CN101867459B - 基于部分干扰消除的分组译码方法和接收机 - Google Patents

基于部分干扰消除的分组译码方法和接收机 Download PDF

Info

Publication number
CN101867459B
CN101867459B CN 200910082269 CN200910082269A CN101867459B CN 101867459 B CN101867459 B CN 101867459B CN 200910082269 CN200910082269 CN 200910082269 CN 200910082269 A CN200910082269 A CN 200910082269A CN 101867459 B CN101867459 B CN 101867459B
Authority
CN
China
Prior art keywords
group
matrix
signal
submatrix
vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN 200910082269
Other languages
English (en)
Other versions
CN101867459A (zh
Inventor
李斌
罗毅
沈晖
夏香根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Priority to CN 200910082269 priority Critical patent/CN101867459B/zh
Priority to PCT/CN2010/070999 priority patent/WO2010121508A1/zh
Publication of CN101867459A publication Critical patent/CN101867459A/zh
Application granted granted Critical
Publication of CN101867459B publication Critical patent/CN101867459B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0052Realisations of complexity reduction techniques, e.g. pipelining or use of look-up tables

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Noise Elimination (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明实施例公开了基于部分干扰消除的分组译码方法和接收机的技术方案。其中的基于部分干扰消除的分组译码方法包括:对信道相关矩阵进行三角分解,并对分解后的矩阵求逆,针对发射信号被划分成组中的每一组,从所述求逆后的矩阵中提取与该组信号相关的子矩阵,根据所述子矩阵的正交分解后的矩阵获取消除组间干扰后该组对应的接收信号向量以及该组对应的等效信道矩阵,根据所述消除组间干扰后该组对应的接收信号向量以及该组对应的等效信道矩阵,利用多输入多输出检测方式检测该组信号的发射向量。上述技术方案降低了分组译码的实现复杂度,节约了接收机的处理资源。

Description

基于部分干扰消除的分组译码方法和接收机
技术领域
本发明涉及网络通讯技术领域,具体涉及基于部分干扰消除的分组译码方法和接收机。
背景技术
Partial Interference Cancellation(部分干扰消除,PIC)分组译码方法的实现原理为:
设定空时码持续时间为t、发射天线数为nT以及接收天线数为nR,MIMO(多输入多输出)系统模型可写为如下等效形式:
y=Gx+w;
其中,y是原始接收信号向量且 y ∈ C tn R , G是等效信道矩阵且 G ∈ C tn R × n , x是发射信号向量且x∈An,A为星座符号集,w是高斯白噪声且 w ∈ C tn R , C为复数域。
如果n个信息符号的序号集为I={0,1,2,...,n-1},将发射信号分为N个组即I0,I1,...,IN-1,则第k组包含的nk个信息符号的序号集合为 I k = { i k , 0 , i k , 1 , . . . , i k , n k - 1 } , 第k组发射信号向量为 x I k = [ x i k , 0 , x i k , 1 , . . . , x i k , n k - 1 ] T , 第k组对应的等效信道矩阵为G=[g0,g1,...,gn-1]且 G I k = [ g i k , 0 , g i k , 1 , . . . , g i k , n k - 1 ] , 此时,分组后的系统模型可写为如下形式:
y = Σ i = 0 N - 1 G I i x I i + w
为了获得第k组信号的信号向量,需要将接收信号左乘一个矩阵
Figure G2009100822698D00019
,以消除其他组对第k组的干扰,
Figure G2009100822698D000110
需满足 P I k G I i = 0 , i≠k。该过程消除了组间干扰,但组内干扰依然存在。消除组间干扰后的输出可以表示为 z I k = P I k y .
可找到满足 P I k G I i = 0 , i≠k的
Figure G2009100822698D00022
,即 P I k = I m - G I k c ( ( G I k c ) H G I k c ) - 1 ( G I k c ) H , 其中:
Figure G2009100822698D00024
Figure G2009100822698D00025
在G中的补集,即 G I k c = [ G I 0 , G I 1 , . . . , G I k - 1 , . . . , G I N - 1 ] ;因此,可推导出: z I k = P I k y = P I k G I k x I k + P I k w . 在消除组间干扰后,可以利用Multi-Input-Multi-Output(多输入多输出,MIMO)检测方式检测各组信号的发射向量。MIMO检测方式如最大似然(ML)准则或者类ML准则或者其它算法等。
