.2 mmol) of n-butyllithium with a concentration of 1.0 mol/L was added dropwise to 1-(2-pyridyl)-2,3,4,5- Tetramethylcyclopentadiene (0.24 g, 1.2 mmol) in THF (20 mL). After the reaction solution was reacted at this temperature for 1 hour, GdCl 3 (0.32 g, 1.2 mmol) was added to the above reaction solution, and after 4 hours of reaction, C 3 H 5 MgCl (1.2 mL, 2.4 mmol, 2Min THF) was added, After reacting at room temperature for 12 hours, the solvent was removed in vacuo, the residue was extracted with toluene, and the toluene solution was concentrated to obtain 0.32 g of red-yellow crystal complex 16 with a yield of 61%. The molecular formula of the target object in elemental analysis is C 20 H 26 NGd (%): C, 54.58; H, 5.89; N, 3.11.

配合物制备实施例14配合物17的制备Complex Preparation Example 14 Preparation of Complex 17

Figure GSA00000052886900111
Figure GSA00000052886900111

在0℃条件下,将浓度为1.0mol/L的正丁基锂的正己烷溶液(1.2mL,1.2mmol)滴加到1-(2-吡啶基)-2,3,4,5-四甲基环戊二烯(0.24g,1.2mmol)的四氢呋喃(20mL)的溶液中。反应液在此温度下反应1小时后将LuCl3(0.34g,1.2mmol)加到上述反应液中,反应4小时后,将C3H5MgCl(1.2mL,2.4mmol,2Min THF)加入,室温反应12小时后,真空抽去溶剂,残余物用甲苯萃取,浓缩甲苯溶液得到红黄色晶体配合物17共0.34g,产率63%。元素分析目标物分子式为C20H26NLu(%):C,52.42;H,5.61;N,2.99。At 0°C, a n-hexane solution (1.2 mL, 1.2 mmol) of n-butyllithium with a concentration of 1.0 mol/L was added dropwise to 1-(2-pyridyl)-2,3,4,5-tetra A solution of methylcyclopentadiene (0.24 g, 1.2 mmol) in tetrahydrofuran (20 mL). After the reaction solution was reacted at this temperature for 1 hour, LuCl 3 (0.34 g, 1.2 mmol) was added to the above reaction solution, and after 4 hours of reaction, C 3 H 5 MgCl (1.2 mL, 2.4 mmol, 2Min THF) was added, After reacting at room temperature for 12 hours, the solvent was removed in vacuo, the residue was extracted with toluene, and the toluene solution was concentrated to obtain 0.34 g of red-yellow crystal complex 17 with a yield of 63%. The molecular formula of the target object in elemental analysis is C 20 H 26 NLu (%): C, 52.42; H, 5.61; N, 2.99.

配合物制备实施例15配合物18的制备Complex Preparation Example 15 Preparation of Complex 18

Figure GSA00000052886900112
Figure GSA00000052886900112

在-40℃条件下,将浓度为1.5mol/L的正丁基锂的正己烷溶液(0.8mL,1.2mmol)滴加到1-[2-(3-甲基)吡啶基]-2,3,4,5-四甲基环戊二烯(0.26g,1.2mmol)的四氢呋喃(20mL)的溶液中。反应液在此温度下反应1小时后将ScCl3(0.18g,1.2mmol)加到上述反应液中,反应4小时后,将C3H5MgCl(1.2mL,2.4mmol,2Min THF)加入,室温反应12小时后,真空抽去溶剂,残余物用甲苯萃取,浓缩甲苯溶液得到红黄色晶体配合物18共0.22g,产率53%。元素分析目标物分子式为C21H28NSc(%):C,74.11;H,8.21;N,4.02。At -40°C, a n-hexane solution (0.8 mL, 1.2 mmol) of n-butyllithium with a concentration of 1.5 mol/L was added dropwise to 1-[2-(3-methyl)pyridyl]-2, 3,4,5-Tetramethylcyclopentadiene (0.26g, 1.2mmol) in tetrahydrofuran (20mL). After the reaction solution was reacted at this temperature for 1 hour, ScCl 3 (0.18 g, 1.2 mmol) was added to the above reaction solution, and after 4 hours of reaction, C 3 H 5 MgCl (1.2 mL, 2.4 mmol, 2Min THF) was added, After reacting at room temperature for 12 hours, the solvent was removed in vacuo, the residue was extracted with toluene, and the toluene solution was concentrated to obtain 0.22 g of red-yellow crystal complex 18 with a yield of 53%. The molecular formula of the target object in elemental analysis is C 21 H 28 NSc (%): C, 74.11; H, 8.21; N, 4.02.

配合物制备实施例16配合物19的制备Complex Preparation Example 16 Preparation of Complex 19

Figure GSA00000052886900121
Figure GSA00000052886900121

在-40℃条件下,将浓度为1.5mol/L的正丁基锂的正己烷溶液(0.8mL,1.2mmol)滴加到1-[2-(3-甲基)吡啶基]-2,3,4,5-四甲基环戊二烯(0.26g,1.2mmol)的四氢呋喃(20mL)的溶液中。反应液在此温度下反应1小时后将LuCl3(0.34g,1.2mmol)加到上述反应液中,反应4小时后,将C3H5MgCl(1.2mL,2.4mmol,2Min THF)加入,室温反应12小时后,真空抽去溶剂,残余物用甲苯萃取,浓缩甲苯溶液得到红黄色晶体配合物19共0.29g,产率51%。元素分析目标物分子式为C21H28NLu(%):C,53.53;H,5.89;N,2.88。At -40°C, a n-hexane solution (0.8 mL, 1.2 mmol) of n-butyllithium with a concentration of 1.5 mol/L was added dropwise to 1-[2-(3-methyl)pyridyl]-2, 3,4,5-Tetramethylcyclopentadiene (0.26g, 1.2mmol) in tetrahydrofuran (20mL). After the reaction solution was reacted at this temperature for 1 hour, LuCl 3 (0.34 g, 1.2 mmol) was added to the above reaction solution, and after 4 hours of reaction, C 3 H 5 MgCl (1.2 mL, 2.4 mmol, 2Min THF) was added, After reacting at room temperature for 12 hours, the solvent was removed in vacuo, the residue was extracted with toluene, and the toluene solution was concentrated to obtain 0.29 g of red-yellow crystal complex 19 with a yield of 51%. The molecular formula of the target object in elemental analysis is C 21 H 28 NLu (%): C, 53.53; H, 5.89; N, 2.88.

配合物制备实施例17配合物20的制备Complex Preparation Example 17 Preparation of Complex 20

Figure GSA00000052886900122
Figure GSA00000052886900122

在-40℃条件下,将浓度为1.5mol/L的正丁基锂的正己烷溶液(0.8mL,1.2mmol)滴加到1-[2-(6-甲基)吡啶基]-2,3,4,5-四甲基环戊二烯(0.26g,1.2mmol)的四氢呋喃(20mL)的溶液中。反应液在此温度下反应1小时后将ScCl3(0.18g,1.2mmol)加到上述反应液中,反应4小时后,将C3H5MgCl(1.2mL,2.4mmol,2Min THF)加入,室温反应12小时后,真空抽去溶剂,残余物用甲苯萃取,浓缩甲苯溶液得到红黄色晶体配合物20共0.20g,产率48%。元素分析目标物分子式为C21H28NSc(%):C,74.01;H,8.25;N,3.98。At -40°C, a n-hexane solution (0.8 mL, 1.2 mmol) of n-butyllithium with a concentration of 1.5 mol/L was added dropwise to 1-[2-(6-methyl)pyridyl]-2, 3,4,5-Tetramethylcyclopentadiene (0.26g, 1.2mmol) in tetrahydrofuran (20mL). After the reaction solution was reacted at this temperature for 1 hour, ScCl 3 (0.18 g, 1.2 mmol) was added to the above reaction solution, and after 4 hours of reaction, C 3 H 5 MgCl (1.2 mL, 2.4 mmol, 2Min THF) was added, After reacting at room temperature for 12 hours, the solvent was removed in vacuo, the residue was extracted with toluene, and the toluene solution was concentrated to obtain 0.20 g of red-yellow crystal complex 20 with a yield of 48%. The molecular formula of the target object in elemental analysis is C 21 H 28 NSc (%): C, 74.01; H, 8.25; N, 3.98.

配合物制备实施例18配合物21的制备Complex Preparation Example 18 Preparation of Complex 21

Figure GSA00000052886900123
Figure GSA00000052886900123

在-40℃条件下,将浓度为1.5mol/L的正丁基锂的正己烷溶液(0.8mL,1.2mmol)滴加到1-[2-(6-甲基)吡啶基]-2,3,4,5-四甲基环戊二烯(0.26g,1.2mmol)的四氢呋喃(20mL)的溶液中。反应液在此温度下反应1小时后将LuCl3(0.34g,1.2mmol)加到上述反应液中,反应4小时后,将C3H5MgCl(1.2mL,2.4mmol,2Min THF)加入,室温反应12小时后,真空抽去溶剂,残余物用甲苯萃取,浓缩甲苯溶液得到红黄色晶体配合物21共0.23g,产率41%。元素分析目标物分子式为C21H28NLu(%):C,53.45;H,5.94;N,2.85。At -40°C, a n-hexane solution (0.8 mL, 1.2 mmol) of n-butyllithium with a concentration of 1.5 mol/L was added dropwise to 1-[2-(6-methyl)pyridyl]-2, 3,4,5-Tetramethylcyclopentadiene (0.26g, 1.2mmol) in tetrahydrofuran (20mL). After the reaction solution was reacted at this temperature for 1 hour, LuCl 3 (0.34 g, 1.2 mmol) was added to the above reaction solution, and after 4 hours of reaction, C 3 H 5 MgCl (1.2 mL, 2.4 mmol, 2Min THF) was added, After reacting at room temperature for 12 hours, the solvent was removed in vacuo, the residue was extracted with toluene, and the toluene solution was concentrated to obtain 0.23 g of red-yellow crystal complex 21 with a yield of 41%. The molecular formula of the target object in elemental analysis is C 21 H 28 NLu (%): C, 53.45; H, 5.94; N, 2.85.

配合物制备实施例19配合物22的制备Complex Preparation Example 19 Preparation of Complex 22

Figure GSA00000052886900131
Figure GSA00000052886900131

在-40℃条件下,将浓度为15mol/L的正丁基锂的正己烷溶液(0.8mL,1.2mmol)滴加到1-[2-(6-苯基)吡啶基]-2,3,4,5-四甲基环戊二烯(0.33g,1.2mmol)的四氢呋喃(20mL)的溶液中。反应液在此温度下反应1小时后将ScCl3(0.18g,1.2mmol)加到上述反应液中,反应4小时后,将C3H5MgCl(1.2mL,2.4mmol,2Min THF)加入,室温反应12小时后,真空抽去溶剂,残余物用甲苯萃取,浓缩甲苯溶液得到红黄色晶体配合物22共0.21g,产率44%。元素分析目标物分子式为C26H30NSc(%):C,77.48;H,7.40;N,3.38。At -40°C, a n-hexane solution (0.8 mL, 1.2 mmol) of n-butyllithium with a concentration of 15 mol/L was added dropwise to 1-[2-(6-phenyl)pyridyl]-2,3 , in a solution of 4,5-tetramethylcyclopentadiene (0.33 g, 1.2 mmol) in tetrahydrofuran (20 mL). After the reaction solution was reacted at this temperature for 1 hour, ScCl 3 (0.18 g, 1.2 mmol) was added to the above reaction solution, and after 4 hours of reaction, C 3 H 5 MgCl (1.2 mL, 2.4 mmol, 2Min THF) was added, After reacting at room temperature for 12 hours, the solvent was removed in vacuo, the residue was extracted with toluene, and the toluene solution was concentrated to obtain 0.21 g of red-yellow crystal complex 22 with a yield of 44%. The molecular formula of the target object in elemental analysis is C 26 H 30 NSc (%): C, 77.48; H, 7.40; N, 3.38.

配合物制备实施例20配合物23的制备Complex Preparation Example 20 Preparation of Complex 23

Figure GSA00000052886900132
Figure GSA00000052886900132

在-40℃条件下,将浓度为1.5mol/L的正丁基锂的正己烷溶液(0.8mL,1.2mmol)滴加到1-{2-[6-(2,6-二甲基苯基)]吡啶基}-2,3,4,5-四甲基环戊二烯(0.36g,1.2mmol)的四氢呋喃(20mL)的溶液中。反应液在此温度下反应1小时后将ScCl3(0.18g,1.2mmol)加到上述反应液中,反应4小时后,将C3H5MgCl(1.2mL,2.4mmol,2Min THF)加入,室温反应12小时后,真空抽去溶剂,残余物用甲苯萃取,浓缩甲苯溶液得到红黄色晶体配合物23共0.25g,产率48%。元素分析目标物分子式为C28H34NSc(%):C,78.00;H,7.88;N,3.16。At -40°C, a n-hexane solution (0.8 mL, 1.2 mmol) of n-butyllithium with a concentration of 1.5 mol/L was added dropwise to 1-{2-[6-(2,6-dimethylbenzene base)]pyridyl}-2,3,4,5-tetramethylcyclopentadiene (0.36 g, 1.2 mmol) in tetrahydrofuran (20 mL). After the reaction solution was reacted at this temperature for 1 hour, ScCl 3 (0.18 g, 1.2 mmol) was added to the above reaction solution, and after 4 hours of reaction, C 3 H 5 MgCl (1.2 mL, 2.4 mmol, 2Min THF) was added, After reacting at room temperature for 12 hours, the solvent was removed in vacuo, the residue was extracted with toluene, and the toluene solution was concentrated to obtain 0.25 g of red-yellow crystal complex 23 with a yield of 48%. The molecular formula of the target object in elemental analysis is C 28 H 34 NSc (%): C, 78.00; H, 7.88; N, 3.16.

配合物制备实施例21配合物24的制备Complex Preparation Example 21 Preparation of Complex 24

Figure GSA00000052886900141
Figure GSA00000052886900141

在-40℃条件下,将浓度为1.5mol/L的正丁基锂的正己烷溶液(0.8mL,1.2mmol)滴加到1-{2-[6-(2,4,6-三异丙基苯基)]吡啶基}-2,3,4,5-四甲基环戊二烯(0.48g,1.2mmol)的四氢呋喃(20mL)的溶液中。反应液在此温度下反应1小时后将ScCl3(0.18g,1.2mmol)加到上述反应液中,反应4小时后,将C3H5MgCl(1.2mL,2.4mmol,2Min THF)加入,室温反应12小时后,真空抽去溶剂,残余物用甲苯萃取,浓缩甲苯溶液得到红黄色晶体配合物24共0.30g,产率48%。元素分析目标物分子式为C35H48NSc(%):C,79.48;H,7.03;N,2.54。At -40°C, a n-hexane solution (0.8 mL, 1.2 mmol) of n-butyllithium with a concentration of 1.5 mol/L was added dropwise to 1-{2-[6-(2,4,6-triiso Propylphenyl)]pyridyl}-2,3,4,5-tetramethylcyclopentadiene (0.48g, 1.2mmol) in tetrahydrofuran (20mL). After the reaction solution was reacted at this temperature for 1 hour, ScCl 3 (0.18 g, 1.2 mmol) was added to the above reaction solution, and after 4 hours of reaction, C 3 H 5 MgCl (1.2 mL, 2.4 mmol, 2Min THF) was added, After reacting at room temperature for 12 hours, the solvent was removed in vacuo, the residue was extracted with toluene, and the toluene solution was concentrated to obtain 0.30 g of red-yellow crystal complex 24 with a yield of 48%. The molecular formula of the target object in elemental analysis is C 35 H 48 NSc (%): C, 79.48; H, 7.03; N, 2.54.

