CN101871466A - 一种用于航空涡扇发动机压缩系统的多叶排可循环吹吸气流动控制方法 - Google Patents

一种用于航空涡扇发动机压缩系统的多叶排可循环吹吸气流动控制方法 Download PDF

Info

Publication number
CN101871466A
CN101871466A CN201010176139A CN201010176139A CN101871466A CN 101871466 A CN101871466 A CN 101871466A CN 201010176139 A CN201010176139 A CN 201010176139A CN 201010176139 A CN201010176139 A CN 201010176139A CN 101871466 A CN101871466 A CN 101871466A
Authority
CN
China
Prior art keywords
air
row
leaf
blowing
end wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201010176139A
Other languages
English (en)
Inventor
侯安平
袁巍
赵斌
周盛
陆亚钧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201010176139A priority Critical patent/CN101871466A/zh
Publication of CN101871466A publication Critical patent/CN101871466A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种用于航空涡扇发动机压缩系统的多叶排可循环吹吸气流动控制方法,根据风扇/压气机的数值模拟流场,选取后面级端壁附面层分离严重的静子,在端壁分离位置设置吸气槽,吸出的气流由端壁外的集气腔收集;选取前面级端壁附面层存在分离且压力较低的静子,在端壁分离的上游位置设置吹气槽和端壁外的集气腔;设计连接前后高低压叶排集气腔之间的气流通路;循环吹吸气流由高压叶排吸气槽流入集气腔,在压力梯度的作用下沿气流通路流向低压叶排的集气腔,最终由低压叶排吹气槽吹入主流完成循环。本发明利用压缩系统内的压力梯度,同时对高低压多叶排进行可循环的吹吸气流动控制,结构简单,能够显著提高航空涡扇发动机压缩系统的效率和裕度。