基于上述实现原理,目前两种主要的PIC分组译码方法的实现过程如下:
方法一、基本PIC分组译码方法(可称为PIC算法),该方法包括:
针对发射信号划分为N个组,针对第k组,将其它组对第k组的干扰矩阵
Figure G2009100822698D00028
进行Cholesky(乔累斯基)分解 A I k = L I k L I k H , 其中 A I k = ( G I k c ) H G I k c ,
Figure G2009100822698D000211
为第k组对应的干扰信道矩阵。然后,计算第k组的接收滤波矩阵 P I k = I m - C I k C I k H , Im为m×m的单位阵, C I k = G I k c ( L I k H ) - 1 . 之后,根据
Figure G2009100822698D000214
计算 E I k = P I k c G I k c z I k = P I k y , 其中:
Figure G2009100822698D000217
是第k组对应的等效信道矩阵,是第k组对应的接收信号向量。最后,利用
Figure G2009100822698D000220
并根据最大似然准则检测第k组信号的发射向量
Figure G2009100822698D000221
x ^ I k = arg min x ‾ I k ∈ A I k | | z I k - E I k x ‾ I k | | , 其中,
Figure G2009100822698D000223
为第k组信号对应的可能的发射向量。
方法二、PIC-SIC分组译码方法。该方法引入了Successive InterferenceCancellation(串行干扰消除器,SIC)技术,需要对每个组的信噪比进行排序,消除组间干扰并检测信噪比最高的一组信号的发射向量(该过程与方法一过程类似,不再重复说明),然后,消除信噪比最高的一组对其他组的干扰,之后再针对下一组进行组间干扰消除及检测发射向量操作,依此类推,直到最后一组。该方法可称为SIC-PIC算法。
发明人发现上述现有技术至少存在如下问题:由于
Figure G2009100822698D000224
的维数较高,因此使计算出的
Figure G2009100822698D000226
Figure G2009100822698D000227
的维数也较高,从而使最大似然准则中采用了维数高的矩阵进行运算,最终导致分组译码的实现复杂度高。
发明内容
本发明实施方式提供的基于部分干扰消除的分组译码方法和接收机,通过降低译码过程中矩阵的维数,降低了分组译码的实现复杂度。
本发明实施方式提供的基于部分干扰消除的分组译码方法,包括:
对信道相关矩阵进行三角分解,并对分解后的矩阵求逆;
针对发射信号被划分成组中的每一组,从所述求逆后的矩阵中提取与该组信号相关的子矩阵;
根据所述子矩阵的正交分解后的矩阵,获取消除组间干扰后该组对应的接收信号向量以及该组对应的等效信道矩阵;
根据所述消除组间干扰后该组对应的接收信号向量以及该组对应的等效信道矩阵,利用多输入多输出检测方式检测该组信号的发射向量。
本发明实施方式提供的接收机,包括:
接收单元,用于接收信号;
分解求逆单元,用于对信道相关矩阵进行三角分解,并对分解后的矩阵求逆;
子矩阵单元,用于针对发射信号被划分为组中的每一组,从所述求逆后的矩阵中提取与所述该组信号相关的子矩阵;
获取单元,用于对所述子矩阵进行正交分解,根据所述子矩阵的正交分解后的矩阵,获取消除组间干扰后的该组对应的接收信号向量以及该组对应的等效信道矩阵;
检测单元,用于根据所述消除组间干扰后该组对应的接收信号向量以及该组对应的等效信道矩阵,利用多输入多输出检测方式检测该组信号的发射向量。
通过上述技术方案的描述可知,通过对信道相关矩阵进行三角分解后的矩阵求逆,并从求逆后的矩阵中获取与一组信号相关的子矩阵,降低了利用该子矩阵获得的该组对应的接收信号向量的维数、以及该组对应的等效信道矩阵的维数,由于该组对应的接收信号向量和该组对应的等效信道矩阵的维数均得到了降低,因此,在利用多输入多输出方式检测该组的发射向量时能够采用低维度的矩阵运算,最终降低了分组译码的实现复杂度。
附图说明
图1是本发明实施例一的基于部分干扰消除的分组译码方法流程图;
图2是本发明实施例二与基本PIC分组译码方法的复杂度对比示意图;
图3是本发明实施例三与PIC-SIC分组译码方法的复杂度对比示意图;
图4是本发明实施例四的基于部分干扰消除的分组译码装置示意图;
图5是本发明实施例四的获取单元的结构示意图;
图6是本发明实施例四的获取单元的另一种结构示意图。
具体实施方式
本发明实施例一提供一种基于PIC的分组译码方法。该方法的流程如附图1所示。
图1中,步骤100、针对发射信号进行分组。
步骤110、估计多输入多输出的等效信道矩阵,并根据公式A=GHG获取多输入多输出系统的信道相关矩阵A,其中的G为多输入多输出系统的等效信道矩阵,GH表示等效信道矩阵G的共轭转置。
步骤120、对多输入多输出系统的信道相关矩阵A进行三角分解,该三角分解如Cholesky(乔累斯基)分解等,对信道相关矩阵A的Cholesky分解结果可以表示为:A=LLH;其中,L为对A进行Cholesky分解后获得的下三角矩阵,LH表示矩阵L的共轭转置。
步骤130、对上述分解后获得的下三角矩阵进行逆运算,以获得求逆后的矩阵F,F=L-1
步骤140、针对各组信号中的其中一组(如第k组),从求逆后的矩阵F中获取与该组信号相关的子矩阵,例如,针对第k组信号从矩阵F中获得的子矩阵为
Figure G2009100822698D00051
其中:0≤k≤N-1,N为发射信号被划分的组数。
从矩阵F中获取与该组信号相关的子矩阵
Figure G2009100822698D00052
的一个具体的例子为:从矩阵F中选取与该组信号具有相同列的部分,从而获得子矩阵
Figure G2009100822698D00053
步骤150、对第k组的子矩阵
Figure G2009100822698D00054