配合物制备实施例22配合物25的制备Complex Preparation Example 22 Preparation of Complex 25

Figure GSA00000052886900142
Figure GSA00000052886900142

在0℃条件下,将浓度为2.0mol/L的正丁基锂的正己烷溶液(0.6mL,1.2mmol)滴加到1-(2-吡啶基)茚(0.23g,1.2mmol)的四氢呋喃(20mL)的溶液中。反应液在此温度下反应1小时后将ScCl3(0.18g,1.2mmol)加到上述反应液中,反应4小时后,将C3H5MgCl(1.2mL,2.4mmol,2Min THF)加入,室温反应12小时后,真空抽去溶剂,残余物用甲苯萃取,浓缩甲苯溶液得到黄色晶体配合物25共0.16g,产率43%。元素分析目标物分子式为C20H20NSc(%):C,75.00;H,6.21;N,4.32。At 0°C, add 2.0mol/L n-butyllithium in n-hexane (0.6mL, 1.2mmol) dropwise to 1-(2-pyridyl)indene (0.23g, 1.2mmol) in tetrahydrofuran (20 mL) solution. After the reaction solution was reacted at this temperature for 1 hour, ScCl 3 (0.18 g, 1.2 mmol) was added to the above reaction solution, and after 4 hours of reaction, C 3 H 5 MgCl (1.2 mL, 2.4 mmol, 2Min THF) was added, After reacting at room temperature for 12 hours, the solvent was removed in vacuo, the residue was extracted with toluene, and the toluene solution was concentrated to obtain 0.16 g of yellow crystal complex 25 with a yield of 43%. The molecular formula of the elemental analysis target is C 20 H 20 NSc (%): C, 75.00; H, 6.21; N, 4.32.

配合物制备实施例23配合物26的制备Complex Preparation Example 23 Preparation of Complex 26

在0℃条件下,将浓度为2.0mol/L的正丁基锂的正己烷溶液(0.6mL,1.2mmol)滴加到1-(2-吡啶基)茚(0.23g,1.2mmol)的四氢呋喃(20mL)的溶液中。反应液在此温度下反应1小时后将LuCl3(0.34g,1.2mmol)加到上述反应液中,反应4小时后,将C3H5MgCl(1.2mL,2.4mmol,2Min THF)加入,室温反应12小时后,真空抽去溶剂,残余物用甲苯萃取,浓缩甲苯溶液得到黄色晶体配合物26共0.30g,产率56%。元素分析目标物分子式为C20H20NLu(%):C,53.34;H,4.39;N,3.04。At 0°C, add 2.0mol/L n-butyllithium in n-hexane (0.6mL, 1.2mmol) dropwise to 1-(2-pyridyl)indene (0.23g, 1.2mmol) in tetrahydrofuran (20 mL) solution. After the reaction solution was reacted at this temperature for 1 hour, LuCl 3 (0.34 g, 1.2 mmol) was added to the above reaction solution, and after 4 hours of reaction, C 3 H 5 MgCl (1.2 mL, 2.4 mmol, 2Min THF) was added, After reacting at room temperature for 12 hours, the solvent was removed in vacuo, the residue was extracted with toluene, and the toluene solution was concentrated to obtain 0.30 g of yellow crystal complex 26 with a yield of 56%. The molecular formula of the target object in elemental analysis is C 20 H 20 NLu (%): C, 53.34; H, 4.39; N, 3.04.

配合物制备实施例24配合物27的制备Complex Preparation Example 24 Preparation of Complex 27

在0℃条件下,将浓度为2.0mol/L的正丁基锂的正己烷溶液(0.6mL,1.2mmol)滴加到1-{2-[6-(2,4,6-三异丙基苯基)]吡啶基}茚(0.48g,1.2mmol)的四氢呋喃(20mL)的溶液中。反应液在此温度下反应1小时后将ScCl3(0.18g,1.2mmol)加到上述反应液中,反应4小时后,将C3H5MgCl(1.2mL,2.4mmol,2Min THF)加入,室温反应12小时后,真空抽去溶剂,残余物用甲苯萃取,浓缩甲苯溶液得到黄色晶体配合物27共0.29g,产率56%。元素分析目标物分子式为C35H42NSc(%):C,80.38;H,8.01;N,2.58。At 0°C, a n-hexane solution (0.6 mL, 1.2 mmol) of n-butyllithium with a concentration of 2.0 mol/L was added dropwise to 1-{2-[6-(2,4,6-triisopropyl phenyl)]pyridyl}indene (0.48 g, 1.2 mmol) in tetrahydrofuran (20 mL). After the reaction solution was reacted at this temperature for 1 hour, ScCl 3 (0.18 g, 1.2 mmol) was added to the above reaction solution, and after 4 hours of reaction, C 3 H 5 MgCl (1.2 mL, 2.4 mmol, 2Min THF) was added, After reacting at room temperature for 12 hours, the solvent was removed in vacuo, the residue was extracted with toluene, and the toluene solution was concentrated to obtain 0.29 g of yellow crystal complex 27 with a yield of 56%. The molecular formula of the target object in elemental analysis is C 35 H 42 NSc (%): C, 80.38; H, 8.01; N, 2.58.

配合物制备实施例25配合物28的制备Complex Preparation Example 25 Preparation of Complex 28

Figure GSA00000052886900161
Figure GSA00000052886900161

在0℃条件下,将浓度为2.0mol/L的正丁基锂的正己烷溶液(0.6mL,1.2mmol)滴加到1-{2-[6-(2,4,6-三异丙基苯基)]吡啶基}茚(0.48g,1.2mmol)的四氢呋喃(20mL)的溶液中。反应液在此温度下反应1小时后将LuCl3(0.34g,1.2mmol)加到上述反应液中,反应4小时后,将C3H5MgCl(1.2mL,2.4mmol,2Min THF)加入,室温反应12小时后,真空抽去溶剂,残余物用甲苯萃取,浓缩甲苯溶液得到黄色晶体配合物28共0.39g,产率50%。元素分析目标物分子式为C35H42NLu(%):C,64.45;H,6.38;N,2.07。At 0°C, a n-hexane solution (0.6 mL, 1.2 mmol) of n-butyllithium with a concentration of 2.0 mol/L was added dropwise to 1-{2-[6-(2,4,6-triisopropyl phenyl)]pyridyl}indene (0.48 g, 1.2 mmol) in tetrahydrofuran (20 mL). After the reaction solution was reacted at this temperature for 1 hour, LuCl 3 (0.34 g, 1.2 mmol) was added to the above reaction solution, and after 4 hours of reaction, C 3 H 5 MgCl (1.2 mL, 2.4 mmol, 2Min THF) was added, After reacting at room temperature for 12 hours, the solvent was removed in vacuo, the residue was extracted with toluene, and the toluene solution was concentrated to obtain 0.39 g of yellow crystal complex 28 with a yield of 50%. The molecular formula of the target object in elemental analysis is C 35 H 42 NLu (%): C, 64.45; H, 6.38; N, 2.07.

催化体系的制备实施例如下:The preparation embodiment of catalytic system is as follows:

催化体系制备实施例1催化体系1的制备Preparation of Catalyst System Example 1 Catalyst System 1

25℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物1、10μmol[Ph3C][B(C6F5)4]和1ml的甲苯溶剂,反应2分钟,得催化体系1。At 25°C, add 10 μmol of complex 1, 10 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 1 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes to obtain Catalytic system 1.

催化体系制备实施例2催化体系2的制备Preparation of Catalyst System Example 2 Catalyst System 2

25℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物1、5μmol[Ph3C][B(C6F5)4]和5ml的甲苯溶剂,反应2分钟,得催化体系2。At 25°C, add 10 μmol of complex 1, 5 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 5 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes to obtain Catalytic system 2.

催化体系制备实施例3催化体系3的制备Preparation of Catalyst System Example 3 Catalyst System 3

25℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物1、10μmol[Ph3C][B(C6F5)4]和5ml的甲苯溶剂,反应2分钟,得催化体系3。At 25°C, add 10 μmol of complex 1, 10 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 5 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes to obtain Catalytic system 3.

催化体系制备实施例4催化体系4的制备The preparation of catalytic system preparation embodiment 4 catalytic system 4

25℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物1、20μmol[Ph3C][B(C6F5)4]和5ml的甲苯溶剂,反应2分钟,得催化体系4。At 25°C, add 10 μmol of complex 1, 20 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 5 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes to obtain Catalytic system4.

催化体系制备实施例5催化体系5的制备The preparation of catalytic system preparation embodiment 5 catalytic system 5

25℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物1、10μmol[Ph3C][B(C6F5)4]和10ml的甲苯溶剂,反应2分钟,得催化体系5。At 25°C, add 10 μmol of complex 1, 10 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 10 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes to obtain Catalytic system 5.

催化体系制备实施例6催化体系6的制备Preparation of Catalytic System Example 6 Preparation of Catalytic System 6

25℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物1、10μmol[Ph3C][B(C6F5)4]和10ml的氯苯溶剂,反应2分钟,得催化体系6。At 25°C, add 10 μmol of complex 1, 10 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 10 ml of chlorobenzene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes. Catalytic system 6 was obtained.

催化体系制备实施例7催化体系7的制备Preparation of Catalyst System Example 7 Catalyst System 7

-20℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物1、10μmol[Ph3C][B(C6F5)4]和2ml的甲苯溶剂,反应2分钟,得催化体系7。At -20°C, add 10 μmol of complex 1, 10 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 2 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes. Catalytic system 7 was obtained.

催化体系制备实施例8催化体系8的制备Preparation of Catalyst System Example 8 Catalyst System 8

40℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物1、10μmol[Ph3C][B(C6F5)4]和2ml的甲苯溶剂,反应2分钟,得催化体系8。At 40°C, add 10 μmol of complex 1, 10 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 2 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes to obtain Catalytic system 8.

催化体系制备实施例9催化体系9的制备Preparation of Catalyst System Example 9 Preparation of Catalyst System 9

80℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物1、10μmol[Ph3C][B(C6F5)4]和5ml的甲苯溶剂,反应2分钟,得催化体系9。At 80°C, add 10 μmol of complex 1, 10 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 5 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes to obtain Catalytic system9.

催化体系制备实施例10催化体系10的制备Preparation of Catalyst System Example 10 Preparation of Catalyst System 10

25℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物2、10μmol[Ph3C][B(C6F5)4]和3ml的甲苯溶剂,反应2分钟,得催化体系10。At 25°C, add 10 μmol of complex 2, 10 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 3 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes to obtain Catalytic system 10.

催化体系制备实施例11催化体系11的制备Preparation of Catalyst System Example 11 Catalyst System 11

25℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物3、10μmol[Ph3C][B(C6F5)4]和5ml的甲苯溶剂,反应2分钟,得催化体系11。At 25°C, add 10 μmol of complex 3, 10 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 5 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes to obtain Catalytic system 11.

催化体系制备实施例12催化体系12的制备Preparation of Catalyst System Example 12 Catalyst System 12

25℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物4、10μmol[Ph3C][B(C6F5)4]和8ml的甲苯溶剂,反应2分钟,得催化体系12。At 25°C, add 10 μmol of complex 4, 10 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 8 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes to obtain Catalytic system 12.

催化体系制备实施例13催化体系13的制备Preparation of Catalyst System Example 13 Catalyst System 13

25℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物5、10μmol[Ph3C][B(C6F5)4]和1ml的甲苯溶剂,反应2分钟,得催化体系13。At 25°C, add 10 μmol of complex 5, 10 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 1 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes to obtain Catalytic system 13.

催化体系制备实施例14催化体系14的制备Preparation of Catalyst System Example 14 Catalyst System 14

25℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物5、10μmol[Ph3C][B(C6F5)4]和5ml的甲苯溶剂,反应2分钟,得催化体系14。At 25°C, add 10 μmol of complex 5, 10 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 5 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes to obtain Catalytic system 14.

催化体系制备实施例15催化体系15的制备Preparation of Catalyst System Example 15 Catalyst System 15

25℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物5、10μmol[Ph3C][B(C6F5)4]和10ml的甲苯溶剂,反应2分钟,得催化体系15。At 25°C, add 10 μmol of complex 5, 10 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 10 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes to obtain Catalytic system 15.

催化体系制备实施例16催化体系16的制备Preparation of Catalytic System Example 16 The preparation of catalytic system 16

25℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物5、10μmol[Ph3C][B(C6F5)4]和10ml的氯苯溶剂,反应2分钟,得催化体系16。At 25°C, add 10 μmol of complex 5, 10 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 10 ml of chlorobenzene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes. Catalytic system 16 was obtained.

催化体系制备实施例17催化体系17的制备Preparation of Catalyst System Example 17 Catalyst System 17

-20℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物6、10μmol[Ph3C][B(C6F5)4]和10ml的甲苯溶剂,反应2分钟,得催化体系17。At -20°C, add 10 μmol of complex 6, 10 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 10 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes. Catalytic system 17 was obtained.

催化体系制备实施例18催化体系18的制备Preparation of Catalyst System Example 18 Catalyst System 18

80℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物7、10μmol[Ph3C][B(C6F5)4]和10ml的甲苯溶剂,反应2分钟,得催化体系18。At 80°C, add 10 μmol of complex 7, 10 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 10 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes to obtain Catalytic system 18.

催化体系制备实施例19催化体系19的制备Preparation of Catalyst System Example 19 Catalyst System 19

25℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物8、5μmol[Ph3C][B(C6F5)4]和10ml的甲苯溶剂,反应2分钟,得催化体系19。At 25°C, add 10 μmol of complex 8, 5 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 10 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes to obtain Catalytic system19.

催化体系制备实施例20催化体系20的制备Preparation of Catalyst System Example 20 Preparation of Catalyst System 20

25℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物9、20μmol[Ph3C][B(C6F5)4]和10ml的甲苯溶剂,反应2分钟,得催化体系20。At 25°C, add 10 μmol of complex 9, 20 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 10 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes to obtain Catalytic system 20.

催化体系制备实施例21催化体系21的制备Preparation of Catalytic System Example 21 Catalytic System 21

25℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物10、10μmol[Ph3C][B(C6F5)4]和10ml的氯苯溶剂,反应2分钟,得催化体系21。At 25°C, add 10 μmol of complex 10, 10 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 10 ml of chlorobenzene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes. Catalytic system 21 was obtained.

