CN101869034B - 采用细微垃圾堆肥调控高羊茅光合生态作用的方法 - Google Patents

采用细微垃圾堆肥调控高羊茅光合生态作用的方法 Download PDF

Info

Publication number
CN101869034B
CN101869034B CN2010101913042A CN201010191304A CN101869034B CN 101869034 B CN101869034 B CN 101869034B CN 2010101913042 A CN2010101913042 A CN 2010101913042A CN 201010191304 A CN201010191304 A CN 201010191304A CN 101869034 B CN101869034 B CN 101869034B
Authority
CN
China
Prior art keywords
compost
soil
photosynthesis
particle diameter
festuca arundinacea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010101913042A
Other languages
English (en)
Other versions
CN101869034A (zh
Inventor
多立安
赵树兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Normal University
Original Assignee
Tianjin Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Normal University filed Critical Tianjin Normal University
Priority to CN2010101913042A priority Critical patent/CN101869034B/zh
Publication of CN101869034A publication Critical patent/CN101869034A/zh
Application granted granted Critical
Publication of CN101869034B publication Critical patent/CN101869034B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses

Landscapes

  • Fertilizers (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

本发明涉及利用生活细微垃圾堆肥调控高羊茅光合生态作用的方法。它是采用直径7cm,高10cm的塑料盆,在1750g土壤上,将3g粒径分别为300nm堆肥和240nm垃圾微肥均匀撒于土壤表面,最后在其上均匀覆盖250g壤土;然后播种高羊茅5g,控制温度为20~26℃,相对湿度为40%~60%,光照为透入室内的自然光;播种初期,充分浇水,保证种子能顺利萌发和幼苗初期的生长,两个星期以后按照田间持水量的55%~65%每一至两天称重浇水,以维持在胁迫范围内,实验结果表明:在干旱胁迫下,细微垃圾堆肥可以调控高羊茅的光合作用。