进行正交分解,即 F I k = M I k K I k , 其中:为酉矩阵,
Figure G2009100822698D00057
为下三角矩阵。
步骤160、利用该第k组的子矩阵的正交分解后的酉矩阵
Figure G2009100822698D00059
和下三角矩阵
Figure G2009100822698D000510
获取消除组间干扰后的第k组对应的接收信号向量以及第k组对应的等效信道矩阵
Figure G2009100822698D000512
获取第k组对应的接收信号向量
Figure G2009100822698D000513
的一个具体例子为:利用公式 u I k = M I k H v 获得第k组信号的接收向量其中,
Figure G2009100822698D000516
为第k组信号的子矩阵
Figure G2009100822698D000517
的正交分解后的酉矩阵,
Figure G2009100822698D000518
Figure G2009100822698D000519
的共轭转置,v的一个具体例子为:v=NGHy,y为接收机接收到的信号的向量,即原始接收信号向量。
获取消除组间干扰后的第k组对应的等效信道矩阵
Figure G2009100822698D000520
的一个具体例子为:利用公式 T I k = ( K I k H ) - 1 获得第k组对应的等效信道矩阵
Figure G2009100822698D000522
其中
Figure G2009100822698D000523
为第k组的子矩阵的正交分解后的下三角矩阵,
Figure G2009100822698D000525
为矩阵的共轭转置,为矩阵
Figure G2009100822698D000528
的共轭转置后的逆矩阵。
步骤170、根据第k组对应的接收信号向量、以及第k组对应的等效信道矩阵进行多输入多输出检测,以检测第k组信号的发射向量
Figure G2009100822698D000529
多输入多输出检测可以采用最大似然准则运算,也可以采用类最大似然准则运算或其它算法。
在多输入多输出检测为最大似然准则运算时,一个检测第k组信号的发射向量的具体例子为:利用公式 x ^ I k = arg min x ‾ I k ∈ A I k | | u I k - T I k x ‾ I k | | 检测第k组信号的发射向量,其中,
Figure G2009100822698D00062
为第k组对应的接收信号向量,为第k组对应的等效信道矩阵,为可能的发射向量。可能的发射向量可以为预先设置的多个发射向量。
在上述流程中需要说明的是,针对发射信号划分的各组都需要进行从步骤140到步骤170的处理操作;而且,针对各组的处理操作可以并行进行,即针对各组同时进行从步骤140到步骤170的处理操作。另外,针对各组的处理操作也可以顺序进行,即先针对某一组进行从步骤140到步骤170的处理操作,针对该组的处理操作完成后,再对另一组进行从步骤140到步骤170的处理操作,依次类推,直到完成对最后一组的处理操作。
在针对各组顺序进行处理操作的情况下,可以依照针对发射信号被划分成组的顺序对各组先后进行处理操作,也可以依照其它顺序对各组先后进行处理操作,这里的其它顺序如各组信号的信噪比大小顺序等。上述信噪比可以通过 P k = | | T I k | | F 或其他形式来表示。
在依照各组信号的信噪比大小顺序对各组先后进行处理操作的情况下,可以在对一组进行处理操作完成后,消除当前处理操作完成的该组信号对其它未检测发射向量的各组信号的干扰,然后,再对下一组信号进行消除组间干扰和消除组内干扰的处理操作。消除当前处理操作完成的该组信号对其它未检测发射向量的各组信号的干扰的一个具体的例子为:根据公式 v = U ( v - R I i x I i ) 来消除第i组信号对其它未检测发射向量的各组信号的干扰,其中:
Figure G2009100822698D00067
为当前刚处理完成的第i组信号的发射向量,为R中与第i组信号对应的部分,
Figure G2009100822698D00069
Figure G2009100822698D000610
的关系与
Figure G2009100822698D000611
Figure G2009100822698D000612
的关系类似,且R=LH,U为酉矩阵,U可以使 R ′ = U R I i c . 由于
Figure G2009100822698D000614
不一定为上三角矩阵,因此,通过右乘U,可以使R′为一个上三角矩阵,在进行下一次迭代计算之前,可以将
Figure G2009100822698D00071
的值赋给
Figure G2009100822698D00072
将R′的值赋给R,使R成为一个上三角矩阵,即R′=R。
Figure G2009100822698D00073
应用于下一次循环叠代过程中获得子矩阵的过程。
另外需要说明的是,针对发射信号进行分组操作的位置可以调整,例如,可以将分组操作放在步骤140之前的任一步骤的后面。上述类最大似然法则如sphere decoding等。
从上述实施例一的描述可知,实施例一通过从求逆后的矩阵F中获取与一组信号相关的子矩阵,并利用该子矩阵进行后续的处理操作,消除了后续矩阵运算中相对于一组信号的冗余信息,从而使后续矩阵运算中的部分维度高的大矩阵被简化为维度低的小矩阵(如维度较低的
Figure G2009100822698D00074
Figure G2009100822698D00075
),降低了分组译码过程中矩阵运算的复杂度,最终降低了分组译码的实现复杂度,降低了接收机的处理复杂度。
虽然本实施例利用了维度低的小矩阵来实现分组译码,但是,在译码性能上,相对于现有的PIC译码方法的性能来说,实施例一的译码方法的译码性能并没有受到影响,下面对此进行证明:
首先介绍一个引理:
引理:b∈Cm a ∈ Ω ⋐ C m , M,U∈Cm×n,m≥n,M,U可表示为M=[m0,...,mn-1]和U=[u0,...,un-1],如果U满足如下两个条件,则可获得 arg min a ∈ Ω | | b - Ma | | = arg min a ∈ Ω | | U H b - U H Ma | | .