催化体系制备实施例22催化体系22的制备Preparation of Catalyst System Example 22 Preparation of Catalyst System 22

25℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物11、10μmol[Ph3C][B(C6F5)4]和10ml的甲苯溶剂,反应2分钟,得催化体系22。At 25°C, add 10 μmol of complex 11, 10 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 10 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes to obtain Catalytic system22.

催化体系制备实施例23催化体系23的制备Preparation of Catalyst System Example 23 Catalyst System 23

25℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物12、10μmol[Ph3C][B(C6F5)4]和10ml的甲苯溶剂,反应2分钟,得催化体系23。At 25°C, add 10 μmol of complex 12, 10 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 10 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes to obtain Catalytic system23.

催化体系制备实施例24催化体系24的制备Preparation of Catalyst System Example 24 Catalyst System 24

25℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物13、10μmol[Ph3C][B(C6F5)4]和1ml的甲苯溶剂,反应2分钟,得催化体系24。At 25°C, add 10 μmol of complex 13, 10 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 1 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes to obtain Catalytic system24.

催化体系制备实施例25催化体系25的制备Preparation of Catalytic System Example 25 The preparation of catalytic system 25

25℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物13、5μmol[Ph3C][B(C6F5)4]和5ml的甲苯溶剂,反应2分钟,得催化体系25。At 25°C, add 10 μmol of complex 13, 5 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 5 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes to obtain Catalytic system 25.

催化体系制备实施例26催化体系26的制备Preparation of Catalyst System Example 26 The preparation of Catalyst System 26

25℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物13、10μmol[Ph3C][B(C6F5)4]和5ml的甲苯溶剂,反应2分钟,得催化体系26。At 25°C, add 10 μmol of complex 13, 10 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 5 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes to obtain Catalytic system 26.

催化体系制备实施例27催化体系27的制备Preparation of Catalyst System Example 27 Catalyst System 27

25℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物13、20μmol[Ph3C][B(C6F5)4]和5ml的甲苯溶剂,反应2分钟,得催化体系27。At 25°C, add 10 μmol of complex 13, 20 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 5 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes to obtain Catalytic systems27.

催化体系制备实施例28催化体系28的制备Preparation of Catalyst System Example 28 Catalyst System 28

25℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物13、10μmol[Ph3C][B(C6F5)4]和10ml的甲苯溶剂,反应2分钟,得催化体系28。At 25°C, add 10 μmol of complex 13, 10 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 10 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes to obtain Catalytic system 28.

催化体系制备实施例29催化体系29的制备Preparation of Catalyst System Example 29 Catalyst System 29

25℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物13、10μmol[Ph3C][B(C6F5)4]和10ml的氯苯溶剂,反应2分钟,得催化体系29。At 25°C, add 10 μmol of complex 13, 10 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 10 ml of chlorobenzene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes. Catalytic system 29 was obtained.

催化体系制备实施例30催化体系30的制备Preparation of Catalyst System Example 30 Catalyst System 30

-20℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物13、10μmol[Ph3C][B(C6F5)4]和2ml的甲苯溶剂,反应2分钟,得催化体系30。At -20°C, add 10 μmol of complex 13, 10 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 2 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes. Catalytic system 30 was obtained.

催化体系制备实施例31催化体系31的制备Preparation of Catalyst System Example 31 Catalyst System 31

40℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物13、10μmol[Ph3C][B(C6F5)4]和2ml的甲苯溶剂,反应2分钟,得催化体系31。At 40°C, add 10 μmol of complex 13, 10 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 2 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes to obtain Catalytic system31.

催化体系制备实施例32催化体系32的制备Catalyst system preparation example 32 Preparation of catalytic system 32

80℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物13、10μmol[Ph3C][B(C6F5)4]和5ml的甲苯溶剂,反应2分钟,得催化体系32。At 80°C, add 10 μmol of complex 13, 10 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 5 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes to obtain Catalytic system32.

催化体系制备实施例33催化体系33的制备Catalyst System Preparation Example 33 Preparation of Catalyst System 33

25℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物14、10μmol[Ph3C][B(C6F5)4]和3ml的甲苯溶剂,反应2分钟,得催化体系33。At 25°C, add 10 μmol of complex 14, 10 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 3 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes to obtain Catalytic systems33.

催化体系制备实施例34催化体系34的制备Preparation of Catalyst System Example 34 Catalyst System 34

25℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物15、10μmol[Ph3C][B(C6F5)4]和5ml的甲苯溶剂,反应2分钟,得催化体系34。At 25°C, add 10 μmol of complex 15, 10 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 5 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes to obtain Catalytic systems34.

催化体系制备实施例35催化体系35的制备Preparation of Catalytic System Example 35 Preparation of Catalytic System 35

25℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物16、10μmol[Ph3C][B(C6F5)4]和8ml的甲苯溶剂,反应2分钟,得催化体系35。At 25°C, add 10 μmol of complex 16, 10 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 8 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes to obtain Catalytic systems35.

催化体系制备实施例36催化体系36的制备Preparation of Catalyst System Example 36 Preparation of Catalyst System 36

25℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物17、10μmol[Ph3C][B(C6F5)4]和1ml的甲苯溶剂,反应2分钟,得催化体系36。At 25°C, add 10 μmol of complex 17, 10 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 1 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes to obtain Catalytic systems36.

催化体系制备实施例37催化体系37的制备Preparation of Catalyst System Example 37 Catalyst System 37

25℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物17、10μmol[Ph3C][B(C6F5)4]和2ml的甲苯溶剂,反应2分钟,得催化体系37。At 25°C, add 10 μmol of complex 17, 10 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 2 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes to obtain Catalytic systems37.

催化体系制备实施例38催化体系38的制备Catalyst System Preparation Example 38 Preparation of Catalyst System 38

25℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物17、10μmol[Ph3C][B(C6F5)4]和4ml的甲苯溶剂,反应2分钟,得催化体系38。At 25°C, add 10 μmol of complex 17, 10 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 4 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes to obtain Catalytic systems38.

催化体系制备实施例39催化体系39的制备Preparation of Catalyst System Example 39 Catalyst System 39

25℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物17、10μmol[Ph3C][B(C6F5)4]和8ml的甲苯溶剂,反应2分钟,得催化体系39。At 25°C, add 10 μmol of complex 17, 10 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 8 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes to obtain Catalytic systems39.

催化体系制备实施例40催化体系40的制备Preparation of Catalytic System Example 40 The preparation of catalytic system 40

25℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物17、10μmol[Ph3C][B(C6F5)4]和10ml的甲苯溶剂,反应2分钟,得催化体系40。At 25°C, add 10 μmol of complex 17, 10 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 10 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes to obtain Catalytic system 40.

催化体系制备实施例41催化体系41的制备Preparation of Catalytic System Example 41 Catalytic System 41

-20℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物18、10μmol[Ph3C][B(C6F5)4]和10ml的甲苯溶剂,反应2分钟,得催化体系41。At -20°C, add 10 μmol of complex 18, 10 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 10 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes. Catalytic system 41 was obtained.

催化体系制备实施例42催化体系42的制备Preparation of Catalyst System Example 42 Catalyst System 42

80℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物19、10μmol[Ph3C][B(C6F5)4]和10ml的甲苯溶剂,反应2分钟,得催化体系42。At 80°C, add 10 μmol of complex 19, 10 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 10 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes to obtain Catalytic system42.

催化体系制备实施例43催化体系43的制备Preparation of Catalyst System Example 43 Catalyst System 43

25℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物20、5μmol[Ph3C][B(C6F5)4]和5ml的甲苯溶剂,反应2分钟,得催化体系43。At 25°C, add 10 μmol of complex 20, 5 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 5 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes to obtain Catalytic systems43.

催化体系制备实施例44催化体系44的制备Preparation of Catalyst System Example 44 Catalyst System 44

25℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物21、20μmol[Ph3C][B(C6F5)4]和5ml的甲苯溶剂,反应2分钟,得催化体系44。At 25°C, add 10 μmol of complex 21, 20 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 5 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes to obtain Catalytic systems44.

催化体系制备实施例45催化体系45的制备Preparation of Catalytic System Example 45 The preparation of catalytic system 45

25℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物22、10μmol[Ph3C][B(C6F5)4]和5ml的氯苯溶剂,反应2分钟,得催化体系45。At 25°C, add 10 μmol of complex 22, 10 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 5 ml of chlorobenzene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes. Catalytic system 45 was obtained.

催化体系制备实施例46催化体系46的制备Preparation of Catalytic System Example 46 The preparation of catalytic system 46

25℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物23、10μmol[Ph3C][B(C6F5)4]和5ml的甲苯溶剂,反应2分钟,得催化体系46。At 25°C, add 10 μmol of complex 23, 10 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 5 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes to obtain Catalytic Systems 46.

催化体系制备实施例47催化体系47的制备Preparation of Catalytic System Example 47 The preparation of catalytic system 47

25℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物24、10μmol[Ph3C][B(C6F5)4]和5ml的甲苯溶剂,反应2分钟,得催化体系47。At 25°C, add 10 μmol of complex 24, 10 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 5 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes to obtain Catalytic Systems 47.

催化体系制备实施例48催化体系48的制备Preparation of Catalytic System Example 48 The preparation of catalytic system 48

25℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物25、10μmol[Ph3C][B(C6F5)4]和5ml的甲苯溶剂,反应2分钟,得催化体系48。At 25°C, add 10 μmol of complex 25, 10 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 5 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes to obtain Catalytic systems48.

催化体系制备实施例49催化体系49的制备Preparation of Catalyst System Example 49 Catalyst System 49

25℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物25、10μmol[Ph3C][B(C6F5)4]和10ml的甲苯溶剂,反应2分钟,得催化体系49。At 25°C, add 10 μmol of complex 25, 10 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 10 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes to obtain Catalytic systems49.

催化体系制备实施例50催化体系50的制备Preparation of Catalytic System Example 50 The preparation of catalytic system 50

25℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物25、5μmol[Ph3C][B(C6F5)4]和5ml的甲苯溶剂,反应2分钟,得催化体系50。At 25°C, add 10 μmol of complex 25, 5 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 5 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes to obtain Catalytic system 50.

催化体系制备实施例51催化体系51的制备Preparation of Catalytic System Example 51 Catalytic System 51

25℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物25、20μmol[Ph3C][B(C6F5)4]和5ml的甲苯溶剂,反应2分钟,得催化体系51。At 25°C, add 10 μmol of complex 25, 20 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 5 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes to obtain Catalytic System 51.

催化体系制备实施例52催化体系52的制备Preparation of Catalyst System Example 52 Catalyst System 52

-20℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物25、10μmol[Ph3C][B(C6F5)4]和5ml的甲苯溶剂,反应2分钟,得催化体系52。At -20°C, add 10 μmol of complex 25, 10 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 5 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes. Catalytic system 52 was obtained.

催化体系制备实施例53催化体系53的制备Preparation of Catalyst System Example 53 Catalyst System 53

60℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物25、10μmol[Ph3C][B(C6F5)4]和5ml的甲苯溶剂,反应2分钟,得催化体系53。At 60°C, add 10 μmol of complex 25, 10 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 5 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes to obtain Catalytic Systems 53.

催化体系制备实施例54催化体系54的制备Preparation of Catalyst System Example 54 Catalyst System 54

80℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物25、10μmol[Ph3C][B(C6F5)4]和5ml的甲苯溶剂,反应2分钟,得催化体系54。At 80°C, add 10 μmol of complex 25, 10 μmol [Ph 3 C][B(C 6 F 5 ) 4 ] and 5 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes to obtain Catalytic system54.

催化体系制备实施例55催化体系55的制备Preparation of Catalytic System Example 55 Catalytic System 55

25℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物26、5μmol[Ph3C][B(C6F5)4]和5ml的甲苯溶剂,反应2分钟,得催化体系55。At 25°C, add 10 μmol of complex 26, 5 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 5 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes to obtain Catalytic Systems 55.

催化体系制备实施例56催化体系56的制备Preparation of Catalyst System Example 56 Catalyst System 56

25℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物27、20μmol[Ph3C][B(C6F5)4]和5ml的氯苯溶剂,反应2分钟,得催化体系56。At 25°C, add 10 μmol of complex 27, 20 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 5 ml of chlorobenzene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes. Catalytic system 56 was obtained.

催化体系制备实施例57催化体系57的制备Preparation of Catalytic System Example 57 The preparation of catalytic system 57

25℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物28、10μmol[Ph3C]{B(C6F5)4]和5ml的甲苯溶剂,反应2分钟,得催化体系57。At 25°C, add 10 μmol of complex 28, 10 μmol of [Ph 3 C]{B(C 6 F 5 ) 4 ] and 5 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes to obtain Catalytic Systems 57.

催化体系制备实施例58催化体系58的制备Preparation of Catalytic System Example 58 Catalytic System 58

-20℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物28、10μmol[Ph3C][B(C6F5)4]和5ml的甲苯溶剂,反应2分钟,得催化体系58。At -20°C, add 10 μmol of complex 28, 10 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 5 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes. Catalytic system 58 was obtained.

催化体系制备实施例59催化体系59的制备Preparation of Catalyst System Example 59 Catalyst System 59

80℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物28、10μmol[Ph3C][B(C6F5)4]和5ml的甲苯溶剂,反应2分钟,得催化体系59。At 80°C, add 10 μmol of complex 28, 10 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 5 ml of toluene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes to obtain Catalytic Systems 59.

催化体系制备实施例60催化体系60的制备Preparation of Catalytic System Example 60 The preparation of catalytic system 60

25℃下,向25ml经无水、无氧处理的聚合瓶中加入10μmol配合物28、10μmol[Ph3C][B(C6F5)4]和5ml的氯苯溶剂,反应2分钟,得催化体系60。At 25°C, add 10 μmol of complex 28, 10 μmol of [Ph 3 C][B(C 6 F 5 ) 4 ] and 5 ml of chlorobenzene solvent into a 25 ml anhydrous and anaerobic-treated polymerization bottle, and react for 2 minutes. Catalytic system 60 was obtained.