Description

采用细微垃圾堆肥调控高羊茅光合生态作用的方法
技术领域
本发明属于环境保护技术领域,涉及城市生活垃圾堆肥的合理、安全使用方法。更具体的说是一种采用细微垃圾堆肥调控高羊茅光合生态作用的方法。
背景技术
随着我国城市数量增加,城市化进程加快、规模扩大,认可增多及人民生活水平的提高和生活方式的改变,城市生活垃圾产量以年均增长率8%~10%的速度迅猛增加,垃圾的成分构成与特性同时也发生着明显的变化。将生活垃圾进行堆肥化处理既可解决城市垃圾的出路问题,又可达到再资源化的目的,具有一定的经济效益和社会效益,并且目前世界各国都把城市固体废弃物的“无害化、减量化、资源化”的“三化”方针作为综合解决城市垃圾的原则,从这一发展趋势上看,采用堆肥法处理城市垃圾符合这一方向,并被视为处理城市生活垃圾、下水污泥的一条值得重视的途径。有研究表明,将垃圾堆肥施于土壤表层0~20cm,对表层土壤的酸度影响较大,随垃圾堆肥施用量的增加,交换性酸和交换性铝的比值明显降低;使用垃圾堆肥量为90~180t/hm2条件下,连续施用两年以后,土壤容重由1.3~1.27g/cm3降到1.26~1.10g/cm3,并且田间持水量与总孔隙度随堆肥用量的增大而增大,随垃圾堆肥用量的增加,1~0.01mm粒径的土壤颗粒都随之增加,0.01mm以下的物理粘粒随着垃圾堆肥施用量的增加而减少。在生活垃圾转化高效生物有机肥料的肥效研究中指出,垃圾复合肥能提高土壤中速效氮、磷、钾、有机质等的含量,可以提高土壤肥力、改善土壤的理化性质。生活垃圾堆肥有良好的养分供应力,有利于草坪草对养分的吸收和利用,由于垃圾堆肥中含有大量的有机质和微生物,因此对改善土壤肥力、提高养分含量具有重要的作用。
光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的有机物,并且释放出氧的过程。植物的光合作用对植物的生长、发育及其重要,是植物生长的生理基础。其中光照条件作为植物进行光合作用的基础,通过直接影响植物的光合作用、水分供需和代谢产物的分配等,进而影响植物的生长发育,关于光照强度对植物的生长发育、光合特性及品质的影响已见有报道,因此探讨不同光照强度下草坪植物的光合特性也显得尤为重要。有研究表明:不同的光照强度对植物的生长、形态建成、光合作用、物质代谢以及基因的表达均具有调控作用,当植物暴露在弱光环境条件中,其光合作用会受到限制,而当植物在强光条件下,其光合作用也会下降,这是我们称这种现象为光合作用的光抑制现象。另有研究显示,在盐、重金属等胁迫条件下,光合作用容易受到抑制,甚至在植物伤害之前,净光合速率也已表现下降。光合及水分利用特征方面的指标是评价草坪质量及其生长特性的重要指标。
目前,城市生活垃圾堆肥作为基质用于草坪建植的研究有一定的报道。此外,未经处理的城市生活垃圾粗堆肥在草坪抗旱中应用已有报道,但效果不佳,没有从根本上解决问题。从已有的研究来看,以前对于垃圾堆肥的研究多集中在粗堆肥的整体利用上,这样粗放的做法如果长期应用于土壤或植物的生长,不但会破坏土壤的微环境,而且对于提高资源的利用效率也是不利的。如果将生活垃圾堆肥经过粉碎机处理形成不同的粒径,从而去除堆肥某些粒径中积累过多的有害物质,保留为植物生长提供养分以及改善土壤理化性质的堆肥颗粒,将经过处理的堆肥用于调控高羊茅光合生态作用,可以发挥堆肥特定颗粒中有机质和营养元素丰富的优势,调节土壤的物理结构,达到优化土壤理化性质,改良土壤的作用。特别是采用细微垃圾堆肥调控高羊茅光合生态作用的影响及高羊茅的光合利用效率的影响研究,未见文献报道。
发明内容
本发明鉴于上述研究,利用研磨方法以制备出不同粒径的垃圾微肥,以解决垃圾堆肥质地松散问题,并提高采用垃圾微肥调控高羊茅光合生态作用。为实现这个目的,本发明提供如下的技术方案:
一种采用细微生活垃圾堆肥调控高羊茅光合生态作用的方法,其特征在于:
(1)先由人工捡去垃圾堆肥中的杂物,然后在105℃条件下烘干8h至恒重,将1700nm粒径堆肥在24000转/分下粉碎,时间分别为4min和5min,制备出300nm和240nm堆肥;
(2)采用直径7cm,高10cm的塑料盆,在1750g土壤上,将3g粒径分别为300nm堆肥和240nm垃圾微肥均匀撒于土壤表面,最后在其上均匀覆盖250g壤土;
(3)然后播种高羊茅5g,控制温度为20~26℃,相对湿度为40%~60%,光照为透入室内的自然光;
(4)播种初期,充分浇水,保证种子能顺利萌发和幼苗初期的生长,两个星期以后按照田间持水量的55%-65%每一至两天称重浇水,以维持在胁迫范围内,第60d后开始测定各指标;