条件1、列正交特性,即UHU=In
条件2、U的列空间与M的列空间相同,即span{m0,m1,...,mn-1}=span{u0,u1,...,un-1}。
在介绍了上述引理后,如果可证明 ( M I k L - 1 G H ) ( M I k L - 1 G H ) H = I n k , 而且,
Figure G2009100822698D00079
具有相同的列空间,则可以获知
Figure G2009100822698D000711
满足上述引理的两个条件,由此可以推导出: M I k L - 1 G H P I k = M n k L - 1 G H , M I k L - 1 G H P I k G I k = T n k . 从该推导出的内容可以获知: x ^ I k = arg min x ‾ I k ∈ A I k | | P I k y - P I k G I k x ‾ I k | | = arg min x ‾ I k ∈ A I k | | M I k H L - 1 G H y - T I k x ‾ I k | | . 也就是说,现有的最大似然准则 x ^ I k = arg min x ‾ I k ∈ A I k | | z I k - E I k x ‾ I k | | 可以被简化为:
x ^ I k = arg min x ‾ I k ∈ A I k | | M I k H L - 1 G H y - T I k x ‾ I k | | ;
其中:L为A的三角分解矩阵如Cholesky分解矩阵,
Figure G2009100822698D00083
为Ik对应的L-1的子矩阵
Figure G2009100822698D00084
进行正交分解 N I k = M I k K I k 得到的U阵,与N的关系类似于与G的关系,而 T I k = ( K I k H ) - 1 . 由于
Figure G2009100822698D000810
两个矩阵的阶数较低,因而降低了分组译码的实现复杂度,节约了接收机处理资源,特别是维度较大的空时码的复杂度能够得到极大的降低。
本发明实施例二提供一种基于PIC的分组译码方法,该方法包括如下步骤:
步骤1、根据公式A=GHG计算并确定多输入多输出系统的信道相关矩阵A,其中的G为多输入多输出系统的等效信道矩阵,GH表示等效信道矩阵G的共轭转置。
步骤2、对信道相关矩阵A进行Cholesky分解,分解的结果为:A=LLH,其中L为对信道相关矩阵A进行Cholesky分解后获得的下三角矩阵,LH表示下三角矩阵L的共轭转置。
步骤3、对L进行求逆运算,获得F=L-1
步骤4、根据公式v=FGHy获得v,其中,F为下三角矩阵L的逆矩阵,GH表示等效信道矩阵G的共轭转置,y为原始接收信号向量。
步骤5、针对发射信号分为N个组,针对每一个组如第k组,k=0,1,..,N-1,对子矩阵
Figure G2009100822698D000811
进行正交分解,正交分解的结果可以为: F I k = M I k K I k ; 其中,子矩阵
Figure G2009100822698D000813
为从求逆后的矩阵F中获取的与该组信号相关的子矩阵,
Figure G2009100822698D000814
和F的关系类似于
Figure G2009100822698D000815
和G的关系,
Figure G2009100822698D000816
是一个酉矩阵,
Figure G2009100822698D000817
是一个下三角矩阵。
步骤6、针对每一个k,计算 u I k = M I k H v , k=0,1,...,N-1
步骤7、针对每一个k,进行
Figure G2009100822698D000819
的逆运算,获得 T I k = ( K I k H ) - 1 .
步骤8、针对每一个k,根据最大似然准则检测
Figure G2009100822698D00091
x ^ I k = arg min x ‾ I k ∈ A I k | | u I k - T I k x ‾ I k | | .