聚合应用实施例如下:Examples of aggregation applications are as follows:

应用实施例1Application Example 1

用制备实施例1得到的催化体系1,加入2.5mmol苯乙烯单体(单体与配合物1的mol比为250∶1)。聚合瓶置于25℃恒温浴中,搅拌下反应1分钟。加入2ml体积浓度为10%盐酸的乙醇溶液终止聚合反应,将反应溶液倒入100ml甲醇中沉降,得聚苯乙烯白色固体粉末,再将该聚苯乙烯白色固体粉末置于真空干燥箱中干燥48小时,得到干燥的聚苯乙烯白色固体粉末,净重0.26g。转化率100%。计算聚合活性为1.56×106gmolSc -1h-1,用高温GPC分析聚苯乙烯的数均分子量(Mn)为6.6万,分子量分布(Mw/Mn)为1.39。核磁分析聚苯乙烯间规度(rrrr)为100%。DSC测定间规聚苯乙烯的熔点(Tm)为271℃。Using the catalytic system 1 obtained in Preparation Example 1, add 2.5 mmol of styrene monomer (the molar ratio of monomer to complex 1 is 250:1). The polymerization bottle was placed in a constant temperature bath at 25°C, and reacted for 1 minute under stirring. Add 2ml of ethanol solution with a volume concentration of 10% hydrochloric acid to terminate the polymerization reaction, pour the reaction solution into 100ml of methanol for sedimentation, and obtain a polystyrene white solid powder, and then place the polystyrene white solid powder in a vacuum drying oven to dry for 48 Hour, obtain dry polystyrene white solid powder, net weight 0.26g. The conversion rate was 100%. The calculated polymerization activity is 1.56×10 6 gmol Sc -1 h -1 , the number average molecular weight (M n ) of polystyrene analyzed by high temperature GPC is 66,000, and the molecular weight distribution (M w /M n ) is 1.39. The polystyrene syndiotacticity (rrrr) of nuclear magnetic analysis was 100%. The melting point (T m ) of syndiotactic polystyrene determined by DSC was 271°C.

应用实施例2Application Example 2

用制备实施例2得到的催化体系2,加入10mmol苯乙烯单体(单体与配合物1的mol比为1000∶1)。聚合瓶置于25℃恒温浴中,搅拌下反应1分钟。加入2ml体积浓度为10%盐酸的乙醇溶液终止聚合反应,将反应溶液倒入100ml甲醇中沉降,得聚苯乙烯白色固体粉末,再将该聚苯乙烯白色固体粉末置于真空干燥箱中干燥48小时,得到干燥的聚苯乙烯白色固体粉末,净重1.04g。转化率100%。计算聚合活性为6.24×106g molSc -1h-1,用高温GPC分析聚苯乙烯的数均分子量(Mn)为36.3万,分子量分布(Mw/Mn)为1.41。核磁分析聚苯乙烯间规度(rrrr)为100%。DSC测定间规聚苯乙烯的熔点(Tm)为272℃。Using the catalytic system 2 obtained in Preparation Example 2, add 10 mmol of styrene monomer (the molar ratio of monomer to complex 1 is 1000:1). The polymerization bottle was placed in a constant temperature bath at 25°C, and reacted for 1 minute under stirring. Add 2ml of ethanol solution with a volume concentration of 10% hydrochloric acid to terminate the polymerization reaction, pour the reaction solution into 100ml of methanol for sedimentation, and obtain a polystyrene white solid powder, and then place the polystyrene white solid powder in a vacuum drying oven to dry for 48 Hour, obtain dry polystyrene white solid powder, net weight 1.04g. The conversion rate was 100%. The calculated polymerization activity is 6.24×10 6 g mol Sc -1 h -1 , the number average molecular weight (M n ) of polystyrene analyzed by high temperature GPC is 363,000, and the molecular weight distribution (M w /M n ) is 1.41. The polystyrene syndiotacticity (rrrr) of nuclear magnetic analysis was 100%. The melting point (T m ) of syndiotactic polystyrene determined by DSC was 272°C.

应用实施例3Application Example 3

用制备实施例3得到的催化体系3,加入20mmol苯乙烯单体(单体与配合物1的mol比为2000∶1)。聚合瓶置于25℃恒温浴中,搅拌下反应1.5分钟。加入2ml体积浓度为10%盐酸的乙醇溶液终止聚合反应,将反应溶液倒入100ml甲醇中沉降,得聚苯乙烯白色固体粉末,再将该聚苯乙烯白色固体粉末置于真空干燥箱中干燥48小时,得到干燥的聚苯乙烯白色固体粉末,净重2.08g。转化率100%。计算聚合活性为8.32×106gmolSc -1h-1,用高温GPC分析聚苯乙烯的数均分子量(Mn)为53.6万,分子量分布(Mw/Mn)为1.33。核磁分析聚苯乙烯间规度(rrrr)为100%。DSC测定间规聚苯乙烯的熔点(Tm)为272℃。Using the catalytic system 3 obtained in Preparation Example 3, add 20 mmol of styrene monomer (the molar ratio of monomer to complex 1 is 2000:1). The polymerization bottle was placed in a constant temperature bath at 25°C, and reacted for 1.5 minutes under stirring. Add 2ml of ethanol solution with a volume concentration of 10% hydrochloric acid to terminate the polymerization reaction, pour the reaction solution into 100ml of methanol for sedimentation, and obtain a polystyrene white solid powder, and then place the polystyrene white solid powder in a vacuum drying oven to dry for 48 Hour, obtain dry polystyrene white solid powder, net weight 2.08g. The conversion rate was 100%. The calculated polymerization activity is 8.32×10 6 gmol Sc -1 h -1 , the number average molecular weight (M n ) of polystyrene analyzed by high temperature GPC is 536,000, and the molecular weight distribution (M w /M n ) is 1.33. The polystyrene syndiotacticity (rrrr) of nuclear magnetic analysis was 100%. The melting point (T m ) of syndiotactic polystyrene determined by DSC was 272°C.

应用实施例4Application Example 4

用制备实施例4得到的催化体系4,加入30mmol苯乙烯单体(单体与配合物1的mol比为3000∶1)。聚合瓶置于25℃恒温浴中,搅拌下反应2分钟。加入2ml体积浓度为10%盐酸的乙醇溶液终止聚合反应,将反应溶液倒入100ml甲醇中沉降,得聚苯乙烯白色固体粉末,再将该聚苯乙烯白色固体粉末置于真空干燥箱中干燥48小时,得到干燥的聚苯乙烯白色固体粉末,净重3.12g。转化率100%。计算聚合活性为9.36×106g molSc -1h-1,用高温GPC分析聚苯乙烯的数均分子量(Mn)为86.3万,分子量分布(Mw/Mn)为1.45。核磁分析聚苯乙烯间规度(rrrr)为100%。DSC测定间规聚苯乙烯的熔点(Tm)为270℃。Using the catalytic system 4 obtained in Preparation Example 4, add 30 mmol of styrene monomer (the molar ratio of monomer to complex 1 is 3000:1). The polymerization bottle was placed in a constant temperature bath at 25°C, and reacted for 2 minutes under stirring. Add 2ml of ethanol solution with a volume concentration of 10% hydrochloric acid to terminate the polymerization reaction, pour the reaction solution into 100ml of methanol for sedimentation, and obtain a polystyrene white solid powder, and then place the polystyrene white solid powder in a vacuum drying oven to dry for 48 Hour, obtain dry polystyrene white solid powder, net weight 3.12g. The conversion rate was 100%. The calculated polymerization activity is 9.36×10 6 g mol Sc -1 h -1 , the number average molecular weight (M n ) of polystyrene analyzed by high temperature GPC is 863,000, and the molecular weight distribution (M w /M n ) is 1.45. The polystyrene syndiotacticity (rrrr) of nuclear magnetic analysis was 100%. The melting point (T m ) of syndiotactic polystyrene measured by DSC was 270°C.

应用实施例5Application Example 5

用制备实施例5得到的催化体系5,加入40mmol苯乙烯单体(单体与配合物1的mol比为4000∶1)。聚合瓶置于25℃恒温浴中,搅拌下反应2分钟。加入2ml体积浓度为10%盐酸的乙醇溶液终止聚合反应,将反应溶液倒入100ml甲醇中沉降,得聚苯乙烯白色固体粉末,再将该聚苯乙烯白色固体粉末置于真空干燥箱中干燥48小时,得到干燥的聚苯乙烯白色固体粉末,净重4.16g。转化率100%。计算聚合活性为1.25×107g molSc -1h-1,用高温GPC分析聚苯乙烯的数均分子量(Mn)为100万,分子量分布(Mw/Mn)为1.40。核磁分析聚苯乙烯间规度(rrrr)为100%。DSC测定间规聚苯乙烯的熔点(Tm)为272℃。Using the catalytic system 5 obtained in Preparation Example 5, add 40 mmol of styrene monomer (the molar ratio of monomer to complex 1 is 4000:1). The polymerization bottle was placed in a constant temperature bath at 25°C, and reacted for 2 minutes under stirring. Add 2ml of ethanol solution with a volume concentration of 10% hydrochloric acid to terminate the polymerization reaction, pour the reaction solution into 100ml of methanol for sedimentation, and obtain a polystyrene white solid powder, and then place the polystyrene white solid powder in a vacuum drying oven to dry for 48 Hour, obtain dry polystyrene white solid powder, net weight 4.16g. The conversion rate was 100%. The calculated polymerization activity is 1.25×10 7 g mol Sc -1 h -1 , the number average molecular weight (M n ) of polystyrene analyzed by high temperature GPC is 1 million, and the molecular weight distribution (M w /M n ) is 1.40. The polystyrene syndiotacticity (rrrr) of nuclear magnetic analysis was 100%. The melting point (T m ) of syndiotactic polystyrene determined by DSC was 272°C.

应用实施例6Application Example 6

用制备实施例6得到的催化体系6,加入20mmol苯乙烯单体(单体与配合物1的mol比为2000∶1)。聚合瓶置于25℃恒温浴中,搅拌下反应15分钟。加入2ml体积浓度为10%盐酸的乙醇溶液终止聚合反应,将反应溶液倒入100ml甲醇中沉降,得聚苯乙烯白色固体粉末,再将该聚苯乙烯白色固体粉末置于真空干燥箱中干燥48小时,得到干燥的聚苯乙烯白色固体粉末,净重2.08g。转化率100%。计算聚合活性为8.32×106gmolSc -1h-1,用高温GPC分析聚苯乙烯的数均分子量(Mn)为13.7万,分子量分布(Mw/Mn)为1.86。核磁分析聚苯乙烯间规度(rrrr)为80%。DSC测定间规聚苯乙烯的熔点(Tm)为266℃。Using the catalytic system 6 obtained in Preparation Example 6, add 20 mmol of styrene monomer (the molar ratio of monomer to complex 1 is 2000:1). The polymerization bottle was placed in a constant temperature bath at 25°C, and reacted for 15 minutes under stirring. Add 2ml of ethanol solution with a volume concentration of 10% hydrochloric acid to terminate the polymerization reaction, pour the reaction solution into 100ml of methanol for sedimentation, and obtain a polystyrene white solid powder, and then place the polystyrene white solid powder in a vacuum drying oven to dry for 48 Hour, obtain dry polystyrene white solid powder, net weight 2.08g. The conversion rate was 100%. The calculated polymerization activity is 8.32×10 6 gmol Sc -1 h -1 , the number average molecular weight (M n ) of polystyrene analyzed by high temperature GPC is 137,000, and the molecular weight distribution (M w /M n ) is 1.86. The polystyrene syndiotacticity (rrrr) of nuclear magnetic analysis was 80%. The melting point (T m ) of syndiotactic polystyrene determined by DSC was 266°C.

应用实施例7Application Example 7

用制备实施例7得到的催化体系7,加入5mmol苯乙烯单体(单体与配合物1的mol比为500∶1)。聚合瓶置于-20℃恒温浴中,搅拌下反应5分钟。加入2ml体积浓度为10%盐酸的乙醇溶液终止聚合反应,将反应溶液倒入100ml甲醇中沉降,得聚苯乙烯白色固体粉末,再将该聚苯乙烯白色固体粉末置于真空干燥箱中干燥48小时,得到干燥的聚苯乙烯白色固体粉末,净重0.52g。转化率100%。计算聚合活性为6.24×105g molSc -1h-1,用高温GPC分析聚苯乙烯的数均分子量(Mn)为20.6万,分子量分布(Mw/Mn)为1.30。核磁分析聚苯乙烯间规度(rrrr)为100%。DSC测定间规聚苯乙烯的熔点(Tm)为270℃。Using the catalytic system 7 obtained in Preparation Example 7, add 5 mmol of styrene monomer (the molar ratio of monomer to complex 1 is 500:1). The polymerization bottle was placed in a constant temperature bath at -20°C, and reacted for 5 minutes under stirring. Add 2ml of ethanol solution with a volume concentration of 10% hydrochloric acid to terminate the polymerization reaction, pour the reaction solution into 100ml of methanol for sedimentation, and obtain a polystyrene white solid powder, and then place the polystyrene white solid powder in a vacuum drying oven to dry for 48 Hour, obtain dry polystyrene white solid powder, net weight 0.52g. The conversion rate was 100%. The calculated polymerization activity is 6.24×10 5 g mol Sc -1 h -1 , the number average molecular weight (M n ) of polystyrene analyzed by high temperature GPC is 206,000, and the molecular weight distribution (M w /M n ) is 1.30. The polystyrene syndiotacticity (rrrr) of nuclear magnetic analysis was 100%. The melting point (T m ) of syndiotactic polystyrene determined by DSC was 270°C.

应用实施例8Application Example 8

用制备实施例8得到的催化体系8,加入10mmol苯乙烯单体(单体与配合物1的mol比为1000∶1)。聚合瓶置于40℃恒温浴中,搅拌下反应1分钟。加入2ml体积浓度为10%盐酸的乙醇溶液终止聚合反应,将反应溶液倒入100ml甲醇中沉降,得聚苯乙烯白色固体粉末,再将该聚苯乙烯白色固体粉末置于真空干燥箱中干燥48小时,得到干燥的聚苯乙烯白色固体粉末,净重1.04g。转化率100%。计算聚合活性为6.24×106g molSc -1h-1,用高温GPC分析聚苯乙烯的数均分子量(Mn)为40.5万,分子量分布(Mw/Mn)为1.48。核磁分析聚苯乙烯间规度(rrrr)为100%。DSC测定间规聚苯乙烯的熔点(Tm)为271℃。Using the catalytic system 8 obtained in Preparation Example 8, add 10 mmol of styrene monomer (the molar ratio of monomer to complex 1 is 1000:1). The polymerization bottle was placed in a constant temperature bath at 40°C, and reacted for 1 minute under stirring. Add 2ml of ethanol solution with a volume concentration of 10% hydrochloric acid to terminate the polymerization reaction, pour the reaction solution into 100ml of methanol for sedimentation, and obtain a polystyrene white solid powder, and then place the polystyrene white solid powder in a vacuum drying oven to dry for 48 Hour, obtain dry polystyrene white solid powder, net weight 1.04g. The conversion rate was 100%. The calculated polymerization activity is 6.24×10 6 g mol Sc -1 h -1 , the number average molecular weight (M n ) of polystyrene analyzed by high temperature GPC is 405,000, and the molecular weight distribution (M w /M n ) is 1.48. The polystyrene syndiotacticity (rrrr) of nuclear magnetic analysis was 100%. The melting point (T m ) of syndiotactic polystyrene determined by DSC was 271°C.