其垃圾堆肥理化性质为:有机质含量22.00%,容重0.79g.cm-3,pH值7.62,孔隙度67.98%,饱和含水量66.58%,全氮0.57%,全磷0.34%,全钾1.21%;供试土壤性质为:pH7.44,有机质含量4.68%,全氮0.21%,有效磷22.03mg.kg-1,饱和含水量0.58ml.g-1,土壤质地为壤土。
本研究着眼于不同粒径垃圾堆肥农用对整个土壤-草坪植物系统的影响,通过4种细微堆肥在土壤干旱条件下对草坪植物高羊茅光合生态作用的调控指标进行研究。本研究不仅为我国开发经济、复合微肥提供基础数据支持,而且为经济、安全使用垃圾堆肥实现城市生活垃圾资源化提供依据。本发明更加详细的方法计测定内容如下:
1研制材料与方法
1.1材料背景
本实验选自北方比较常见的多年生高羊茅(Festuca-arundinacea L.)实验材料。实验采用杯栽的方法,杯子规格为250ml。供试垃圾堆肥取自天津市小淀生活垃圾堆肥处理厂,先由人工捡去垃圾堆肥中的各类木头、塑料、玻璃、金属等杂物,然后在105℃条件下烘干8h至恒重,采用不同孔径的标准筛进行筛分。其基本理化性质为:有机质含量22.00%,容重0.79g.cm-3,pH值7.62,孔隙度67.98%,饱和含水量66.58%,全氮0.57%,全磷0.34%,全钾1.21%。供试土壤取自天津师范大学实验地0~20cm深的表层土壤。其土壤性质为:pH7.44,有机质含量4.68%,全氮0.21%,有效磷22.03mg.kg-1,饱和含水量0.58ml.g-1,土壤质地为壤土。
1.2不同粒径堆肥制备及其粒径电镜分析
实验所用堆肥先去除其中的各类木头、塑料、玻璃、金属等杂物,然后在105℃条件下烘干至恒重,筛分出1700nm粒径的堆肥。将1700nm粒径堆肥在24000转/分下粉碎,时间分别为4min和5min,以制备出不同粒径的垃圾微肥,用S4800场发射扫描电镜(S4800,JAPAN)微细城市生活垃圾堆肥粒径分别为300nm堆肥(堆肥4)和240nm堆肥(堆肥6)和对照(1700nm的堆肥)。
1.4实验材料
本实验所用堆肥为前面实验所选出的实验效果较好的堆肥4和堆肥6,粗堆肥(1700nm)作为对照(CK)。选用籽粒饱满、均匀的多年生黑麦草(Loliumperenne L.)和高羊茅(festuca arundinacea L.)种子为实验材料。
1.5实验方法
盆栽试验采用直径18cm,高15cm的塑料盆。草坪基质为每盆1750g底土,然后将3g不同粒径堆肥均匀撒于土壤表面,最后在其上均匀覆盖250g壤土。高羊茅播种量为5g/盆,每个处理重复3次。实验先在实验室内进行初期培养,温度为20~26℃,相对湿度为40%~60%,光照为透入室内的自然光。实验前期要充分浇水,保证种子能顺利萌发和幼苗初期生长;后期将所培养草坪植物连盆移植到实验地中。田间持水量的范围55%-65%,以后每一至两天进行称重浇水,以维持在胁迫范围内。
1.6实验地概况与实验设计
实验地设在天津师范大学校园内,地理位置为北纬39°13′、东经117°2′,属暖温带半湿润季风型气候,年平均气温12.3℃,平均降水量550~680mm。实验田土壤属潮褐土,土壤肥沃,地力均匀。整个实验周期为80d,实验期间平均气温23.7℃,平均降水量380~560mm。
1.7数据处理
数据采用SPSS 12.0和MICROSOFT EXCEL 2003软件进行统计分析。
1.8指标测定
1.8.1形态指标测定:在草坪在植物进行刈割之前每盆随机选取五株用厘米刻度尺测定株高。地上生物量的测定,将植物齐根剪下用报纸包好放入烘箱中,80℃烘至恒重,然后称取其地上生物量。
1.8.2光合指标测定
60d后对草坪植物进行光合指标的测定;在自然光照下,从上午7:00到下午17:00用LI-6400光合测定系统每隔2h随机测定各堆肥处理小区及对照小区内气孔导度(Gs)、胞间CO2浓度(Ci)、净光合速率(Pn)及叶面蒸腾速率(Tr)等指标的变化,测定期间空气相对湿度在10.62%~51.07%之间,早晨7:00最高,午后15:00最低(10.62%)。大气温度变化范围在20.16~33.03℃之间。每个处理先各测2个叶片,每个叶片每次测量10个数据,实验共设3次重复,每个重复测定10个数据。在测定上述指标的同时,自动记录光合有效辐射(PAR)、空气温度、叶片温度、空气湿度、空气CO2的日变化。
2结果与分析
2.1不同粒径堆肥对水分胁迫下草坪植物形态指标的影响
2.1.1株高
由(图1)可以看出,在水分胁迫下施加堆肥6的高羊茅的株高达到最高,比对照高出29.2%,且与对照相比其株高达到显著水平(P<0.05)。不同粒径堆肥对高羊茅株高的影响是随着粒径的减小而逐渐增高,说明与大粒径堆肥相比,小粒径更能促进高羊茅株高的生长,这可能是随着粒径的减小,肥效缓慢释放造成的。不同粒径堆肥对黑麦草的影响则与高羊茅有所不同,施加堆肥4时,黑麦草的株高低于对照;与高羊茅相同的是施加堆肥6时,黑麦草的株高也达到最高,比对照高出3.5%,但与对照相比未达到显著水平。