在上述实施例二的描述中,步骤5至步骤8中针对每一个k的操作是并行进行的,也可以变换为根据组的顺序依次顺序执行,如针对第一组进行了
Figure G2009100822698D00093
的正交分解、计算
Figure G2009100822698D00094
、获得
Figure G2009100822698D00095
、以及根据最大似然准则检测获得
Figure G2009100822698D00096
之后,再针对第二组进行
Figure G2009100822698D00097
的正交分解、计算
Figure G2009100822698D00098
、获得
Figure G2009100822698D00099
、以及根据最大似然准则检测获得
Figure G2009100822698D000910
以此类推,直到对第N-1组进行
Figure G2009100822698D000911
的正交分解、计算
Figure G2009100822698D000912
获得
Figure G2009100822698D000913
以及根据最大似然准则检测获得
实施例二是对现有技术中的基本PIC分组译码方法的改进,现有技术中的基本PIC分组译码方法的复杂度如表1所示:
表1
Figure G2009100822698D000915
表1中的N为针对发射信号被划分成组的数量,m为空时码的发送时隙数与接收天线数的乘积,n为空时码的发送符号数,即空时码长度,K为组内符号数。
表1中的复数乘法(Complex multiplications)、复数加法(Complexadditions)、模方(Absolute-squares)、实数加(Real additions)、复数除实数(CR divisions)和平方根(Square-roots)都是衡量复杂度的指标。
实施例二的基于PIC的分组译码方法的复杂度如表2所示:
表2
Figure G2009100822698D00101
表2中的m为空时码的发送时隙数与接收天线数的乘积,n空时码的发送符号数,即空时码长度,K为组内符号数。
通过对比表1和表2中衡量复杂度的指标可明确得知,现有技术中的基本PIC分组译码方法的复杂度高于实施例二的基于PIC的分组译码方法的复杂度。
在组内符号数K=2且空时码的发送时隙数与接收天线数的乘积m=5的情况下,随着空时码长度n的增加,现有技术的基本PIC分组译码方法的复杂度和实施例二的基于PIC的分组译码方法的复杂度的变化曲线如附图2所示。
图2中,带圆圈的曲线为现有技术的基本PIC分组译码方法的复杂度随着n的变化而变化的曲线,带菱形的曲线为实施例二的基于PIC的分组译码方法的复杂度随着n的变化而变化的曲线。从图2的两条曲线可明显看出,在K=2且m=5的情况下,随着n的增加,现有技术的基本PIC分组译码方法的复杂度与实施例二的复杂度之间的差距逐渐增加。因此,相对于现有技术的基本PIC分组译码方法而言,由于实施例二的基于PIC的分组译码方法降低了分组译码方法的复杂度,因此,实施例二的方法可称为高效PIC算法。
本发明实施例三提供一种基于PIC的分组译码方法,该方法包括如下步骤:
步骤1、设置变量Ng=N,Pe=0,i=0,其中:N为针对发射信号划分成组的数量。
步骤2、根据公式A=GHG计算确定多输入多输出系统的信道相关矩阵A,其中的G为多输入多输出系统的等效信道矩阵,GH表示等效信道矩阵G的共轭转置。
步骤3、对信道相关矩阵A进行Cholesky分解,分解的结果为:A=LLH,其中L为对A进行Cholesky分解后获得的下三角矩阵,LH表示矩阵L的共轭转置。
步骤4、对分解后的矩阵L进行求逆运算,F=L-1
步骤5、根据公式v=FGHy,进行计算获得v,其中,y为原始接收信号向量,即接收端接收到的信号向量。
步骤6、令R=LH
步骤7、针对所有满足0≤k<Ng的第k组进行的计算为:对子矩阵
Figure G2009100822698D00111
进行正交分解: F I k = M I k K I k , 以消除组间干扰,其中的子矩阵
Figure G2009100822698D00113
为从求逆后的矩阵F中获取的与该组信号相关的子矩阵,
Figure G2009100822698D00114
和F的关系类似于
Figure G2009100822698D00115
和G的关系,
Figure G2009100822698D00116
为分解后的酉矩阵,
Figure G2009100822698D00117
为分解后的下三角矩阵。
步骤8、获取消除组间干扰后第k组对应的等效信道矩阵,例如针对0≤k<Ng,对
Figure G2009100822698D00118
进行逆运算,获得 T I k = ( K I k H ) - 1 .
步骤9、确定未检测发射向量的各组信号的信噪比,并选出信噪比最大的一组,例如,从k=0到k=Ng-1循环进行如下操作:计算 P k = | | T I k | | F , 比较Pk和Pe,如果Pk>Pe,则Pe=Pk,i=k。
步骤10、获取消除组间干扰后信噪比最大的一组对应的接收信号向量,例如,根据公式 u I i = M I i H v 计算消除组间干扰后信噪比最大的第i组对应的接收信号向量
Figure G2009100822698D001112
步骤11、根据最大似然准则检测信噪比最大一组第i组信号的发射向量
Figure G2009100822698D00121
x ^ I i = arg min x ‾ I k ∈ A I k | | u I i - T I i x ‾ I i | | .