应用实施例9Application Example 9

用制备实施例9得到的催化体系9,加入20mmol苯乙烯单体(单体与配合物1的mol比为2000∶1)。聚合瓶置于80℃恒温浴中,搅拌下反应1分钟。加入2ml体积浓度为10%盐酸的乙醇溶液终止聚合反应,将反应溶液倒入100ml甲醇中沉降,得聚苯乙烯白色固体粉末,再将该聚苯乙烯白色固体粉末置于真空干燥箱中干燥48小时,得到干燥的聚苯乙烯白色固体粉末,净重2.08g。转化率100%。计算聚合活性为1.25×107g molSc -1h-1,用高温GPC分析聚苯乙烯的数均分子量(Mn)为55.7万,分子量分布(Mw/Mn)为1.57。核磁分析聚苯乙烯间规度(rrrr)为100%。DSC测定间规聚苯乙烯的熔点(Tm)为270℃。Using the catalytic system 9 obtained in Preparation Example 9, add 20 mmol of styrene monomer (the molar ratio of monomer to complex 1 is 2000:1). The polymerization bottle was placed in a constant temperature bath at 80°C, and reacted for 1 minute under stirring. Add 2ml of ethanol solution with a volume concentration of 10% hydrochloric acid to terminate the polymerization reaction, pour the reaction solution into 100ml of methanol for sedimentation, and obtain a polystyrene white solid powder, and then place the polystyrene white solid powder in a vacuum drying oven to dry for 48 Hour, obtain dry polystyrene white solid powder, net weight 2.08g. The conversion rate was 100%. The calculated polymerization activity is 1.25×10 7 g mol Sc -1 h -1 , the number average molecular weight (M n ) of polystyrene analyzed by high temperature GPC is 557,000, and the molecular weight distribution (M w /M n ) is 1.57. The polystyrene syndiotacticity (rrrr) of nuclear magnetic analysis was 100%. The melting point (T m ) of syndiotactic polystyrene determined by DSC was 270°C.

应用实施例10Application Example 10

用制备实施例10得到的催化体系10,加入10mmol苯乙烯单体(单体与配合物2的mol比为1000∶1)。聚合瓶置于25℃恒温浴中,搅拌下反应30分钟。加入2ml体积浓度为10%盐酸的乙醇溶液终止聚合反应,将反应溶液倒入100ml甲醇中沉降,得聚苯乙烯白色固体粉末,再将该聚苯乙烯白色固体粉末置于真空干燥箱中干燥48小时,得到干燥的聚苯乙烯白色固体粉末,净重0.83g。转化率80%。计算聚合活性为1.67×105gmolY -1h-1,用高温GPC分析聚苯乙烯的数均分子量(Mn)为18.5万,分子量分布(Mw/Mn)为1.85。核磁分析聚苯乙烯间规度(rrrr)为93%。DSC测定间规聚苯乙烯的熔点(Tm)为268℃。Using the catalytic system 10 obtained in Preparation Example 10, add 10 mmol of styrene monomer (the molar ratio of monomer to complex 2 is 1000:1). The polymerization bottle was placed in a constant temperature bath at 25°C, and reacted for 30 minutes under stirring. Add 2ml of ethanol solution with a volume concentration of 10% hydrochloric acid to terminate the polymerization reaction, pour the reaction solution into 100ml of methanol for sedimentation, and obtain a polystyrene white solid powder, and then place the polystyrene white solid powder in a vacuum drying oven to dry for 48 Hour, obtain dry polystyrene white solid powder, net weight 0.83g. The conversion rate is 80%. The calculated polymerization activity is 1.67×10 5 gmol Y -1 h -1 , the number average molecular weight (M n ) of polystyrene analyzed by high temperature GPC is 185,000, and the molecular weight distribution (M w /M n ) is 1.85. The polystyrene syndiotacticity (rrrr) of nuclear magnetic analysis was 93%. The melting point (T m ) of syndiotactic polystyrene determined by DSC was 268°C.

应用实施例11-23的制备间规聚苯乙烯的方法的步骤同应用实施例1-10,条件和所得的结果如表2所示:The steps of the method for preparing syndiotactic polystyrene of Application Example 11-23 are the same as Application Example 1-10, and the conditions and the results obtained are as shown in Table 2:

表2限制几何构型稀土烷基配合物在苯乙烯(St)间规聚合中的应用Table 2 Application of rare earth alkyl complexes with constrained geometry in syndiotactic polymerization of styrene (St)

应用实施例Application example 催化体系Catalytic system St/LnSt/Ln   聚合温度(℃)Polymerization temperature (℃)   聚合时间(min)Polymerization time (min)   转化率(%) Conversion rate(%)   聚合活性(gmolLn -1h-1)Polymerization activity (gmol Ln -1 h -1 )   聚苯乙烯间规度(rrrr)Syndiotacticity of polystyrene (rrrr) Mn×10-4 M n ×10 -4 Mw/Mn M w /M n Tm(℃)T m (°C)   1 1   1 1   250250   2525   1 1   100100   1.56×106 1.56×10 6   100%100%   6.66.6   1.391.39   271271   2 2   2 2   10001000   2525   1 1   100100   6.24×106 6.24×10 6   100%100%   36.336.3   1.411.41   272272   33   33   20002000   2525   1.51.5   100100   8.32×106 8.32×10 6   100%100%   53.653.6   1.331.33   272272   44   44   30003000   2525   2 2   100100   9.36×106 9.36×10 6   100%100%   86.386.3   1.451.45   270270   55   55   40004000   2525   2 2   100100   1.25×107 1.25×10 7   100%100%   100100   1.401.40   272272   66   66   20002000   2525   1.51.5   100100   8.32×106 8.32×10 6   80%80%   13.713.7   1.861.86   266266   77   77   500500   -20-20   55   100100   6.24×105 6.24×10 5   100%100%   20.620.6   1.301.30   270270   8 8   8 8   10001000   4040   1 1   100100   6.24×106 6.24×10 6   100%100%   40.540.5   1.481.48   271271   9 9   9 9   20002000   8080   1 1   100100   1.25×107 1.25×10 7   100%100%   55.755.7   1.571.57   270270   1010   1010   10001000   2525   3030   8080   1.67×105 1.67×10 5   93%93%   18.518.5   1.851.85   268268   1111   1111   15001500   2525   1010   100100   9.36×105 9.36×10 5   100%100%   60.560.5   1.761.76   271271

应用实施例Application example 催化体系Catalytic system St/LnSt/Ln   聚合温度(℃)Polymerization temperature (℃)   聚合时间(min)Polymerization time (min)   转化率(%) Conversion rate(%)   聚合活性(gmolLn -1h-1)Polymerization activity (gmol Ln -1 h -1 )   聚苯乙烯间规度(rrrr)Syndiotacticity of polystyrene (rrrr) Mn×10-4 M n ×10 -4 Mw/Mn M w /M n Tm(℃)T m (°C)   1212   1212   25002500   2525   2525   100100   6.24×105 6.24×10 5   100%100%   68.368.3   1.911.91   272272   1313   1313   250250   2525   1 1   100100   1.56×106 1.56×10 6   100%100%   7.87.8   1.891.89   271271   1414   1414   20002000   2525   33   100100   4.16×106 4.16×10 6   100%100%   64.364.3   1.831.83   271271   1515   1515   40004000   2525   8 8   100100   3.12×106 3.12×10 6   100%100%   93.493.4   1.931.93   271271   1616   1616   30003000   2525   3030   100100   6.24×105 6.24×10 5   100%100%   86.386.3   2.002.00   266266   1717   1717   20002000   -20-20   1010   100100   1.25×106 1.25×10 6   100%100%   38.238.2   1.371.37   270270   1818   1818   20002000   8080   1.51.5   100100   8.32×106 8.32×10 6   100%100%   67.267.2   1.781.78   271271   1919   1919   20002000   2525   1010   100100   1.25×106 1.25×10 6   100%100%   48.248.2   1.451.45   270270   2020   2020   20002000   2525   2 2   100100   6.24×106 6.24×10 6   100%100%   52.252.2   1.881.88   271271   21 twenty one   21 twenty one   20002000   2525   2020   100100   6.24×105 6.24×10 5   84%84%   32.532.5   1.971.97   267267   22 twenty two   22 twenty two   20002000   2525   2 2   100100   6.24×106 6.24×10 6   100%100%   62.362.3   1.461.46   271271

应用实施例Application example 催化体系Catalytic system St/LnSt/Ln   聚合温度(℃)Polymerization temperature (℃)   聚合时间(min)Polymerization time (min)   转化率(%) Conversion rate(%)   聚合活性(gmolLn -1h-1)Polymerization activity (gmol Ln -1 h -1 )   聚苯乙烯间规度(rrrr)Syndiotacticity of polystyrene (rrrr) Mn×10-4 M n ×10 -4 Mw/Mn M w /M n Tm(℃)T m (°C) 23twenty three 23twenty three 20002000 2525 22 100100   6.24×106 6.24×10 6   100%100%   56.756.7   1.621.62   272272

应用实施例24Application Example 24

用制备实施例24得到的催化体系24,加入2.5mmol苯乙烯单体(单体与配合物13的mol比为250∶1)。聚合瓶置于25℃恒温浴中,搅拌下反应1分钟。加入2ml体积浓度为10%盐酸的乙醇溶液终止聚合反应,将反应溶液倒入100ml甲醇中沉降,得聚苯乙烯白色固体粉末,再将该聚苯乙烯白色固体粉末置于真空干燥箱中干燥48小时,得到干燥的聚苯乙烯白色固体粉末,净重0.26g。转化率100%。计算聚合活性为1.56×106gmolSc -1h-1,用高温GPC分析聚苯乙烯的数均分子量(Mn)为76万,分子量分布(Mw/Mn)为1.37。核磁分析聚苯乙烯间规度(rrrr)为100%。DSC测定间规聚苯乙烯的熔点(Tm)为271℃。Using the catalytic system 24 obtained in Preparation Example 24, add 2.5 mmol of styrene monomer (the molar ratio of monomer to complex 13 is 250:1). The polymerization bottle was placed in a constant temperature bath at 25°C, and reacted for 1 minute under stirring. Add 2ml of ethanol solution with a volume concentration of 10% hydrochloric acid to terminate the polymerization reaction, pour the reaction solution into 100ml of methanol for sedimentation, and obtain a polystyrene white solid powder, and then place the polystyrene white solid powder in a vacuum drying oven to dry for 48 Hour, obtain dry polystyrene white solid powder, net weight 0.26g. The conversion rate was 100%. The calculated polymerization activity is 1.56×10 6 gmol Sc -1 h -1 , the number average molecular weight (M n ) of polystyrene analyzed by high temperature GPC is 760,000, and the molecular weight distribution (M w /M n ) is 1.37. The polystyrene syndiotacticity (rrrr) of nuclear magnetic analysis was 100%. The melting point (T m ) of syndiotactic polystyrene determined by DSC was 271°C.

应用实施例25Application Example 25

用制备实施例25得到的催化体系25,加入10mmol苯乙烯单体(单体与配合物13的mol比为1000∶1)。聚合瓶置于25℃恒温浴中,搅拌下反应1分钟。加入2ml体积浓度为10%盐酸的乙醇溶液终止聚合反应,将反应溶液倒入100ml甲醇中沉降,得聚苯乙烯白色固体粉末,再将该聚苯乙烯白色固体粉末置于真空干燥箱中干燥48小时,得到干燥的聚苯乙烯白色固体粉末,净重1.04g。转化率100%。计算聚合活性为6.24×106gmolSc -1h-1,用高温GPC分析聚苯乙烯的数均分子量(Mn)为42.4万,分子量分布(Mw/Mn)为1.48。核磁分析聚苯乙烯间规度(rrrr)为100%。DSC测定间规聚苯乙烯的熔点(Tm)为270℃。Using the catalytic system 25 obtained in Preparation Example 25, add 10 mmol of styrene monomer (the molar ratio of monomer to complex 13 is 1000:1). The polymerization bottle was placed in a constant temperature bath at 25°C, and reacted for 1 minute under stirring. Add 2ml of ethanol solution with a volume concentration of 10% hydrochloric acid to terminate the polymerization reaction, pour the reaction solution into 100ml of methanol for sedimentation, and obtain a polystyrene white solid powder, and then place the polystyrene white solid powder in a vacuum drying oven to dry for 48 Hour, obtain dry polystyrene white solid powder, net weight 1.04g. The conversion rate was 100%. The calculated polymerization activity is 6.24×10 6 gmol Sc -1 h -1 , the number average molecular weight (M n ) of polystyrene analyzed by high temperature GPC is 424,000, and the molecular weight distribution (M w /M n ) is 1.48. The polystyrene syndiotacticity (rrrr) of nuclear magnetic analysis was 100%. The melting point (T m ) of syndiotactic polystyrene determined by DSC was 270°C.

应用实施例26Application Example 26

用制备实施例26得到的催化体系26,加入20mmol苯乙烯单体(单体与配合物13的mol比为2000∶1)。聚合瓶置于25℃恒温浴中,搅拌下反应1.5分钟。加入2ml体积浓度为10%盐酸的乙醇溶液终止聚合反应,将反应溶液倒入100ml甲醇中沉降,得聚苯乙烯白色固体粉末,再将该聚苯乙烯白色固体粉末置于真空干燥箱中干燥48小时,得到干燥的聚苯乙烯白色固体粉末,净重2.08g。转化率100%。计算聚合活性为8.32×106gmolSc -1h-1,用高温GPC分析聚苯乙烯的数均分子量(Mn)为57.6万,分子量分布(Mw/Mn)为1.43。核磁分析聚苯乙烯间规度(rrrr)为100%。DSC测定间规聚苯乙烯的熔点(Tm)为272℃。Using the catalytic system 26 obtained in Preparation Example 26, add 20 mmol of styrene monomer (the molar ratio of monomer to complex 13 is 2000:1). The polymerization bottle was placed in a constant temperature bath at 25°C, and reacted for 1.5 minutes under stirring. Add 2ml of ethanol solution with a volume concentration of 10% hydrochloric acid to terminate the polymerization reaction, pour the reaction solution into 100ml of methanol for sedimentation, and obtain a polystyrene white solid powder, and then place the polystyrene white solid powder in a vacuum drying oven to dry for 48 Hour, obtain dry polystyrene white solid powder, net weight 2.08g. The conversion rate was 100%. The calculated polymerization activity is 8.32×10 6 gmol Sc -1 h -1 , the number average molecular weight (M n ) of polystyrene analyzed by high temperature GPC is 576,000, and the molecular weight distribution (M w /M n ) is 1.43. The polystyrene syndiotacticity (rrrr) of nuclear magnetic analysis was 100%. The melting point (T m ) of syndiotactic polystyrene determined by DSC was 272°C.