Description

一种用于航空涡扇发动机压缩系统的多叶排可循环吹吸气流动控制方法
技术领域
本发明涉及航空涡轮风扇发动机(简称涡扇发动机)压缩系统的设计和流动控制,是一种直接应用于航空涡扇发动机风扇/压气机的多叶排可循环主动流动控制方法。
背景技术
推重比是衡量涡扇发动机水平的重要指标。近几十年来,随着涡扇发动机推重比的大幅度提升,以提高风扇/压气机级压比与级负荷,缩减其级数的紧凑叶轮机技术,成为了提高发动机推重比的有效途径。在高负荷、大逆压梯度下,风扇/压气机中逐渐增厚的端壁附面层在流道径向空间所占的比例增大,叶栅内流动的三维效应占据主导地位,造成流动损失增加,效率降低,同时增厚的端壁附面层和叶片附面层的堵塞会造成严重的流动分离。
有效控制附面层分离是改善航空涡轮风扇发动机压缩系统性能的关键性技术。目前,附面层流动控制的方法主要分为两类:第一类是吸附式风扇/压气机设计技术,通过对叶片表面和流道端壁多个临界区域的抽吸,防止高逆压梯度区域的分离,移除低能流体的堆积,使得流动沿固壁表面。这种方法近年来成为国内外研究的热点问题之一。然而对于抽吸所引出气流的利用,研究中均未加详细考虑。受抽气需要靠复杂的机构完成且抽吸位置分散、各位置抽吸气流量小、气流压力不等等条件的限制,抽吸气技术中引气及引气通路的设计和引出气流的利用较为困难。
第二类方法是叶片附面层吹吸气技术。叶片附面层吹吸气技术通过在风扇/压气机单个叶排表面开槽/孔,利用叶片压力面与吸力面、前缘与尾缘的压力差进行吹吸气。这种方法近年来为国内外广泛研究。吹吸气相结合,可以更为有效的利用航空涡轮风扇发动机压缩系统自身的压力梯度,进行单个叶排的流动控制。然而在叶片表面开槽/孔,会导致风扇/压气机叶片的结构变化从而带来强度、加工以及可靠性等一系列问题。
为了实现高负荷紧凑压缩系统,先进涡扇发动机的压缩系统设计已经接近或达到压比3一级的水平。在如此高负荷的压缩系统中,各级静子叶排端壁流动的三维效应和分离非常严重,需要对各排静子进行合理的流动控制设计,以实现高负荷、高效率和宽稳定工作裕度的目标。
综上所述,在航空涡扇发动机压缩系统中,现有的流动控制技术,仍然采取抽吸气或是吹吸结合的流动控制方法,这两种方法都存在缺点,若采用抽吸气,抽气需要靠复杂的机构完成且抽出的气流分散、压力不等,难以循环利用,如果直接排出流道,会减小整机推力。若采用叶片附面层吹吸气,在每排叶片表面开槽/孔,势必会影响高负荷风扇/压气机叶片的寿命和可靠性。基于以上原因,我们提出了航空涡轮风扇发动机压缩系统的多叶排可循环吹吸气流动控制方法这一发明。
发明内容
本发明的技术解决问题:克服现有技术的不足,提供一种利用压缩系统自身的压力梯度,通过吸气、吹气有效的将多叶排流动控制相结合,从而提高航空发动机压缩系统的效率和工作裕度的方法。
本发明的技术解决方案:在航空涡扇发动机压缩系统中,利用压缩系统自身的压力梯度,通过吸气、吹气有效的将多叶排流动控制相结合,进行多叶排可循环的吹吸气流动控制。本发明中压缩系统的可循环吹吸气流动控制方法(如图1、2)的主要特征是多叶排可循环吹吸气,其特点在于步骤如下:
步骤(1),根据风扇/压气机的计算流体力学数值模拟实验流场,选取后面级端壁附面层存在分离,且分离区的径向尺寸占叶片高度5%以上的静子叶排,作为端壁附面层流动分离的控制对象,根据叶排流场确定附面层三维分离在端壁的分离线位置,即附面层吸气位置;
步骤(2),根据风扇/压气机的计算流体力学数值模拟实验流场,选取前面级端壁附面层存在分离且静压小于步骤(1)中吸气位置所在的后面级静子叶排端壁区域静压的90%的静子叶排,根据叶排流场确定附面层三维分离在端壁的分离线的上游位置,即附面层吹气位置;
步骤(3),在步骤(1)中的附面层吸气位置设置吸气槽,为了保证叶排出口气流参数周向均匀,吸气槽在叶排中周向周期性均布,吸出的气流由吸气槽端壁外表面的环形的高压叶排集气腔收集;
步骤(4),在步骤(2)中的附面层吹气位置设置吹气槽,为了保证叶排出口气流参数周向均匀,吹气槽在叶排中周向周期均布,传来的准备吹入的气流由吹气槽端壁外表面新增加的环形的低压叶排集气腔收集;