步骤12、Ng=Ng-1,如果Ng=0,则表明所有组都进行了发射向量检测,本实施例结束,否则,到步骤13。
步骤13、消除信噪比最大的第i组信号对其它未检测发射向量的组的信号干扰,即根据公式 v = v - R I i x I i 进行计算。
步骤14、找到一个酉阵U,使得 R = U R I i c , 并计算v=Uv,令R=R′,其中的R′为R的下三角矩阵,为R中与第i组对应的部分,
Figure G2009100822698D00126
Figure G2009100822698D00127
的关系与
Figure G2009100822698D00129
之间的关系类似,同时,令 F I i c = U F I i c , 再对剩余的Ng个组重新进行顺序编号,得到新的
Figure G2009100822698D001211
到步骤7,此时,由于
Figure G2009100822698D001212
发生了变化,因此步骤7中的
Figure G2009100822698D001213
发生了变化。
实施例三是对现有技术中的PIC-SIC分组译码方法的改进,现有技术中的PIC-SIC分组译码方法的复杂度如表3所示:
表3
表3中的N为针对发射信号被划分成组的数量,m为空时码的发送时隙数与接收天线数的乘积,n为空时码的发送符号数,即空时码长度,K为组内符号数。
实施例三的基于PIC的分组译码方法的复杂度如表4所示:
表4
Figure G2009100822698D00131
表4中的N为针对发射信号被划分的组的数量,m为空时码的发送时隙数与接收天线数的乘积,n为空时码的发送符号数,即空时码长度,K为组内符号数。
通过对比表3和表4中衡量复杂度的指标可明确得知,现有技术中的PIC-SIC分组译码方法的复杂度高于实施例三的基于PIC的分组译码方法的复杂度。
在组内符号数K=2且空时码的发送时隙数与接收天线数的乘积m=n的情况下,随着空时码长度n的增加,现有技术的SIP-PIC分组译码方法的复杂度和实施例三的基于PIC的分组译码方法的复杂度的变化曲线如附图3所示。
图3中,带圆圈的曲线为现有技术的SIP-PIC分组译码方法的复杂度随着n的变化而变化的曲线,带菱形的曲线为实施例三的基于PIC的分组译码方法的复杂度随着n的变化而变化的曲线。从图3的两条曲线可明显看出,在K=2且m=n的情况下,随着n的增加,现有技术的SIP-PIC分组译码方法的复杂度与实施例三的复杂度之间的差距逐渐增加。因此,相对于现有技术的SIP-PIC分组译码方法而言,由于实施例三的基于PIC的分组译码方法降低了分组译码方法的复杂度,因此,实施例三的方法可称为高效SIP-PIC算法。
本发明实施例四提供一种基于PIC的分组译码装置,该装置可以为接收机。该接收机的结构如附图4所示。
图4中的接收机400包括:接收单元410、分解求逆单元420、子矩阵单元430、获取单元440和检测单元450。
接收单元410用于接收信号。
分解求逆单元420用于估计多输入多输出系统的等效信道矩阵,根据该等效信道矩阵获取多输入多输出系统的信道相关矩阵A,信道相关矩阵A=GHG,其中的G为多输入多输出系统的等效信道矩阵,GH表示等效信道矩阵G的共轭转置。分解求逆单元420对信道相关矩阵A进行三角分解如乔累斯基分解,对信道相关矩阵A的分解结果的一个具体的例子为:分解求逆单元420根据公式A=LLH进行乔累斯基分解;这里的L为对信道相关矩阵A进行乔累斯基分解后获得的下三角矩阵,LH表示下三角矩阵L的共轭转置。分解求逆单元420对分解后的矩阵L求逆,求逆后的矩阵为F,且F=L-1
针对发射信号被划分为组中的每一组(如第k组),子矩阵单元430用于从求逆后的矩阵F中获取与该组信号相关的子矩阵。例如,针对第k组信号,子矩阵单元430获得的子矩阵为
Figure G2009100822698D00141
其中:0≤k≤N-1,N为针对发射信号被划分成组的数量。子矩阵单元430可以从矩阵F中选取与该组信号具有相同列的部分,从而获得子矩阵
Figure G2009100822698D00142
需要说明的是,针对发射信号划分为组的操作可以由接收单元410执行,也可以由子矩阵单元430执行,还可以由其他单元或设备执行,如可以由发射端执行等。
获取单元440用于对子矩阵单元430获取的子矩阵
Figure G2009100822698D00151
进行正交分解,即 F I k = M I k K I k , 其中:
Figure G2009100822698D00153
为酉矩阵,
Figure G2009100822698D00154
为下三角矩阵。获取单元440还用于根据子矩阵的正交分解后的酉矩阵
Figure G2009100822698D00155
和下三角矩阵
Figure G2009100822698D00156
获取消除组间干扰后的第k组对应的等效信道矩阵
Figure G2009100822698D00157
和第k组对应的接收信号向量其中, u I k = M I k H F G H y , T I k = ( K I k H ) - 1 .
检测单元450用于根据第k组对应的接收信号向量
Figure G2009100822698D001511
和第k组对应的等效信道矩阵
Figure G2009100822698D001512
进行多输入多输出检测,以检测第k组信号的发射向量
Figure G2009100822698D001513
这里的多输入多输出检测方式可以为最大似然准则运算,也可以为类最大似然准则运算或其它算法。检测单元450检测第k组信号的发射向量
Figure G2009100822698D001514
的一个具体的例子为:
在多输入多输出检测方式为最大似然准则运算时,检测单元450可以利用公式 x ^ I k = arg min x ‾ I k ∈ A I k | | u I k - T I k x ‾ I k | | 检测出第k组信号的发射向量,其中: T I k = ( K I k H ) - 1 ,
Figure G2009100822698D001517
为各种可能的发射向量。可能的发射向量可以为预先设置的发射向量。