2.1.2地上生物量
由(图2)可以看出,在水分胁迫下施加堆肥4的高羊茅的地上生物量达到最高,比对照高出13.7%,各处理与对照相比达到显著水平(P<0.05)。但施加堆肥6时,其地上生物量却低于对照。不同粒径堆肥对黑麦草地上生物量的积累规律与高羊茅基本一致,当施加堆肥4时,其地上生物量达到最高,比对照高出7.6%。施加堆肥6时其生物量也低于对照,对于不同粒径堆肥表现出先升高后降低的规律。说明在整个实验过程中,中等粒径的堆肥对高羊茅的地上生物量的积累优于小粒径堆肥。
2.2不同粒径堆肥对水分胁迫下光合特征的影响
2.2.1测定期间环境因子的变化
由图3和4可以看出,测定期间空气相对湿度在19.32%~38.28%之间,早晨9:00最低,午后17:00最高(38.28%)。大气温度变化范围在22.10~27.36℃之间,从7:00开始逐渐上升,在16:00达到最高,然后逐渐下降,下午17:00为22.10℃。草坪表面大气温度和湿度也随着太阳光照强度的变化而变化。经测定,光照强度从7:00~17:00的变化范围在57~1178μmol·m-2·s之间(图3),9:00达到最大光强,之后逐渐下降,到17:00变为57μmol·m-2·s。由图6.4可以看出,空气CO2浓度在当日呈现先下降后上升的趋势,从400.16μmol·m-2·s降到了382.47μmol·m-2·s,15:00~17:00开始上升,从384.11μmol·m-2·s升到了396.19μmol·m-2·s。
2.2.2净光合速率日进程
自然条件下,植物光合作用的日进程曲线一般有两种,即单峰型和双峰型。由图4可以看出,各处理草坪植物叶片净光合速率(Pn)的日变化均呈单峰型,高峰出现在下午14:00。净光合速率日进程在一定程度上取决于植物的水分状况,植物水分状况好,则气孔开放,净光合速率高。反之,植物水分状况差,则气孔关闭,净光合速率低。净光合速率日进程第一个高峰出现在水分状况好的时期,其峰值高低在一定程度上反应植物的光合能力(马成仓等,2004)。在下午14:00时,施加对照堆肥的高羊茅的净光合速率达到了9.14μmol·m-2·s-1,施加堆肥4和堆肥6的高羊茅的净光合速率仅为8.9和7.5μmol·m-2·s-1,明显低于对照。施加堆肥6的黑麦草的净光合速率在13:00达到了最高10.25μmol·m-2·s-1,明显高于施加对照堆肥和堆肥4的黑麦草。之后草坪植物净光合速率随着气温和光合有效辐射的降低而逐渐降低,下午17:00时各处理与对照的净光合速率差异降至最小。从整体趋势来看,施加堆肥4的高羊茅表现出了较强的光合能力,黑麦草中则以施加堆肥6的光合能力较强。
2.2.3蒸腾速率日进程
不同粒径堆肥处理的草坪植物的蒸腾速率日进程有显著差异(图6)。黑麦草中各处理的蒸腾速率的峰值均出现在上午9:00,在这个时刻施加堆肥6的黑麦草的蒸腾速率达到了2.51mmol·m-2·s-1而对照和堆肥4的分别为1.55mmol·m-2·s-1、1.19mmol·m-2·s-1。然后各处理的蒸腾速率开始下降。高羊茅中各处理的蒸腾速率的峰值均出现在上午7:00,在这个时刻施加堆肥6高羊茅的蒸腾速率达到了1.75mmol·m-2·s-1,而对照和堆肥4的分别为1.18mmol·m-2·s-1、1.27mmol·m-2·s-1。施加堆肥4的高羊茅在14:00达到最低,其它处理均在17:00下降到最低值。在这个过程中,施加堆肥4的高羊茅的蒸腾速率变化幅度较小,为1.27~0.49mmol·m-2·s-1,黑麦草中则以对照的蒸腾速率变化幅度较小,为0.63~0.07mmol·m-2·s-1
2.2.4气孔导度
水分胁迫下,不同粒径堆肥对草坪植物气孔导度的影响基本上都是先下降后升高的(图7)。高羊茅中各处理的气孔导度的峰值均出现在上午7:00,在这个时刻施加堆肥6的高羊茅的蒸腾速率达到了0.1mol·m-2·s-1,而对照和堆肥4的分别为0.06mol.m-2.s-1和0.08mol.m-2.s-1。然后各处理的气孔导度开始上升,在下午13:00达到最低分别为0.01mol.m-2.s-1、0.02mol.m-2.s-1和0.04mol.m-2.s-1。黑麦草中各处理的气孔导度的峰值均出现在下午17:00左右,在这个时刻施加堆肥6和对照黑麦草的气孔导度达到了0.06mol·m-2·s-1,而施加堆肥4的为mmol·m-2·s-1、0.04mol·m-2·s-1。与高羊茅基本一样在下午13:00达到最低。
2.2.5胞间二氧化碳浓度