步骤(5),设计气流通路,实现可循环吹吸气流在环形的高压叶排集气腔与环形的低压叶排集气腔之间的传递;
步骤(6),可循环吹吸气流由高压叶排吸气槽流入环形的高压叶排集气腔,根据压缩系统自身的压力梯度沿气流通路流向环形的低压叶排集气腔,最终由低压叶排吹气槽吹入主流,完成循环。
所述步骤(3)的吸气槽长度为0.3~0.6倍高压叶排栅距。
所述步骤(4)的吹气槽长度为0.3~0.6倍低压叶排栅距。
所述步骤(3)的环形的高压叶排集气腔与所述步骤(4)的环形的低压叶排集气腔为流道端壁外表面的全周向环形腔。
所述步骤(3)的吸气槽面积大于所述步骤(4)的吹气槽面积,以保证高压叶排吸出的端壁分离区流动速度小于该高压叶排主流区流动速度的能量较低的流体加速膨胀,在环形的低压叶排集气腔内,保持足够的压力差,并以高于低压叶排分离区内流动速度和流体能量的形式注入主流。
所述步骤(5)的气流通路设计为周向均布,且个数小于高压叶排与低压叶排的最小叶片数,一般取为2~4个。
所述步骤(6)的吸气量范围在总流量的1~3%,吹气量范围在总流量的1~3%。吸气量与吹气量相同。
所述步骤中,叶排端壁可同时为机匣端壁或轮毂端壁。具体的端壁位置,需要由压缩系统流场的三维流动及端壁附面层分离情况决定。在不同叶排的机匣端壁进行可循环吹吸气流动控制,集气腔和气流通路的设计在结构上较为简单。若在不同叶排的轮毂端壁进行可循环吹吸气流动控制,气流通路的设计需要穿过高低压静子叶排中间的转子轮盘,结构略微复杂。
本发明的原理:后面级端壁附面层存在分离,且分离区的径向尺寸占叶片高度5%以上的静子叶排,在附面层三维分离与端壁相交的分离线位置处开槽进行吸气,移除了流道端壁临界区域流动速度小于主流区流动速度的能量较低的流体的堆积,防止了高逆压梯度区域的分离,减弱了叶排通道的三维径向流动,使得流动沿固壁表面,从而有效控制了端壁附面层流动。前面级静子叶排,在附面层三维分离与端壁相交的分离线位置上游处开槽进行吹气。一方面增大叶型的环量,另一方面在吹气的过程中输入的高于叶排分离区内流动速度和能量的流体与主流附面层中的流体进行强烈的动量掺混,使得吹入气流中的能量能够输入到主流附面层中,从而提高主流流体抵抗分离的能力。本发明中连接环形的高低压叶排集气腔的气流通路采用了独特设计,即保证高压气流向低压叶排传递的压力损失尽量小。气流通路设计使得高压叶排吸出的流体加速膨胀,在环形的低压叶排集气腔内,保持足够的压力差,并以高于低压叶排分离区内流动速度和流体能量的形式注入主流。
在风扇/压气机流场和吹吸气位置一定的情况下,本发明中的压缩系统可循环吹吸气的压力差一定,吸气槽和吹气槽的面积共同决定了吹吸气流量。吹气量存在临界值,当吹气量小于此值时,吹气量越大,能够使得流动控制的效果明显改善,而当吹气量达到临界值后,吹气量的增大对流动性能的改善非常有限。吸气槽和吹气槽在端壁的开槽位置决定了气流吸出和吹入主流流场的方向。吸气方向存在最佳值,吸气方向越接近端壁切线方向,可以更为有效的吸除端壁附面层一定厚度的低能流体。吹气方向存在最佳值,吹气方向越接近端壁切线方向,吹气的流动控制效果越明显,表现为低压叶排静压增压比的提高和损失系数的降低。
本发明中吸气槽的长度为0.3~0.6倍高压叶排栅距、吹气槽的长度为0.3~0.6倍低压叶排栅距、吸气量为总流量的1~3%以及吹气量为总流量的1~3%。这四个循环吹吸气控制参数的选择是根据大量的风扇/压气机三维粘性流场数值模拟实验结果得出的,从大量结果中分析比较上述控制参数对结果的影响规律,最后优化得出上述参数的选择原则。
本发明与现有技术相比优点在于:
(1)现有采用抽吸气实现叶片表面和流道端壁临界区域低能流体移除的技术的主要缺点是,需要靠复杂的机构完成抽气,并且从叶片表面和端壁区域多处抽出的气流位置分散、压力不等,难以循环利用。而本发明采用流道端壁开槽进行附面层吹吸的方法,在流道端壁开槽,气源集中,位置结构较为简单,通过压缩系统自身的压力梯度进行吹吸,因此同时解决了抽出气流的循环利用问题和吸气、吹气系统的结构复杂问题,避免了机构复杂带来的重量增加和故障增加。