子矩阵单元430、获取单元440和检测单元450针对各组信号的处理操作可以并行进行,也可以顺序进行。并行进行和顺序进行的含义如上述方法实施例中的描述。不论是并行进行还是顺序进行,获取单元440的结构的一个具体例子如附图5所示。
图5中的获取单元440包括:第一获取模块441和第二获取模块442。
第一获取模块441用于根据公式 T I k = ( K I k H ) - 1 获取消除组间干扰后第k组对应的等效信道矩阵其中,
Figure G2009100822698D001520
为第k组的子矩阵
Figure G2009100822698D001521
的正交分解后的下三角矩阵,0≤k≤N-1,N为针对发射信号划分成组的数量。第一获取模块441可以通过执行对第k组的子矩阵
Figure G2009100822698D001522
进行正交分解操作获得
Figure G2009100822698D001523
需要说明的是,对第k组的子矩阵
Figure G2009100822698D00161
进行正交分解的操作也可以由第二获取模块442来执行,此时,第一获取模块441可以从第二获取模块442处获取
Figure G2009100822698D00162
另外,第一获取模块441和第二获取模块442也可以均执行对第k组的子矩阵
Figure G2009100822698D00163
进行正交分解的操作,第一获取模块441根据自身执行结果获取第二获取模块442根据自身执行结果获取
Figure G2009100822698D00165
第二获取模块442用于根据公式 u I k = M I k H F G H y 获取消除组间干扰后的第k组对应的接收信号向量其中:
Figure G2009100822698D00168
为第k组的子矩阵
Figure G2009100822698D00169
的正交分解后的酉矩阵,0≤k≤N-1,N为针对发射信号划分成组的数量,F为对矩阵L求逆后的矩阵,GH为多输入多输出系统的等效信道矩阵的共轭转置,y为原始接收信号向量。
第一获取模块441和第二获取模块442针对各组的操作可以并行执行,也可以按照某种顺序依次对各组顺序进行处理操作。
在针对各组顺序进行处理操作的情况下,可以依照针对发射信号被划分成组的顺序对各组信号先后进行处理操作,也可以依照其它顺序对各组先后进行处理操作,这里的其它顺序如各组信号的信噪比大小顺序等。上述信噪比可以通过 P k = | | T I k | | F 来表示。在依照各组信号的信噪比大小顺序对各组信号先后进行处理操作的情况下,上述获取单元440的结构的另一个具体例子如附图6所示。
图6中的获取单元440包括:信噪比模块443、获取模块444和消除模块445。
信噪比模块443用于根据未检测发射向量的各组信号的子矩阵的正交分解后的矩阵
Figure G2009100822698D001611
获取未检测信号向量的各组信号的信噪比,该信噪比可以表示为 P k = | | T I k | | F , 其中的 T I k = ( K I k H ) - 1 . 信噪比模块443选出信噪比最大的一组。
针对信噪比模块443选出的信噪比最大的一组信号,获取模块444用于对该组信号的子矩阵进行正交分解,并根据该组信号的子矩阵的正交分解后的矩阵获取消除组间干扰后的该最大的一组对应的等效信道矩阵、以及该最大的一组对应的接收信号向量。设定信噪比最大的一组为第k组,则获取模块444对子矩阵
Figure G2009100822698D00171
进行正交分解,即 F I k = M I k K I k , 其中:
Figure G2009100822698D00173
为酉矩阵,
Figure G2009100822698D00174
为下三角矩阵,并根据子矩阵
Figure G2009100822698D00175
的正交分解后的酉矩阵
Figure G2009100822698D00176
和下三角矩阵
Figure G2009100822698D00177
获取消除组间干扰后的第k组对应的等效信道矩阵
Figure G2009100822698D00178
和第k组对应的接收信号向量
Figure G2009100822698D00179
其中, u I k = M I k H v , v=FGHy T I k = ( K I k H ) - 1 . 获取模块444的结构的一个具体例子如图5所示,在此不再重复说明。
消除模块445用于消除检测出的信噪比最大的一组信号对未检测发射向量的各组信号的干扰,例如,消除模块445用于根据公式 v = U ( v - R I i x I i ) 来消除第i组对其它未检测发射信号向量的各组信号的干扰,其中:U为酉矩阵,U可以使 R = U R I i c ,
Figure G2009100822698D001714
为当前刚处理完成的第i组信号的发射向量,
Figure G2009100822698D001715
为R中与第i组信号对应的部分,
Figure G2009100822698D001716
Figure G2009100822698D001717
的关系与
Figure G2009100822698D001719
的关系类似,且R的初始值为R=LH,之后,R=R′, F I i c = U F I i c , 其中的R′为R的下三角矩阵。消除模块445还用于将
Figure G2009100822698D001721
提供给获取模块444,获取模块444接收
Figure G2009100822698D001722
并利用
Figure G2009100822698D001723
针对未检测发射信号向量的各组子矩阵进行正交分解。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到本发明可借助软件加必需的硬件平台的方式来实现,当然也可以全部通过硬件来实施,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案对背景技术做出贡献的全部或者部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例或者实施例的某些部分所述的方法。