应用实施例27Application Example 27

用制备实施例27得到的催化体系27,加入30mmol苯乙烯单体(单体与配合物13的mol比为3000∶1)。聚合瓶置于25℃恒温浴中,搅拌下反应2分钟。加入2ml体积浓度为10%盐酸的乙醇溶液终止聚合反应,将反应溶液倒入100ml甲醇中沉降,得聚苯乙烯白色固体粉末,再将该聚苯乙烯白色固体粉末置于真空干燥箱中干燥48小时,得到干燥的聚苯乙烯白色固体粉末,净重3.12g。转化率100%。计算聚合活性为9.36×106gmolSc -1h-1,用高温GPC分析聚苯乙烯的数均分子量(Mn)为80.7万,分子量分布(Mw/Mn)为1.49。核磁分析聚苯乙烯间规度(rrrr)为100%。DSC测定间规聚苯乙烯的熔点(Tm)为271℃。Using the catalytic system 27 obtained in Preparation Example 27, add 30 mmol of styrene monomer (the molar ratio of monomer to complex 13 is 3000:1). The polymerization bottle was placed in a constant temperature bath at 25°C, and reacted for 2 minutes under stirring. Add 2ml of ethanol solution with a volume concentration of 10% hydrochloric acid to terminate the polymerization reaction, pour the reaction solution into 100ml of methanol for sedimentation, and obtain a polystyrene white solid powder, and then place the polystyrene white solid powder in a vacuum drying oven to dry for 48 Hour, obtain dry polystyrene white solid powder, net weight 3.12g. The conversion rate was 100%. The calculated polymerization activity is 9.36×10 6 gmol Sc -1 h -1 , the number average molecular weight (M n ) of polystyrene analyzed by high temperature GPC is 807,000, and the molecular weight distribution (M w /M n ) is 1.49. The polystyrene syndiotacticity (rrrr) of nuclear magnetic analysis was 100%. The melting point (T m ) of syndiotactic polystyrene determined by DSC was 271°C.

应用实施例28Application Example 28

用制备实施例28得到的催化体系28,加入40mmol苯乙烯单体(单体与配合物13的mol比为4000∶1)。聚合瓶置于25℃恒温浴中,搅拌下反应2分钟。加入2ml体积浓度为10%盐酸的乙醇溶液终止聚合反应,将反应溶液倒入100ml甲醇中沉降,得聚苯乙烯白色固体粉末,再将该聚苯乙烯白色固体粉末置于真空干燥箱中干燥48小时,得到干燥的聚苯乙烯白色固体粉末,净重4.16g。转化率100%。计算聚合活性为1.25×107gmolSc -1h-1,用高温GPC分析聚苯乙烯的数均分子量(Mn)为98.7万,分子量分布(Mw/Mn)为1.54。核磁分析聚苯乙烯间规度(rrrr)为100%。DSC测定间规聚苯乙烯的熔点(Tm)为272℃。Using the catalytic system 28 obtained in Preparation Example 28, add 40 mmol of styrene monomer (the molar ratio of monomer to complex 13 is 4000:1). The polymerization bottle was placed in a constant temperature bath at 25°C, and reacted for 2 minutes under stirring. Add 2ml of ethanol solution with a volume concentration of 10% hydrochloric acid to terminate the polymerization reaction, pour the reaction solution into 100ml of methanol for sedimentation, and obtain a polystyrene white solid powder, and then place the polystyrene white solid powder in a vacuum drying oven to dry for 48 Hour, obtain dry polystyrene white solid powder, net weight 4.16g. The conversion rate was 100%. The calculated polymerization activity is 1.25×10 7 gmol Sc -1 h -1 , the number average molecular weight (M n ) of polystyrene analyzed by high temperature GPC is 987,000, and the molecular weight distribution (M w /M n ) is 1.54. The polystyrene syndiotacticity (rrrr) of nuclear magnetic analysis was 100%. The melting point (T m ) of syndiotactic polystyrene determined by DSC was 272°C.

应用实施例29Application Example 29

用制备实施例29得到的催化体系29,加入20mmol苯乙烯单体(单体与配合物13的mol比为2000∶1)。聚合瓶置于25℃恒温浴中,搅拌下反应1.5分钟。加入2ml体积浓度为10%盐酸的乙醇溶液终止聚合反应,将反应溶液倒入100ml甲醇中沉降,得聚苯乙烯白色固体粉末,再将该聚苯乙烯白色固体粉末置于真空干燥箱中干燥48小时,得到干燥的聚苯乙烯白色固体粉末,净重2.08g。转化率100%。计算聚合活性为8.32×106gmolSc -1h-1,用高温GPC分析聚苯乙烯的数均分子量(Mn)为23.7万,分子量分布(Mw/Mn)为1.95。核磁分析聚苯乙烯间规度(rrrr)为89%。DSC测定间规聚苯乙烯的熔点(Tm)为267℃。Using the catalytic system 29 obtained in Preparation Example 29, add 20 mmol of styrene monomer (the molar ratio of monomer to complex 13 is 2000:1). The polymerization bottle was placed in a constant temperature bath at 25°C, and reacted for 1.5 minutes under stirring. Add 2ml of ethanol solution with a volume concentration of 10% hydrochloric acid to terminate the polymerization reaction, pour the reaction solution into 100ml of methanol for sedimentation, and obtain a polystyrene white solid powder, and then place the polystyrene white solid powder in a vacuum drying oven to dry for 48 Hour, obtain dry polystyrene white solid powder, net weight 2.08g. The conversion rate was 100%. The calculated polymerization activity is 8.32×10 6 gmol Sc -1 h -1 , the number average molecular weight (M n ) of polystyrene analyzed by high temperature GPC is 237,000, and the molecular weight distribution (M w /M n ) is 1.95. The polystyrene syndiotacticity (rrrr) of nuclear magnetic analysis was 89%. The melting point (T m ) of syndiotactic polystyrene determined by DSC was 267°C.

应用实施例30Application Example 30

用制备实施例30得到的催化体系30,加入5mmol苯乙烯单体(单体与配合物13的mol比为500∶1)。聚合瓶置于-20℃恒温浴中,搅拌下反应5分钟。加入2ml体积浓度为10%盐酸的乙醇溶液终止聚合反应,将反应溶液倒入100ml甲醇中沉降,得聚苯乙烯白色固体粉末,再将该聚苯乙烯白色固体粉末置于真空干燥箱中干燥48小时,得到干燥的聚苯乙烯白色固体粉末,净重0.52g。转化率100%。计算聚合活性为6.24×105gmolSc -1h-1,用高温GPC分析聚苯乙烯的数均分子量(Mn)为31.2万,分子量分布(Mw/Mn)为1.43。核磁分析聚苯乙烯间规度(rrrr)为100%。DSC测定间规聚苯乙烯的熔点(Tm)为270℃。Using the catalytic system 30 obtained in Preparation Example 30, add 5 mmol of styrene monomer (the molar ratio of monomer to complex 13 is 500:1). The polymerization bottle was placed in a constant temperature bath at -20°C, and reacted for 5 minutes under stirring. Add 2ml of ethanol solution with a volume concentration of 10% hydrochloric acid to terminate the polymerization reaction, pour the reaction solution into 100ml of methanol for sedimentation, and obtain a polystyrene white solid powder, and then place the polystyrene white solid powder in a vacuum drying oven to dry for 48 Hour, obtain dry polystyrene white solid powder, net weight 0.52g. The conversion rate was 100%. The calculated polymerization activity is 6.24×10 5 gmol Sc -1 h -1 , the number average molecular weight (M n ) of polystyrene analyzed by high temperature GPC is 312,000, and the molecular weight distribution (M w /M n ) is 1.43. The polystyrene syndiotacticity (rrrr) of nuclear magnetic analysis was 100%. The melting point (T m ) of syndiotactic polystyrene determined by DSC was 270°C.

应用实施例31Application Example 31

用制备实施例31得到的催化体系31,加入10mmol苯乙烯单体(单体与配合物13的mol比为1000∶1)。聚合瓶置于40℃恒温浴中,搅拌下反应1分钟。加入2ml体积浓度为10%盐酸的乙醇溶液终止聚合反应,将反应溶液倒入100ml甲醇中沉降,得聚苯乙烯白色固体粉末,再将该聚苯乙烯白色固体粉末置于真空干燥箱中干燥48小时,得到干燥的聚苯乙烯白色固体粉末,净重1.04g。转化率100%。计算聚合活性为6.24×106gmolSc -1h-1,用高温GPC分析聚苯乙烯的数均分子量(Mn)为48.5万,分子量分布(Mw/Mn)为1.56。核磁分析聚苯乙烯间规度(rrrr)为100%。DSC测定间规聚苯乙烯的熔点(Tm)为272℃。Using the catalytic system 31 obtained in Preparation Example 31, add 10 mmol of styrene monomer (the molar ratio of monomer to complex 13 is 1000:1). The polymerization bottle was placed in a constant temperature bath at 40°C, and reacted for 1 minute under stirring. Add 2ml of ethanol solution with a volume concentration of 10% hydrochloric acid to terminate the polymerization reaction, pour the reaction solution into 100ml of methanol for sedimentation, and obtain a polystyrene white solid powder, and then place the polystyrene white solid powder in a vacuum drying oven to dry for 48 Hour, obtain dry polystyrene white solid powder, net weight 1.04g. The conversion rate was 100%. The calculated polymerization activity is 6.24×10 6 gmol Sc -1 h -1 , the number average molecular weight (M n ) of polystyrene analyzed by high temperature GPC is 485,000, and the molecular weight distribution (M w /M n ) is 1.56. The polystyrene syndiotacticity (rrrr) of nuclear magnetic analysis was 100%. The melting point (T m ) of syndiotactic polystyrene determined by DSC was 272°C.

应用实施例32Application Example 32

用制备实施例32得到的催化体系32,加入20mmol苯乙烯单体(单体与配合物13的mol比为2000∶1)。聚合瓶置于80℃恒温浴中,搅拌下反应1分钟。加入2ml体积浓度为10%盐酸的乙醇溶液终止聚合反应,将反应溶液倒入100ml甲醇中沉降,得聚苯乙烯白色固体粉末,再将该聚苯乙烯白色固体粉末置于真空干燥箱中干燥48小时,得到干燥的聚苯乙烯白色固体粉末,净重2.08g。转化率100%。计算聚合活性为1.25×107gmolSc -1h-1,用高温GPC分析聚苯乙烯的数均分子量(Mn)为58.7万,分子量分布(Mw/Mn)为1.65。核磁分析聚苯乙烯间规度(rrrr)为100%。DSC测定间规聚苯乙烯的熔点(Tm)为270℃。Using the catalytic system 32 obtained in Preparation Example 32, add 20 mmol of styrene monomer (the molar ratio of monomer to complex 13 is 2000:1). The polymerization bottle was placed in a constant temperature bath at 80°C, and reacted for 1 minute under stirring. Add 2ml of ethanol solution with a volume concentration of 10% hydrochloric acid to terminate the polymerization reaction, pour the reaction solution into 100ml of methanol for sedimentation, and obtain a polystyrene white solid powder, and then place the polystyrene white solid powder in a vacuum drying oven to dry for 48 Hour, obtain dry polystyrene white solid powder, net weight 2.08g. The conversion rate was 100%. The calculated polymerization activity is 1.25×10 7 gmol Sc -1 h -1 , the number average molecular weight (M n ) of polystyrene analyzed by high temperature GPC is 587,000, and the molecular weight distribution (M w /M n ) is 1.65. The polystyrene syndiotacticity (rrrr) of nuclear magnetic analysis was 100%. The melting point (T m ) of syndiotactic polystyrene determined by DSC was 270°C.

应用实施例33Application Example 33

用制备实施例33得到的催化体系33,加入5mmol苯乙烯单体(单体与配合物14的mol比为500∶1)。聚合瓶置于25℃恒温浴中,搅拌下反应15分钟。加入2ml体积浓度为10%盐酸的乙醇溶液终止聚合反应,将反应溶液倒入100ml甲醇中沉降,得聚苯乙烯白色固体粉末,再将该聚苯乙烯白色固体粉末置于真空干燥箱中干燥48小时,得到干燥的聚苯乙烯白色固体粉末,净重0.41g。转化率80%。计算聚合活性为1.66×105g molY -1h-1,用高温GPC分析聚苯乙烯的数均分子量(Mn)为4.6万,分子量分布(Mw/Mn)为1.90。核磁分析聚苯乙烯间规度(rrrr)为80%。DSC测定间规聚苯乙烯的熔点(Tm)为266℃。Using the catalytic system 33 obtained in Preparation Example 33, add 5 mmol of styrene monomer (the molar ratio of monomer to complex 14 is 500:1). The polymerization bottle was placed in a constant temperature bath at 25°C, and reacted for 15 minutes under stirring. Add 2ml of ethanol solution with a volume concentration of 10% hydrochloric acid to terminate the polymerization reaction, pour the reaction solution into 100ml of methanol for sedimentation, and obtain a polystyrene white solid powder, and then place the polystyrene white solid powder in a vacuum drying oven to dry for 48 Hour, obtain dry polystyrene white solid powder, net weight 0.41g. The conversion rate is 80%. The calculated polymerization activity is 1.66×10 5 g mol Y -1 h -1 , the number average molecular weight (M n ) of polystyrene analyzed by high temperature GPC is 46,000, and the molecular weight distribution (M w /M n ) is 1.90. The polystyrene syndiotacticity (rrrr) of nuclear magnetic analysis was 80%. The melting point (T m ) of syndiotactic polystyrene determined by DSC was 266°C.