(2)现有采用叶片附面层吹吸气实现单个叶排的流动控制技术的主要缺点是,在叶片表面开槽/孔,会导致风扇/压气机叶片的结构变化从而带来强度、加工以及可靠性等一系列问题,并且对每个叶排进行开槽/孔只能控制单个叶排的附面层流动。与现有的流动控制方法不同,本发明在流道端壁开槽,避免了叶片结构变化带来的一系列强度问题。本发明利用压缩系统内的压力梯度,将高压叶排的端壁附面层移除与低压叶排的端壁附面层吹除有效结合。解决了压缩系统多个静子叶排的流动控制问题,使多叶排可循环吹吸气流动控制得以实现。
附图说明
图1本发明的航空涡轮风扇发动机风扇部件的多叶排可循环吹吸气流动控制方式示意图。
图2本发明的各控制叶排端壁的吸气、吹气位置。
图中:               1.风扇轮毂              2.风扇机匣
3.风扇进口导叶       4.风扇传动轴            5.风扇第一级转子
6.风扇第一级静子     7.环形的低压叶排集气腔  8.风扇第二级转子
9.高低压气流通路     10.风扇第二级静子       11.风扇第三级转子
12.风扇第三级静子    13.环形的高压叶排集气腔 A.高压叶排端壁吸气槽位置
B.低压叶排端壁吹气槽位置
具体实施方式
为更清楚地描述本发明,本具体实施方式以一个涡扇发动机风扇部件的多叶排可循环主动流动控制方案为例,结合附图对本发明作进一步的说明。
本发明实例为带进口导向叶片的三级风扇,相应的各级压比分别为2.04、1.91、1.60,各级负荷系数分别为0.28、0.31、0.29。风扇部件多叶排可循环主动流动控制方案的流道几何形状,如图1。
(1)根据风扇的计算流体力学数值模拟实验流场进行分析,根据流场流线和三维分离区域位置得出进行可循环吹吸气流动控制的高压吸气叶排和低压吹气叶排。在三级风扇中,第三级静子叶高较小使得端壁区域占整个叶高的比例很大,负荷较高使得端壁附面层分离较为严重,且分离区的径向尺寸占叶片高度20%以上,影响了流场性能,故将其选为高压叶排,并根据附面层三维分离在轮毂端壁的分离线选定吸气槽开槽位置。第一级静子的总温、总压相对第三级静子较低,吹入相对能量较高的由第三级静子吸出的气流,可以有效的提高主流流体抵抗分离的能力,故将其选为低压叶排,并根据附面层三维分离在轮毂端壁的分离线上游选定吹气槽开槽位置。
(2)根据高低压叶排及吸气槽、吹气槽位置,设计环形的集气腔和气流通路。对于高压叶排吸气,为了保证叶排出口气流参数周向均匀,吸气槽在叶排中周向周期性均布,吸出的气流由端壁外表面的环形的集气腔收集。对于低压叶排吹气,为了保证叶排出口气流参数周向均匀,吹气槽在叶排中周向均布。气流由风扇自身的压力梯度驱动,沿环形的高压叶排集气腔、气流通路向环形的低压叶排集气腔传递,最终由低压叶排吹气槽吹入主流,完成整个循环。环形的集气腔和气流通路实现了可循环吹吸气流在高低压叶排之间的传递。
(3)采用通用的三维粘性流场计算方法及计算软件,根据风扇多叶排可循环吹吸气的参数及结构,构建由三级风扇、吸气槽、吹气槽、环形的集气腔及气流通路所组成计算域的三维计算网格,根据风扇的工作条件设置计算边界条件,然后执行软件,即可得到用多叶排可循环吹吸气流动控制的三级风扇流场计算结果。
(4)对步骤(1)分析得出的吸气槽位置,根据其动力学基本关系式和步骤(3)所述的流场计算程序,对不同吸气槽长度的优化选型结果得出了吸气槽长度为0.45倍第三级静子栅距。
(5)对步骤(1)分析得出的吹气槽位置,根据其动力学基本关系式和步骤(3)所述的流场计算程序,对不同吹气槽长度的优化选型结果得出了吹气槽长度为0.35倍第一级静子栅距。
(6)对步骤(1)分析得出的吸气槽位置和吹气槽位置,根据其动力学基本关系式和步骤(3)所述的流场计算程序,对吸气槽和吹气槽的面积比以及吹吸气流量的优化选型结果得出了吸气槽和吹气槽的面积比为1.5,循环吹吸气流量为总流量的1.9%。
实施效果:表1风扇性能参数比较
Figure GSA00000122409100061
从实施效果可以看出,通过应用本发明,移除了第三级静子叶排轮毂端壁附面层内流动速度小于该叶排主流区流动速度的能量较低的流体,循环注入第一级静子叶排的轮毂端壁附面层,有效的抑制了两个叶排端壁附面层的流动分离,从而显著提高了风扇的效率和工作裕度。