水分胁迫下,不同粒径堆肥处理的草坪植物胞间CO2的影响基本上都是先下降后升高的(图8)。高羊茅中各处理的胞间CO2的最低值出现在上午11:30,其最大值均出现在下午14:00,在这个时刻施加对照堆肥的高羊茅的胞间CO2达到了749umol·mol-1,而施加堆肥4和堆肥6的分别为609umol·mol-1和676umol·mol-1,然后变化不明显。黑麦草中各处理的胞间CO2浓度的变化趋势与高羊茅基本一致。说明,水分胁迫下,不同粒径堆肥对高羊茅和黑麦草胞间CO2浓度的影响基本相似,都是先下降后上升。
2.3不同粒径堆肥对水分胁迫下草坪植物荧光动力学特征的影响
2.3.1不同粒径堆肥对水分胁迫下草坪植物的Fv/Fm的影响
Fv/Fm是PS II最大光化学量子产量,反映PS II反应中心内禀光能转换效率(张守仁,1999)。在水分胁迫下,高羊茅和黑麦草的Fv/Fm随着不同粒径堆肥的施入都表现出先上升后下降的趋势;施加堆肥4效果最好,高羊茅和黑麦草的Fv/Fm都达到最高,分别比对照增加了5.9%和3.0%。且与对照相比高羊茅的Fv/Fm达到显著水平(P<0.05)。不同粒径堆肥对水分胁迫下高羊茅和黑麦草Fv/Fm的影响都表现出一定的规律性;可见,中等大小的粒径能促进高羊茅和黑麦草的Fv/Fm,缓解水分胁迫造成的Fv/Fm下降。
6.2.3.2不同粒径堆肥对水分胁迫下草坪植物的Fv/Fm’的变化情况
Fv/Fm’表示实际光化学量子产量,它反映PSII反应中心在部分关闭情况下的实际原初光能捕获效率(张守仁,1999)。水分胁迫下,不同粒径堆肥对高羊茅Fv/Fm’的影响是先升高后下降,施加堆肥4时Fv/Fm’的含量达到最高,比对照增加了9.1%。不同粒径堆肥对黑麦草Fv/Fm’无明显影响,各处理之间没有明显差异(P>0.05),但施加堆肥6时Fv/Fm’达到最大值,比对照增加了12.5%。可见,不同粒径堆肥对高羊茅和黑麦草的Fv/Fm’无显著影响。
2.3.3不同粒径堆肥对水分胁迫下草坪植物的ΦPS II的变化情况
ΦPS II,实际光化学效率,代表线性电子传递的量子效率。水分胁迫下,不同粒径堆肥对草坪植物的ΦPS II都有一定的促进作用,但都没有达到显著水平(P>0. 05)。施加堆肥6后高羊茅和黑麦草的ΦPS II都达到了最高值,分别比对照增加了5.6%和20%。可见,不同粒径堆肥能缓解一定程度的水分胁迫造成的ΦPS II下降。
2.3.4不同粒径堆肥对水分胁迫下草坪植物光化学淬灭(qP)的变化情况
qP表示光化学淬灭,它反映了QA的还原状态,qP越大表明光系统II的电子传递活性越大(陈建明等,2006)。水分胁迫下,不同粒径堆肥对高羊茅和黑麦草的光化学淬灭都有一定的影响。不同粒径堆肥对高羊茅的光化学淬灭的影响是较小粒径增加了光化学淬灭,即施加堆肥6时高羊茅表现出较高的光化学淬灭,比对照增加了3.8%,但各处理之间没有明显差异(P>0. 05)。而黑麦草是在施加堆肥4时表现出较高的光化学淬灭,比对照增加了8.5%。
2.3.5不同粒径堆肥对水分胁迫下草坪植物的非光化学淬灭(qN)的影响
qN,非光化学淬灭系数,表示Ps II反应中心吸收的光能不能用于光合电子传递,而以热的形式耗散掉的光能部分(张守仁,1999)。由图6.13可知,水分胁迫下,不同粒径堆肥对高羊茅和黑麦草的非光化学淬灭都有一定的影响,但都没有达到显著水平(P>0.05)。不同粒径堆肥对高羊茅非光化学淬灭的影响是中等粒径增加了非光化学淬灭,即施加堆肥4时高羊茅表现出较高的非光化学淬灭。
2..3.6不同粒径堆肥对水分胁迫下草坪植物ETR的影响
ETR表示表观光合电子传递速率(陈建明等,2006)。图14可知,水分胁迫下,不同粒径堆肥对高羊茅和黑麦草的ETR都有一定的影响,但都没有达到显著水平(P>0.05)。不同粒径堆肥对高羊茅ETR的影响是,中等粒径微促进了ETR的增加,即施加堆肥4时高羊茅的ETR较高,比对照增加了7.3%。而黑麦草则是在施加堆肥6时ETR最高,比对照增加了20.4%。
4研制结论
水分胁迫下,不同粒径堆肥对草坪植物气孔导度的影响基本上都是先下降后升高的在这个过程中,对照的高羊茅的气孔导度受水分胁迫变化幅度较小,为0.06~0.01mol·m-2·s-1,黑麦草中以施加堆肥4时气孔导度变化幅度较小,为0.04~0.02mol·m-2·s-1
水分胁迫下,光系统II会发生破坏,而Fv/Fm则代表了光系统II的光化学量子产量,在干旱胁迫下,Fv/Fm值就会下降(Lu et al.,1999)。Colom等(2003)研究表明,抗旱性较好的植物其Fv/Fm在干旱胁迫下下降幅度较小。在水分胁迫下,高羊茅和黑麦草的Fv/Fm随着不同粒径堆肥的施入都表现出先上升后下降的趋势;可见,中等大小的粒径能促进高羊茅和黑麦草的Fv/Fm,缓解水分胁迫造成的危害。