应用实施例34-60的制备间规聚苯乙烯的方法的步骤同应用实施例24-33,条件和所得的结果如表3所示:The steps of the method for preparing syndiotactic polystyrene of Application Example 34-60 are the same as Application Example 24-33, and the conditions and the results obtained are as shown in Table 3:

表3限制几何构型稀土烯丙基配合物在苯乙烯(St)间规聚合中的应用Table 3 Application of rare earth allyl complexes with constrained geometry in syndiotactic polymerization of styrene (St)

  应用实施例application example   催化体系Catalytic system St/LnSt/Ln   聚合温度(℃)Polymerization temperature (℃)   聚合时间(min)Polymerization time (min)   转化率(%) Conversion rate(%)   聚合活性(g molLn -1h-1)Polymerization activity (g mol Ln -1 h -1 )   聚苯乙烯间规度(rrrr)Syndiotacticity of polystyrene (rrrr) Mn×10-4 M n ×10 -4 Mw/Mn M w /M n Tm(℃)T m (°C)   24 twenty four   24 twenty four   250250   2525   1 1   100100   1.56×106 1.56×10 6   100%100%   7.67.6   1.371.37   271271   2525   2525   10001000   2525   1 1   100100   6.24×106 6.24×10 6   100%100%   42.442.4   1.481.48   270270   2626   2626   20002000   2525   1.51.5   100100   8.32×106 8.32×10 6   100%100%   57.657.6   1.431.43   272272   2727   2727   30003000   2525   2 2   100100   9.36×106 9.36×10 6   100%100%   80.780.7   1.491.49   271271   2828   2828   40004000   2525   2 2   100100   1.25×107 1.25×10 7   100%100%   98.798.7   1.541.54   272272   2929   2929   20002000   2525   1.51.5   100100   8.32×106 8.32×10 6   89%89%   23.723.7   1.951.95   267267   3030   3030   500500   -20-20   55   100100   6.24×105 6.24×10 5   100%100%   31.231.2   1.431.43   270270   3131   3131   10001000   4040   1 1   100100   6.24×106 6.24×10 6   100%100%   48.548.5   1.561.56   272272   3232   3232   20002000   8080   1 1   100100   1.25×107 1.25×10 7   100%100%   58.758.7   1.651.65   272272   3333   3333   500500   2525   1515   8080   1.66×105 1.66×10 5   80%80%   4.64.6   1.901.90   266266   3434   3434   15001500   2525   1010   100100   9.36×105 9.36×10 5   100%100%   67.567.5   1.821.82   271271   3535   3535   25002500   2525   2525   100100   6.24×105 6.24×10 5   100%100%   70.370.3   1.981.98   272272   3636   3636   250250   2525   1 1   100100   1.56×106 1.56×10 6   100%100%   5.35.3   1.971.97   270270

  应用实施例application example   催化体系Catalytic system St/LnSt/Ln   聚合温度(℃)Polymerization temperature (℃)   聚合时间(min)Polymerization time (min)   转化率(%) Conversion rate(%)   聚合活性(g molLn -1h-1)Polymerization activity (g mol Ln -1 h -1 )   聚苯乙烯间规度(rrrr)Syndiotacticity of polystyrene (rrrr) Mn×10-4 M n ×10 -4 Mw/Mn M w /M n Tm(℃)T m (°C)   3737   3737   500500   2525   1 1   100100   3.12×106 3.12×10 6   100%100%   9.79.7   1.941.94   270270     3838   3838 750750 2525   1 1     100100     4.68×106 4.68×10 6     100%100%   15.315.3   1.981.98   271271     3939   3939 10001000 2525   1 1     100100     6.24×106 6.24×10 6     100%100%   22.322.3   1.881.88   270270     4040   4040 40004000 2525   2 2     100100     1.25×107 1.25×10 7     100%100%   90.590.5   1.931.93   272272     4141   4141 10001000 -20-20   2020     100100     3.12×105 3.12×10 5     100%100%   34.534.5   1.671.67   271271     4242   4242 10001000 8080   1 1     100100     6.24×106 6.24×10 6     100%100%   44.344.3   1.781.78   270270     4343   4343 20002000 2525   1 1     100100     1.25×107 1.25×10 7     100%100%   42.742.7   1.431.43   272272     4444   4444 20002000 2525   2 2     100100     6.24×106 6.24×10 6     100%100%   56.356.3   1.531.53   270270     4545   4545 20002000 2525   1010     100100     1.25×106 1.25×10 6     80%80%   19.619.6   1.871.87   266266     4646   4646 15001500 2525   2 2     100100     4.68×106 4.68×10 6     100%100%   44.244.2   1.421.42   270270     4747   4747 15001500 2525   2 2     100100     4.68×106 4.68×10 6     100%100%   53.853.8   1.461.46   272272     4848   4848 20002000 2525   1 1     100100     1.25×107 1.25×10 7     100%100%   48.348.3   1.381.38   270270     4949   4949 40004000 2525   2 2     100100     1.25×107 1.25×10 7     100%100%   98.898.8   1.421.42   272272

  应用实施例application example   催化体系Catalytic system St/LnSt/Ln   聚合温度(℃)Polymerization temperature (℃)   聚合时间(min)Polymerization time (min)   转化率(%) Conversion rate(%)   聚合活性(g molLn -1h-1)Polymerization activity (g mol Ln -1 h -1 )   聚苯乙烯间规度(rrrr)Syndiotacticity of polystyrene (rrrr) Mn×10-4 M n ×10 -4 Mw/Mn M w /M n Tm(℃)T m (°C)     5050   5050 20002000 2525   1 1     100100     1.25×107 1.25×10 7     100%100%   89.589.5   1.451.45   270270     5151   5151 20002000 2525   1 1     100100     1.25×107 1.25×10 7     100%100%   56.156.1   1.431.43   272272     5252   5252 20002000 -20-20   2020     100100     6.25×105 6.25×10 5     100%o100%o   60.260.2   1.321.32   270270     5353   5353 20002000 6060   1 1     100100     1.25×107 1.25×10 7     100%100%   36.536.5   1.531.53   271271     5454   5454 20002000 8080   1 1     100100     1.25×107 1.25×10 7     100%o100%o   34.834.8   1.621.62   270270     5555   5555 15001500 2525   1 1     100100     9.36×106 9.36×10 6     100%100%   61.761.7   1.481.48   270270 5656 5656 15001500 2525 11 100100 9.36×106 9.36×10 6 90%90% 23.423.4 1.781.78 269269     5757   5757 20002000 2525   1 1     100100     1.25×107 1.25×10 7     100%100%   43.643.6   1.571.57   270270     5858   5858 20002000 -20-20   1010     100100     1.25×106 1.25×10 6     100%100%   34.834.8   1.491.49   272272     5959   5959 20002000 8080   1 1     100100     1.25×107 1.25×10 7     100%100%   34.834.8   1.671.67   270270     6060   6060 15001500 2525   1 1     100100     9.36×106 9.36×10 6     85%85%   35.635.6   1.971.97   268268

从聚合应用实施例1-60可以得出,所述的限制几何构型稀土配合物均可以实现对苯乙烯的高活性(1.66×105g molLn -1h-1~1.25×107g molLn -1h-1),高间规(80%~100%)聚合。所制备的聚苯乙烯数均分子量在4.6~100万范围内,分子量分布较窄(1.30~1.98),熔点在266~272℃范围内。催化体系对温度有较高的适应性,在-20~80℃的聚合温度范围内,聚苯乙烯间规度(rrrr)最高均可达100%。From the polymerization application examples 1-60, it can be concluded that all the rare earth complexes with constrained geometry can achieve high activity to styrene (1.66×10 5 g mol Ln -1 h -1 ~1.25×10 7 g mol Ln -1 h -1 ), highly syndiotactic (80%-100%) polymerization. The number-average molecular weight of the prepared polystyrene is in the range of 4.6-1 million, the molecular weight distribution is narrow (1.30-1.98), and the melting point is in the range of 266-272 DEG C. The catalytic system has high adaptability to temperature, and the polystyrene syndiotacticity (rrrr) can reach up to 100% within the polymerization temperature range of -20 to 80°C.

Claims (14)

1. the constraint geometrical rear-earth title complex is characterized in that molecular formula is [R 1-(3-R 2-4-R 3-5-R 4-6-R 5) C 5N] LnX 2, structural formula is:
Figure FSA00000052886800011
R in the formula 1Be cyclopentadienyl derivative C 5A 4, indenyl derivative C 9A 6Or fluorenyl derivative C 13A 8A is the substituting group of cyclopentadienyl, the substituting group of indenyl or the substituting group on the fluorenyl, and A is identical or different, and A is selected from hydrogen, aliphatic hydrocarbyl or aromatic hydrocarbyl; R 2Be the substituting group on the skeleton pyridine ring, be selected from hydrogen, methyl, ethyl, sec.-propyl, the tertiary butyl or phenyl; R 3Be the substituting group on the skeleton pyridine ring, be selected from hydrogen, methyl, ethyl, sec.-propyl, the tertiary butyl or phenyl; R 4Be the substituting group on the skeleton pyridine ring, be selected from hydrogen, methyl, ethyl, sec.-propyl, the tertiary butyl or phenyl; R 5Be the substituting group on the skeleton pyridine ring, be selected from hydrogen, methyl, ethyl, sec.-propyl, the tertiary butyl, phenyl, 2,6-3,5-dimethylphenyl, 4-aminomethyl phenyl, mesitylene base, 2,6-diisopropyl phenyl, 2,4,6-triisopropyl phenyl or 2,6-di-tert-butyl-phenyl; Ln represents rare earth metal, is selected from Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb or Lu; X is a single anion ligand, is selected from CH 2SiMe 3, CH (SiMe 3) 2, 1,3-C 3H 5, 1,3-C 3H 4(Me) or 1,3-C 3H 3(SiMe 3) 2
2. constraint geometrical rear-earth title complex as claimed in claim 1 is characterized in that, described R 1Be tetramethyl-ring pentadienyl or indenyl.
3. constraint geometrical rear-earth title complex as claimed in claim 1 is characterized in that, described R 2Be hydrogen or methyl.
4. constraint geometrical rear-earth title complex as claimed in claim 1 is characterized in that, described R 3Be hydrogen.
5. constraint geometrical rear-earth title complex as claimed in claim 1 is characterized in that, described R 4Be hydrogen.
6. constraint geometrical rear-earth title complex as claimed in claim 1 is characterized in that, described R 5Be hydrogen, methyl, phenyl, 2,6-3,5-dimethylphenyl or 2,4,6-triisopropyl phenyl.
7. constraint geometrical rear-earth title complex as claimed in claim 1 is characterized in that, described Ln is Sc, Y, Nd, Gd or Lu.
8. constraint geometrical rear-earth title complex as claimed in claim 1 is characterized in that, described X is CH 2SiMe 3Or 1,3-C 3H 5
9. constraint geometrical rear-earth title complex as claimed in claim 1 is characterized in that, it is in following 1~28 the title complex any one, wherein:
Title complex 1:R 1=C 5Me 4, R 2=H, R 3=H, R 4=H, R 5=H, Ln=Sc, X=CH 2SiMe 3
Title complex 2:R 1=C 5Me 4, R 2=H, R 3=H, R 4=H, R 5=H, Ln=Y, X=CH 2SiMe 3
Title complex 3:R 1=C 5Me 4, R 2=H, R 3=H, R 4=H, R 5=H, Ln=Nd, X=CH 2SiMe 3
Title complex 4:R 1=C 5Me 4, R 2=H, R 3=H, R 4=H, R 5=H, Ln=Gd, X=CH 2SiMe 3
Title complex 5:R 1=C 5Me 4, R 2=H, R 3=H, R 4=H, R 5=H, Ln=Lu, X=CH 2SiMe 3
Title complex 6:R 1=C 5Me 4, R 2=Me, R 3=H, R 4=H, R 5=H, Ln=Sc, X=CH 2SiMe 3
Title complex 7:R 1=C 5Me 4, R 2=Me, R 3=H, R 4=H, R 5=H, Ln=Lu, X=CH 2SiMe 3
Title complex 8:R 1=C 5Me 4, R 2=H, R 3=H, R 4=H, R 5=Me, Ln=Sc, X=CH 2SiMe 3
Title complex 9:R 1=C 5Me 4, R 2=H, R 3=H, R 4=H, R 5=Me, Ln=Lu, X=CH 2SiMe 3
Title complex 10:R 1=C 5Me 4, R 2=H, R 3=H, R 4=H, R 5=2,4,6-(iPr) 3C 6H 2, Ln=Sc, X=CH 2SiMe 3
Title complex 11:R 1=C 9H 6, R 2=H, R 3=H, R 4=H, R 5=H, Ln=Sc, X=CH 2SiMe 3
Title complex 12:R 1=C 9H 6, R 2=H, R 3=H, R 4=H, R 5=2,4,6-(iPr) 3C 6H 2, Ln=Sc, X=CH 2SiMe 3,
Title complex 13:R 1=C 5Me 4, R 2=H, R 3=H, R 4=H, R 5=H, Ln=Sc, X=1,3-C 3H 5
Title complex 14:R 1=C 5Me 4, R 2=H, R 3=H, R 4=H, R 5=H, Ln=Y, X=1,3-C 3H 5
Title complex 15:R 1=C 5Me 4, R 2=H, R 3=H, R 4=H, R 5=H, Ln=Nd, X=1,3-C 3H 5
Title complex 16:R 1=C 5Me 4, R 2=H, R 3=H, R 4=H, R 5=H, Ln=Gd, X=1,3-C 3H 5
Title complex 17:R 1=C 5Me 4, R 2=H, R 3=H, R 4=H, R 5=H, Ln=Lu, X=1,3-C 3H 5
Title complex 18:R 1=C 5Me 4, R 2=Me, R 3=H, R 4=H, R 5=H, Ln=Sc, X=1,3-C 3H 5
Title complex 19:R 1=C 5Me 4, R 2=Me, R 3=H, R 4=H, R 5=H, Ln=Lu, X=1,3-C 3H 5
Title complex 20:R 1=C 5Me 4, R 2=H, R 3=H, R 4=H, R 5=Me, Ln=Sc, X=1,3-C 3H 5
Title complex 21:R 1=C 5Me 4, R 2=H, R 3=H, R 4=H, R 5=Me, Ln=Lu, X=1,3-C 3H 5
Title complex 22:R 1=C 5Me 4, R 2=H, R 3=H, R 4=H, R 5=C 6H 5, Ln=Sc, X=1,3-C 3H 5
Title complex 23:R 1=C 5Me 4, R 2=H, R 3=H, R 4=H, R 5=2,6-(Me) 2C 6H 3, Ln=Sc, X=1,3-C 3H 5
Title complex 24:R 1=C 5Me 4, R 2=H, R 3=H, R 4=H, R 5=2,4,6-(iPr) 3C 6H 2, Ln=Sc, X=1,3-C 3H 5
Title complex 25:R 1=C 9H 6, R 2=H, R 3=H, R 4=H, R 5=H, Ln=Sc, X=1,3-C 3H 5
Title complex 26:R 1=C 9H 6, R 2=H, R 3=H, R 4=H, R 5=H, Ln=Lu, X=1,3-C 3H 5
Title complex 27:R 1=C 9H 6, R 2=H, R 3=H, R 4=H, R 5=2,4,6-(iPr) 3C 6H 2, Ln=Sc, X=1,3-C 3H 5
Title complex 28:R 1=C 9H 6, R 2=H, R 3=H, R 4=H, R 5=2,4,6-(iPr) 3C 6H 2, Ln=Lu, X=1,3-C 3H 5
10. the method for making of constraint geometrical rear-earth title complex as claimed in claim 1 comprises: the method for making of (1) constraint geometrical rear-earth alkyl complexes; (2) method for making of rare earth allyl complex with constrained geometry configuration; It is characterized in that condition and step are as follows:
(1) condition of the method for making of constraint geometrical rear-earth alkyl complexes and step are as follows: at N 2Under the protection, constrained geometry configuration part R 1H-(3-R 2-4-R 3-5-R 4-6-R 5) C 5N is dissolved in tetrahydrofuran (THF) and places-78~0 ℃, the concentration of 1 times of amount that adds the mol of described constrained geometry configuration part is the hexane solution of 1.0~2.0mol/L n-Butyl Lithium, react after 1 hour, the rare earth trichloride of 1 times of amount that adds the mol of described constrained geometry configuration part, react after 4 hours, add the LiCH of 2 times of amounts of the mol of described constrained geometry configuration part 2SiMe 3, room temperature reaction removed and desolvates after 4 hours, used hexane extraction, concentrated hexane, obtained the constraint geometrical rear-earth alkyl complexes; The chemical formula of described rare earth trichloride is to be LnCl 3, wherein Ln is with the Ln in the described constraint geometrical rear-earth title complex of claim 1;
(2) condition of the method for making of rare earth allyl complex with constrained geometry configuration and step are as follows: at N 2Under the protection, constrained geometry configuration part R 1H-(3-R 2-4-R 3-5-R 4-6-R 5) C 5N is dissolved in tetrahydrofuran (THF) and places-78~0 ℃, the concentration of 1 times of amount that adds the mol of described constrained geometry configuration part is the hexane solution of 1.0~2.0mol/L n-Butyl Lithium, react after 1 hour, the rare earth trichloride of 1 times of amount that adds the mol of described constrained geometry configuration part, react after 4 hours, add the C of 2 times of amounts of the mol of described constrained geometry configuration part 3H 5MgCl, room temperature reaction removed and desolvate after 12 hours, with the toluene extraction, concentrated toluene, obtained rare earth allyl complex with constrained geometry configuration; The chemical formula of described rare earth chloride is to be LnCl 3, wherein Ln is with the Ln in the described constraint geometrical rear-earth title complex of claim 1.
11. the application of constraint geometrical rear-earth title complex as claimed in claim 1 is characterized in that, the constraint geometrical rear-earth title complex is used for the catalyst system of syndiotactic polymerization of phenylethylene; This catalyst system was made up of than 2: 1~1: 2 by mol constraint geometrical rear-earth title complex and organic boron salt two components;
Described organic boron salt is: [Ph 3C] [B (C 6F 5) 4], [PhNMe 2H] [BPh 4], [PhNMe 2H] [B (C 6F 5) 4] or B (C 6F 5) 3
12. the application of constraint geometrical rear-earth title complex as claimed in claim 11 is characterized in that, the described organic boron salt that is used for the catalyst system of syndiotactic polymerization of phenylethylene is [Ph 3C] [B (C 6F 5) 4].
13. the method for making that is used for the catalyst system of syndiotactic polymerization of phenylethylene as claimed in claim 11 is characterized in that step and condition are as follows: with molecular formula is [R 1-(3-R 2-4-R 3-5-R 4-6-R 5) C 5N] LnX 2The constraint geometrical rear-earth title complex and be organic boron salt of 0.5~2 times of mol amount of selected constraint geometrical rear-earth title complex, by proportioning at C 6~C 7Aromatic hydrocarbon solvent in mix, obtain the catalyst system that homogeneous is used for syndiotactic polymerization of phenylethylene.
14. the usage that is used for the catalyst system of syndiotactic polymerization of phenylethylene as claimed in claim 11 is characterized in that step and condition are as follows:
Get the toluene or the chlorobenzene solution that are used for the catalyst system of syndiotactic polymerization of phenylethylene by described, place the reactor of handling through anhydrous, anaerobic, to count ratio be 100: 1~1000: 1 to the mol of constraint geometrical rear-earth title complex in the volume L of described solvent and the described catalyst system; Add styrene monomer, the mol ratio of the constraint geometrical rear-earth title complex in styrene monomer and the described catalyst system is 250: 1~4000: 1, and polyreaction was carried out under-20~80 ℃ 1~30 minute.The adding volumetric concentration is 10% ethanol solution hydrochloride termination polyreaction, pour reaction soln in methyl alcohol sedimentation, get polystyrene white solid powder, again this polystyrene white solid powder is placed vacuum drying oven dry, obtain exsiccant polystyrene white solid powder.
CN2010101226577A 2010-03-12 2010-03-12 Constraint geometrical rear-earth complex and preparing method and application thereof in styrene syndiotactic polymerization Active CN101880295B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010101226577A CN101880295B (en) 2010-03-12 2010-03-12 Constraint geometrical rear-earth complex and preparing method and application thereof in styrene syndiotactic polymerization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010101226577A CN101880295B (en) 2010-03-12 2010-03-12 Constraint geometrical rear-earth complex and preparing method and application thereof in styrene syndiotactic polymerization