Claims (9)

1.一种用于航空涡扇发动机压缩系统的多叶排可循环吹吸气流动控制方法,其特征在于步骤如下:
步骤(1),根据风扇/压气机的计算流体力学数值模拟实验流场,选取后面级端壁附面层存在分离,且分离区的径向尺寸占叶片高度5%以上的静子叶排,作为端壁附面层流动分离的控制对象,根据叶排流场确定附面层三维分离在端壁的分离线位置,即附面层吸气位置;
步骤(2),根据风扇/压气机的计算流体力学数值模拟实验流场,选取前面级端壁附面层存在分离且静压小于步骤(1)中吸气位置所在的后面级静子叶排端壁区域静压的90%的静子叶排,根据叶排流场确定附面层三维分离在端壁的分离线的上游位置,即附面层吹气位置;
步骤(3),在步骤(1)中的附面层吸气位置设置吸气槽,为了保证叶排出口气流参数周向均匀,吸气槽在叶排中周向周期性均布,吸出的气流由吸气槽端壁外表面的环形的高压叶排集气腔收集;
步骤(4),在步骤(2)中的附面层吹气位置设置吹气槽,为了保证叶排出口气流参数周向均匀,吹气槽在叶排中周向周期均布,传来的准备吹入的气流由吹气槽端壁外表面新增加的环形的低压叶排集气腔收集;
步骤(5),设计气流通路,实现可循环吹吸气流在环形的高压叶排集气腔与环形的低压叶排集气腔之间的传递;
步骤(6),可循环吹吸气流由高压叶排吸气槽流入环形的高压叶排集气腔,根据压缩系统自身的压力梯度沿气流通路流向环形的低压叶排集气腔,最终由低压叶排吹气槽吹入主流,完成循环。
2.根据权利要求1所述的用于航空涡扇发动机压缩系统的多叶排可循环吹吸气流动控制方法,其特征在于:所述步骤(3)的吸气槽长度为0.3~0.6倍高压叶排栅距。
3.根据权利要求1所述的用于航空涡扇发动机压缩系统的多叶排可循环吹吸气流动控制方法,其特征在于:所述步骤(4)的吹气槽长度为0.3~0.6倍低压叶排栅距。
4.根据权利要求1所述的用于航空涡扇发动机压缩系统的多叶排可循环吹吸气流动控制方法,其特征在于:所述步骤(6)的吸气量范围在总流量的1~3%。
5.根据权利要求1所述的用于航空涡扇发动机压缩系统的多叶排可循环吹吸气流动控制方法,其特征在于:所述步骤(6)的吹气量范围在总流量的1~3%。
6.根据权利要求1所述的用于航空涡扇发动机压缩系统的多叶排可循环吹吸气流动控制方法,其特征在于:所述步骤(6)的吸气量与吹气量相同。
7.根据权利要求1所述的用于航空涡扇发动机压缩系统的多叶排可循环吹吸气流动控制方法,其特征在于:所述步骤(3)的吸气槽面积大于所述步骤(4)的吹气槽面积。
8.根据权利要求1所述的用于航空涡扇发动机压缩系统的多叶排可循环吹吸气流动控制方法,其特征在于:所述步骤(3)的环形的高压叶排集气腔与所述步骤(4)的环形的低压叶排集气腔为流道端壁外表面的全周向环形腔。
9.根据权利要求1所述的用于航空涡扇发动机压缩系统的多叶排可循环吹吸气流动控制方法,其特征在于:所述步骤(5)的气流通路设计为周向均布,且个数小于高压叶排与低压叶排的最小叶片数,一般取为2~4个。
CN201010176139A 2010-05-13 2010-05-13 一种用于航空涡扇发动机压缩系统的多叶排可循环吹吸气流动控制方法 Pending CN101871466A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201010176139A CN101871466A (zh) 2010-05-13 2010-05-13 一种用于航空涡扇发动机压缩系统的多叶排可循环吹吸气流动控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010176139A CN101871466A (zh) 2010-05-13 2010-05-13 一种用于航空涡扇发动机压缩系统的多叶排可循环吹吸气流动控制方法

Publications (1)

Publication Number Publication Date
CN101871466A true CN101871466A (zh) 2010-10-27

Family

ID=42996514

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010176139A Pending CN101871466A (zh) 2010-05-13 2010-05-13 一种用于航空涡扇发动机压缩系统的多叶排可循环吹吸气流动控制方法

Country Status (1)