綦伟等(2006)对葡萄的研究表明,干旱胁迫能降低光系统II的实际光能转化效率ΦPS II,本文对高羊茅与黑麦草的研究也表明,水分胁迫造成了ΦPS II的下降,但施加堆肥6后高羊茅和黑麦草的ΦPS II都达到了最高值,分别比对照增加了5.6%和20%。可见,不同粒径堆肥能缓解一定程度的水分胁迫造成的ΦPS II下降。
qP表示光化学淬灭,它反映了QA的还原状态,qP越大表明光系统II的电子传递活性越大(陈建明等,2006)。不同粒径堆肥对高羊茅的光化学淬灭的影响是较小粒径增加了光化学淬灭,即施加堆肥6时高羊茅表现出较高的光化学淬灭,比施加对照增加了3.8%。而黑麦草是在施加堆肥4时表现出较高的光化学淬灭,比施加对照增加了8.5%。
qN反映的是光系统II天线色素吸收的不能用于光合电子传递而以热能形势耗散掉的光能部分,它是一种自我保护机制,对光合结构起一定的保护作用(陈建明等,2006)。本文研究表明,不同粒径堆肥对高羊茅非光化学淬灭的影响是中等粒径增加了非光化学淬灭,即施加堆肥4时高羊茅表现出较高的非光化学淬灭。而黑麦草则是在施加堆肥6时非光化学淬灭最高,比施加对照堆肥增加了6.7%。
不同粒径堆肥对高羊茅ETR的影响是,中等粒径微促进了ETR的增加,即施加堆肥4时高羊茅的ETR较高,比对照增加了7.3%。而黑麦草则是在施加堆肥6时ETR最高,比对照增加了20.4%。
附图说明
图1不同粒径堆肥对水分胁迫下草坪植物株高的影响;
图2不同粒径堆肥对水分胁迫下草坪植物地上生物量的影响;
图3空气相对湿度和空气温度的日变化;
图4光合有效辐射和空气二氧化碳浓度的日变化;
图5-1,图5-2为不同粒径堆肥对草坪植物叶片净光合速率日进程的影响;
图6-1,图6-2为不同粒径堆肥对草坪植物叶片蒸腾速率日进程的影响;
图7-1,图7-2为不同粒径堆肥对水分胁迫下草坪植物气孔导度的影响;
图8-1,图8-2为不同粒径堆肥对水分胁迫下草坪植物胞间二氧化碳浓度的影响;
图9不同粒径堆肥对水分胁迫下草坪;
图10不同粒径堆肥对水分胁迫下草坪;
图11不同粒径堆肥对水分胁迫下草坪;
图12不同粒径堆肥对水分胁迫下草坪;
图13不同粒径堆肥对水分胁迫下草坪植物非光化学淬灭的影响;
图14不同粒径堆肥对水分胁迫下草坪植物ETR淬灭的影响。
具体实施方式
为了更充分的解释本发明的实施,提供下述制备方法实施实例。这些实施实例仅仅是解释、而不是限制本发明的范围。
实施例1
(1)先由人工捡去垃圾堆肥中的杂物,然后在105℃条件下烘干8h至恒重,筛分出1700nm粒径的堆肥;将1700nm粒径堆肥在24000转/分下粉碎,制备出300nm堆肥(堆肥4)和240nm堆肥(堆肥6);
(2)采用直径7cm,高10cm的塑料盆,在1750g土壤上,将3g粒径分别为300nm堆肥(堆肥4)和240nm堆肥(堆肥6)均匀撒于土壤表面,最后在其上均匀覆盖250g壤土;
(3)然后播种高羊茅5g,控制温度为20℃,相对湿度为40%,光照为透入室内的自然光;
(4)播种初期,充分浇水,保证种子能顺利萌发和幼苗初期的生长,两个星期以后按照田间持水量的55%每一至两天称重浇水,以维持在胁迫范围内,第44d开始测定各指标:生物量、根系系统、叶绿素及基质含水量;
其垃圾堆肥理化性质为:有机质含量22.00%,容重0.79g.cm-3,pH值7.62,孔隙度67.98%,饱和含水量66.58%,全氮0.57%,全磷0.34%,全钾1.21%;供试土壤性质为:pH7.44,有机质含量4.68%,全氮0.21%,有效磷22.03mg.kg-1,饱和含水量0.58ml.g-1,土壤质地为壤土。
实施例2
(1)先由人工捡去垃圾堆肥中的杂物,然后在105℃条件下烘干8h至恒重,筛分出1700nm粒径的堆肥;将1700nm粒径堆肥在24000转/分下粉碎,制备出300nm堆肥(堆肥4)和240nm堆肥(堆肥6)。
(2)采用直径7cm,高10cm的塑料盆,在1750g土壤上,将3g粒径分别为300nm堆肥(堆肥4)和240nm堆肥(堆肥6)均匀撒于土壤表面,最后在其上均匀覆盖250g壤土;
(3)然后播种高羊茅5g,控制温度为26℃,相对湿度为60%,光照为透入室内的自然光;
(4)播种初期,充分浇水,保证种子能顺利萌发和幼苗初期的生长,两个星期以后按照田间持水量的65%每一至两天称重浇水,以维持在胁迫范围内,第44d开始测定各指标:生物量、根系系统、叶绿素及基质含水量;
其垃圾堆肥理化性质为:有机质含量22.00%,容重0.79g.cm-3,pH值7.62,孔隙度67.98%,饱和含水量66.58%,全氮0.57%,全磷0.34%,全钾1.21%;供试土壤性质为:pH7.44,有机质含量4.68%,全氮0.21%,有效磷22.03mg.kg-1,饱和含水量0.58ml.g-1,土壤质地为壤土。