Publications (2)

Publication Number Publication Date
CN101880295A true CN101880295A (en) 2010-11-10
CN101880295B CN101880295B (en) 2012-11-07

Family

ID=43052457

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010101226577A Active CN101880295B (en) 2010-03-12 2010-03-12 Constraint geometrical rear-earth complex and preparing method and application thereof in styrene syndiotactic polymerization

Country Status (1)

Country Link
CN (1) CN101880295B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101880296A (en) * 2010-03-12 2010-11-10 中国科学院长春应用化学研究所 Constrained Geometry Rare Earth Complex and Its Preparation and Application of the Complex in High-cis 1,4 Selective Polymerization of Butadiene
CN102603810A (en) * 2012-01-29 2012-07-25 中国科学院长春应用化学研究所 Rare earth complex and preparation method of rare earth complex, catalysis system for polymerization and preparation method of catalysis system, and preparation method of polymer
CN103030721A (en) * 2011-09-30 2013-04-10 中国石油化工股份有限公司 Polymerization method for preparation of syndiotactic polystyrene
CN103724378A (en) * 2013-12-27 2014-04-16 中国科学院长春应用化学研究所 Isoprene-butadiene bipolymer and preparation method thereof
CN103819593A (en) * 2014-02-24 2014-05-28 大连理工大学 Hydrosilicon functionalized rare earth syndiotactic polystyrene and preparation method
CN104558058A (en) * 2013-10-12 2015-04-29 中国科学院长春应用化学研究所 Metallocene complex, preparation method thereof and catalyst composition
CN105669729A (en) * 2016-03-09 2016-06-15 三峡大学 Dissimilar metal organic framework material of 2,2'-dipyridyl-3,3'-dicarboxylic acid and synthesis method thereof
CN107814861A (en) * 2017-11-22 2018-03-20 宁波大学 A kind of preparation method of styrene ethylene syndiotactic copolymer
CN108641022A (en) * 2018-05-18 2018-10-12 宁波大学 Rare earth catalyst and preparation method thereof and syndiotactic polymerization process of phenylethylene
CN113136001A (en) * 2021-04-23 2021-07-20 中国科学院长春应用化学研究所 Preparation method of ethylene-fluorostyrene copolymer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1738839A (en) * 2003-01-07 2006-02-22 托塔尔石油化学产品研究弗吕公司 Group III-bridged metallocenes based on cyclopentadienyl-fluorenyl ligands
CN101880296A (en) * 2010-03-12 2010-11-10 中国科学院长春应用化学研究所 Constrained Geometry Rare Earth Complex and Its Preparation and Application of the Complex in High-cis 1,4 Selective Polymerization of Butadiene

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1738839A (en) * 2003-01-07 2006-02-22 托塔尔石油化学产品研究弗吕公司 Group III-bridged metallocenes based on cyclopentadienyl-fluorenyl ligands
CN101880296A (en) * 2010-03-12 2010-11-10 中国科学院长春应用化学研究所 Constrained Geometry Rare Earth Complex and Its Preparation and Application of the Complex in High-cis 1,4 Selective Polymerization of Butadiene

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
《Chemical Reviews》 20060516 Peter M.Zeimentz,et al. Cationic Organometallic Complexes of Scandium, Yttrium, and the Lanthanoids 第2404-2433页 1-14 第106卷, 第6期 *
《Macromolecules》 20080220 Baoli Wang, et al. Highly 3,4-Selective Living Polymerization of Isoprene with Rare Earth Metal Fluorenyl N-Heterocyclic Carbene Precursors 第1983-1988页 1-14 第41卷, 第6期 *
《Polymer》 20080304 Anne-Sophie Rodrigues, et al. Stereocontrolled styrene-isoprene copolymerization and styrene-ethylene-isoprene terpolymerization with a single-component allyl ansa-neodymocene catalyst 第2039-2045页 1-14 第49卷, *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101880296B (en) * 2010-03-12 2012-11-07 中国科学院长春应用化学研究所 Constraint geometrical rear-earth complex and preparing method and application thereof in butadiene cis-1,4 selective polymerization
CN101880296A (en) * 2010-03-12 2010-11-10 中国科学院长春应用化学研究所 Constrained Geometry Rare Earth Complex and Its Preparation and Application of the Complex in High-cis 1,4 Selective Polymerization of Butadiene
CN103030721A (en) * 2011-09-30 2013-04-10 中国石油化工股份有限公司 Polymerization method for preparation of syndiotactic polystyrene
CN102603810A (en) * 2012-01-29 2012-07-25 中国科学院长春应用化学研究所 Rare earth complex and preparation method of rare earth complex, catalysis system for polymerization and preparation method of catalysis system, and preparation method of polymer
CN102603810B (en) * 2012-01-29 2015-08-05 中国科学院长春应用化学研究所 The preparation method of rare earth compounding and preparation method thereof, polymerization catalyst system and preparation method thereof, polymkeric substance
CN104558058A (en) * 2013-10-12 2015-04-29 中国科学院长春应用化学研究所 Metallocene complex, preparation method thereof and catalyst composition
CN104558058B (en) * 2013-10-12 2017-08-08 中国科学院长春应用化学研究所 Metallocene complex and preparation method thereof, carbon monoxide-olefin polymeric
CN103724378B (en) * 2013-12-27 2017-04-19 中国科学院长春应用化学研究所 Isoprene-butadiene bipolymer and preparation method thereof
CN103724378A (en) * 2013-12-27 2014-04-16 中国科学院长春应用化学研究所 Isoprene-butadiene bipolymer and preparation method thereof
CN103819593A (en) * 2014-02-24 2014-05-28 大连理工大学 Hydrosilicon functionalized rare earth syndiotactic polystyrene and preparation method
CN105669729A (en) * 2016-03-09 2016-06-15 三峡大学 Dissimilar metal organic framework material of 2,2'-dipyridyl-3,3'-dicarboxylic acid and synthesis method thereof
CN105669729B (en) * 2016-03-09 2017-03-15 三峡大学 A kind of different metal organic framework materials of 3,3 ' dicarboxylic acids of 2,2 ' bipyridyl and its synthetic method
CN107814861A (en) * 2017-11-22 2018-03-20 宁波大学 A kind of preparation method of styrene ethylene syndiotactic copolymer
CN107814861B (en) * 2017-11-22 2019-09-06 宁波大学 A kind of preparation method of styrene-ethylene syndiotactic copolymer
CN108641022A (en) * 2018-05-18 2018-10-12 宁波大学 Rare earth catalyst and preparation method thereof and syndiotactic polymerization process of phenylethylene
CN113136001A (en) * 2021-04-23 2021-07-20 中国科学院长春应用化学研究所 Preparation method of ethylene-fluorostyrene copolymer
CN113136001B (en) * 2021-04-23 2022-05-06 中国科学院长春应用化学研究所 Preparation method of ethylene-fluorostyrene copolymer

Also Published As

Publication number Publication date
CN101880295B (en) 2012-11-07

Similar Documents

Publication Publication Date Title
CN101880295B (en) Constraint geometrical rear-earth complex and preparing method and application thereof in styrene syndiotactic polymerization
CN106062012B (en) Support type mixed catalyst and the method for preparing the polymer based on alkene using it
CN106661142B (en) Ligand compound, transistion metal compound and the carbon monoxide-olefin polymeric comprising the compound
Jian et al. Rare‐Earth‐Metal–Hydrocarbyl Complexes Bearing Linked Cyclopentadienyl or Fluorenyl Ligands: Synthesis, Catalyzed Styrene Polymerization, and Structure–Reactivity Relationship
CN102603810B (en) The preparation method of rare earth compounding and preparation method thereof, polymerization catalyst system and preparation method thereof, polymkeric substance
CN106488923B (en) Ligand compound, transistion metal compound and the carbon monoxide-olefin polymeric comprising the transistion metal compound
CN104558058B (en) Metallocene complex and preparation method thereof, carbon monoxide-olefin polymeric
Wang et al. Novel Titanium Catalysts Bearing an [O, N, S] Tridentate Ligand for Ethylene Homo‐and Copolymerization
CN102791746A (en) Method for preparing supported metallocene catalyst and method for preparing polyolefin using the same
EP3173429B1 (en) Metallocene compound, metallocene supported catalyst, and method for preparing polyolefin using same
EP3312201B1 (en) Supported hybrid catalyst and method for preparing olefin polymer using the same
CN103946245A (en) Catalyst for olefin polymerization and copolymerization, and olefin polymerization or copolymerization method using same
CN101880296B (en) Constraint geometrical rear-earth complex and preparing method and application thereof in butadiene cis-1,4 selective polymerization
EP3184556B1 (en) Metallocene-supported catalyst and method of preparing polyolefin using the same
CN105829360B (en) Metallocene compound, the carbon monoxide-olefin polymeric comprising it and prepare the method for olefin polymer using it
Zou et al. Group 4 Dimethylsilylenebisamido Complexes Bearing the 6‐[2‐(Diethylboryl) phenyl] pyrid‐2‐yl Motif: Synthesis and Use in Tandem Ring‐Opening Metathesis/Vinyl‐Insertion Copolymerization of Cyclic Olefins with Ethylene
CN105111336A (en) Electron donor of ethylene polymerization catalyst, ball-like catalyst and preparation method
WO2012036443A2 (en) Dinuclear metallocene compound and a production method for polyolefins using the same
KR101997692B1 (en) N-Heterocyclic carbene metallocene compounds and method for preparing the same
EP3330296B1 (en) Method for preparing supported metallocene catalyst
KR101365884B1 (en) Tandem catalyst system comprising transition metal compound for alpha-olefin synthesis, and preparation method for polyethylene using the system
CN1311800A (en) Catalyst for polymerization of olefins
WO2016195424A1 (en) Supported metallocene catalyst, and method for preparing polyolefin by using same
Cortial et al. Neutral ansa-bis (fluorenyl) silane neodymium borohydrides: synthesis, structural study and behaviour as catalysts in butadiene–ethylene copolymerisation
KR101727701B1 (en) Dinuclear metallocene compound, and method for preparing the same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: CHANGZHOU INSTITUTE OF ENERGY STORAGE MATERIALS +

Free format text: FORMER OWNER: CHANGCHUN INST. OF APPLIED CHEMISTRY, CHINESE ACADEMY OF SCIENCES

Effective date: 20131018

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 130022 CHANGCHUN, JILIN PROVINCE TO: 213000 CHANGZHOU, JIANGSU PROVINCE

TR01 Transfer of patent right

Effective date of registration: 20131018

Address after: Changzhou City, Jiangsu province Hehai road 213000 No. 9

Patentee after: Changzhou Institute of Energy Storage Materials & Devices

Address before: 130022 Changchun people's street, Jilin, No. 5625

Patentee before: Changchun Institue of Applied Chemistry, Chinese Academy of Sciences

TR01 Transfer of patent right

Effective date of registration: 20190111

Address after: 130022 No. 5625 Renmin Street, Jilin, Changchun

Patentee after: Changchun Institue of Applied Chemistry, Chinese Academy of Sciences

Address before: No. 9, river Hai Dong Road, Changzhou, Jiangsu Province

Patentee before: Changzhou Institute of Energy Storage Materials & Devices

TR01 Transfer of patent right