Country Link
CN (1) CN101871466A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103616155A (zh) * 2013-11-29 2014-03-05 中国人民解放军国防科学技术大学 超声速流场的流动控制装置
CN105156361A (zh) * 2015-09-14 2015-12-16 北京航空航天大学 叶根开设等宽圆弧槽的压气机静子叶栅
CN105179322A (zh) * 2015-09-14 2015-12-23 北京航空航天大学 叶根开设等宽直线槽的压气机静子叶栅
CN108108549A (zh) * 2017-12-15 2018-06-01 中国航发沈阳发动机研究所 一种平面叶栅轴向速度密流比控制方法
CN115045860A (zh) * 2022-08-12 2022-09-13 中国航发沈阳发动机研究所 一种压气机扩稳增效结构

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103616155A (zh) * 2013-11-29 2014-03-05 中国人民解放军国防科学技术大学 超声速流场的流动控制装置
CN103616155B (zh) * 2013-11-29 2016-02-17 中国人民解放军国防科学技术大学 超声速流场的流动控制装置
CN105156361A (zh) * 2015-09-14 2015-12-16 北京航空航天大学 叶根开设等宽圆弧槽的压气机静子叶栅
CN105179322A (zh) * 2015-09-14 2015-12-23 北京航空航天大学 叶根开设等宽直线槽的压气机静子叶栅
CN105179322B (zh) * 2015-09-14 2017-08-25 北京航空航天大学 叶根开设等宽直线槽的压气机静子叶栅
CN108108549A (zh) * 2017-12-15 2018-06-01 中国航发沈阳发动机研究所 一种平面叶栅轴向速度密流比控制方法
CN108108549B (zh) * 2017-12-15 2021-10-01 中国航发沈阳发动机研究所 一种平面叶栅轴向速度密流比控制方法
CN115045860A (zh) * 2022-08-12 2022-09-13 中国航发沈阳发动机研究所 一种压气机扩稳增效结构
CN115045860B (zh) * 2022-08-12 2022-11-22 中国航发沈阳发动机研究所 一种压气机扩稳增效结构

Similar Documents

Publication Publication Date Title
US8684698B2 (en) Compressor airfoil with tip dihedral
US7200999B2 (en) Arrangement for bleeding the boundary layer from an aircraft engine
CA2507972C (en) Method and apparatus for assembling gas turbine engines
CN101418808A (zh) 一种用于航空涡扇发动机压缩系统的多叶排可循环吹吸气流动控制方法
EP3179113A1 (en) Venturi effect endwall treatment
US20120244005A1 (en) High camber compressor rotor blade
CN101871466A (zh) 一种用于航空涡扇发动机压缩系统的多叶排可循环吹吸气流动控制方法
CN101092978A (zh) 多级轴流压气机静子内引气增效防喘扩稳装置
US20160153465A1 (en) Axial compressor endwall treatment for controlling leakage flow therein
CN103195757B (zh) 一种结合附面层抽吸的对转压气机气动设计方法
US10047620B2 (en) Circumferentially varying axial compressor endwall treatment for controlling leakage flow therein
CN104653496B (zh) 一种单双吸可调式离心通风机
CN100494640C (zh) 大小叶片串列叶栅叶轮及压气机
CN101092976A (zh) 离心压气机扩压器叶片内引气流动控制增效装置
JP2012082779A (ja) 軸流圧縮機
CN104632701A (zh) 大涵道比涡扇发动机风扇长短叶片结构
CN106401990A (zh) 一种有串列与分流叶片的叶轮与串列叶栅扩压器的压气机
CN103807201A (zh) 一种控制压气机静子角区分离的组合抽吸布局方法
CN100580258C (zh) 一种利用抽吸提高压气机叶栅负荷的方法
Gao et al. The effect of tip clearance on the performance of contra-rotating compressor
CN112523813B (zh) 航空发动机涡轮轮缘封严结构
CN103939395A (zh) 一种用于端壁附面层抽吸的压气机轮缘机匣结构
JP5876033B2 (ja) 空気抽気システムが装備されたエンジンの圧縮機、特に航空機用ジェットエンジンの圧縮機
CN101105187B (zh) 预旋叶片式机匣处理方法
CN204692190U (zh) 一种带有长短叶片的叶片扩压器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20101027