Claims (1)

1.一种采用细微生活垃圾堆肥调控高羊茅光合生态作用的方法,其特征在于:
(1)先由人工捡去垃圾堆肥中的杂物,然后在105℃条件下烘干8h至恒重,将1700nm粒径堆肥在24000转/分下粉碎,时间分别为4min和5min,制备出300nm和240nm堆肥;
(2)采用直径7cm,高10cm的塑料盆,在1750g土壤上,将3g粒径分别为300nm堆肥和240nm垃圾微肥均匀撒于土壤表面,最后在其上均匀覆盖250g壤土;
(3)然后播种高羊茅5g,控制温度为20~26℃,相对湿度为40%~60%,光照为透入室内的自然光;
(4)播种初期,充分浇水,保证种子能顺利萌发和幼苗初期的生长,两个星期以后按照田间持水量的55%-65%每一至两天称重浇水,以维持在胁迫范围内,第60d后开始测定各指标;
其垃圾堆肥理化性质为:有机质含量22.00%,容重0.79g.cm-3,pH值7.62,孔隙度67.98%,饱和含水量66.58%,全氮0.57%,全磷0.34%,全钾1.21%;供试土壤性质为:pH7.44,有机质含量4.68%,全氮0.21%,有效磷22.03mg.kg-1,饱和含水量0.58ml.g-1,土壤质地为壤土。
CN2010101913042A 2010-06-04 2010-06-04 采用细微垃圾堆肥调控高羊茅光合生态作用的方法 Expired - Fee Related CN101869034B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010101913042A CN101869034B (zh) 2010-06-04 2010-06-04 采用细微垃圾堆肥调控高羊茅光合生态作用的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010101913042A CN101869034B (zh) 2010-06-04 2010-06-04 采用细微垃圾堆肥调控高羊茅光合生态作用的方法

Publications (2)

Publication Number Publication Date
CN101869034A CN101869034A (zh) 2010-10-27
CN101869034B true CN101869034B (zh) 2012-05-23

Family

ID=42994270

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010101913042A Expired - Fee Related CN101869034B (zh) 2010-06-04 2010-06-04 采用细微垃圾堆肥调控高羊茅光合生态作用的方法

Country Status (1)

Country Link
CN (1) CN101869034B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106085979A (zh) * 2016-06-21 2016-11-09 天津师范大学 一种采用氧化石墨烯增进草坪堆肥基质酶活性的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103804100B (zh) * 2014-03-11 2016-06-08 天津师范大学 一种改性纳米碳对堆肥基质高羊茅生长的调控方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1280032C (zh) * 2005-05-20 2006-10-18 天津师范大学 增效草坪植物修复城市生活垃圾堆肥重金属复合污染方法
CN101073311B (zh) * 2006-12-11 2010-09-01 天津师范大学 一种采用农作物秸秆协同草坪植物修复生活垃圾重金属的应用方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106085979A (zh) * 2016-06-21 2016-11-09 天津师范大学 一种采用氧化石墨烯增进草坪堆肥基质酶活性的方法

Also Published As

Publication number Publication date
CN101869034A (zh) 2010-10-27

Similar Documents

Publication Publication Date Title
CN101884278B (zh) 在干旱条件下提高高羊茅保护酶活性的方法
Xiu et al. Effects of biochar and straw returning on the key cultivation limitations of Albic soil and soybean growth over 2 years
CN101869031B (zh) 采用细微垃圾堆肥提高干旱基质高羊茅耐旱性的方法
CN101869029B (zh) 一种采用驯化植物种子提高高羊茅抗旱性的方法
CN102612943A (zh) 一种提高垃圾堆肥基质草皮抗旱性的方法
CN102612946B (zh) 采用稀土铈提高干旱混合基质草坪植物光合能力的方法
CN106053447B (zh) 水稻生长季土壤固碳效应的测定方法及一种生物炭组合物
CN101596543A (zh) 地肤对生活垃圾堆肥中Cr、Pb、Cd的修复方法
CN104871971B (zh) 一种香蕉组培苗栽培基质及其制备方法与应用
CN101595827B (zh) 堆肥淋洗液在提高草坪植物光合利用效率方面的应用
CN101869034B (zh) 采用细微垃圾堆肥调控高羊茅光合生态作用的方法
CN102598985A (zh) 镧提高垃圾堆肥基质高羊茅草皮抗低温性能的方法
CN101869032A (zh) 在干旱条件下提高黑麦草抗氧化酶活性的方法
CN102598987B (zh) 一种采用铈改善干旱环境黑麦草叶绿素荧光动力的方法
CN101869033A (zh) 一种采用细微垃圾堆肥浸提液提高草坪抗旱性的方法
CN102598986B (zh) 一种采用铈改善干旱环境下高羊茅叶绿素荧光动力的方法
CN102612945B (zh) 采用稀土铈提高干旱混合基质草坪植物水分利用效率的方法
CN101595829A (zh) 修复后的垃圾堆肥在调节草坪植物抗逆性方面的应用
CN113229104A (zh) 一种番茄育苗基质及其制备方法
CN103270866A (zh) 一种采用风干污泥作为草坪草栽培基质的应用方法
CN104335805A (zh) 一种污泥混合浸种液调节暑热环境高羊茅生长的方法
CN102612949B (zh) 一种提高垃圾堆肥基质高羊茅草皮培植性能的方法
CN101805614B (zh) 采用盐土填充废胶粒提高高羊茅光合能力的方法
Gamayunova et al. Sorghum culture in the South of Ukraine, state of production, use and possibility of processing into bioethanol
CN101595830B (zh) 堆肥淋洗液在提高草坪植物水分利用效率方面的应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120523

Termination date: 20130604