虽然通过实施例描绘了本发明,本领域普通技术人员知道,本发明有许多变形和变化而不脱离本发明的精神,本发明的申请文件的权利要求包括这些变形和变化。

Claims (10)

1.一种基于部分干扰消除的分组译码方法,其特征在于,包括:
对信道相关矩阵进行三角分解,并对分解后的矩阵求逆;
针对发射信号被划分成组中的每一组,从所述求逆后的矩阵中提取与该组信号相关的子矩阵;
根据所述子矩阵的正交分解后的矩阵,获取消除组间干扰后该组对应的接收信号向量以及该组对应的等效信道矩阵;
根据所述消除组间干扰后该组对应的接收信号向量以及该组对应的等效信道矩阵,利用多输入多输出检测方式检测该组信号的发射向量。
2.如权利要求1所述的方法,其特征在于,所述三角分解为乔累斯基分解,且所述对信道相关矩阵进行三角分解,并对分解后的矩阵求逆包括:
对所述信道相关矩阵A进行乔累斯基分解的结果为:A=LLH,对所述L求逆,求逆后的矩阵为F,且F=L-1
其中,A=GHG,G为多输入多输出系统的等效信道矩阵。
3.如权利要求1所述的方法,其特征在于,根据所述子矩阵的正交分解后的矩阵获取消除组间干扰后该组对应的接收信号向量包括:
根据
Figure FDA00001893680800011
获取消除组间干扰后的第k组对应的接收信号向量
Figure FDA00001893680800012
其中:G为等效信道矩阵,F为信道相关矩阵A进行乔累斯基分解得到的三角矩阵L的逆矩阵,
Figure FDA00001893680800013
为矩阵F第k组的子矩阵
Figure FDA00001893680800014
的正交分解后的酉矩阵,0≤k≤N-1,N为组的数量,y为原始接收信号向量。
4.如权利要求1所述的方法,其特征在于,所述根据所述子矩阵的正交分解后的矩阵,获取消除组间干扰后该组对应的等效信道矩阵包括:
根据
Figure FDA00001893680800015
获取消除组间干扰后第k组对应的等效信道矩阵;
其中,
Figure FDA00001893680800021
为矩阵F第k组的子矩阵
Figure FDA00001893680800022
的正交分解后的下三角矩阵,0≤k≤N-1,N为组的数量,F为信道相关矩阵A进行乔累斯基分解得到的三角矩阵L的逆矩阵。
5.如权利要求1或2或3或4所述的方法,其特征在于,所述根据所述消除组间干扰后该组对应的接收信号向量以及该组对应的等效信道矩阵,利用多输入多输出检测方式检测该组信号的发射向量包括:
根据所述消除组间干扰后该组对应的接收信号向量以及该组对应的等效信道矩阵,利用最大似然准则或类最大似然准则检测该组信号的发射向量。
6.如权利要求5所述的方法,其特征在于,所述根据所述消除组间干扰后该组对应的接收信号向量以及该组对应的等效信道矩阵,利用最大似然准则检测该组信号的发射向量包括:
根据
Figure FDA00001893680800023
检测第k组信号的发射向量
Figure FDA00001893680800024
其中:
Figure FDA00001893680800025
为消除组间干扰后的第k组对应的接收信号向量,
Figure FDA00001893680800026
为消除组间干扰后的第k组对应的等效信道矩阵,
Figure FDA00001893680800027
为第k组信号对应的可能的发射向量,0≤k≤N-1,N为组的数量,
Figure FDA00001893680800028
为第k组信号的发射向量对应的星座符号集。
7.如权利要求1所述的方法,其特征在于,所述根据所述子矩阵的正交分解后的矩阵,获取消除组间干扰后该组对应的接收信号向量以及该组对应的等效信道矩阵包括:
根据未检测发射向量的各组的子矩阵的正交分解后的矩阵估计所述未检测发射向量的各组的信噪比,并选出信噪比最大的一组;
根据所述选出的信噪比最大的一组的子矩阵的正交分解后的矩阵获取消除组间干扰后的该最大的一组对应的接收信号向量以及该最大的一组对应的等效信道矩阵,并消除该最大的一组对未检测发射向量的各组的信号干扰。
8.一种接收机,其特征在于,包括:
接收单元,用于接收信号;
分解求逆单元,用于对信道相关矩阵进行三角分解,对分解后的矩阵求逆;
子矩阵单元,用于针对发射信号被划分为组中的每一组,从所述求逆后的矩阵中提取与所述该组信号相关的子矩阵;
获取单元,用于对所述子矩阵进行正交分解,根据所述子矩阵的正交分解后的矩阵,获取消除组间干扰后的该组对应的接收信号向量以及该组对应的等效信道矩阵;
检测单元,用于根据所述消除组间干扰后该组对应的接收信号向量以及该组对应的等效信道矩阵,利用多输入多输出检测方式检测该组信号的发射向量。
9.如权利要求8所述的接收机,其特征在于,所述获取单元包括:
信噪比模块,用于根据未检测发射向量的各组的子矩阵的正交分解后的矩阵估计所述未检测发射向量的各组的信噪比,并选出信噪比最大的一组;
获取模块,用于对所述选出的信噪比最大的一组的子矩阵进行正交分解,并根据正交分解后的矩阵获取消除组间干扰后的该最大的一组对应的接收信号向量以及该最大的一组对应的等效信道矩阵;
消除模块,用于消除该最大的一组对未检测发射向量的各组的信号干扰。
10.如权利要求8所述的接收机,其特征在于,所述获取单元包括:
第一获取模块,用于根据
Figure FDA00001893680800031
获取消除组间干扰后的第k组对应的接收信号向量其中:G为等效信道矩阵,F为信道相关矩阵A进行乔累斯基分解得到的三角矩阵L的逆矩阵,
Figure FDA00001893680800033
为矩阵F第k组的子矩阵
Figure FDA00001893680800034
的正交分解后的酉矩阵,0≤k≤N-1,N为组的数量,y为原始接收信号向量;
第二获取模块,用于根据获取消除组间干扰后第k组对应的等效信道矩阵,其中,
Figure FDA00001893680800036
为矩阵F第k组的子矩阵
Figure FDA00001893680800037
的正交分解后的下三角矩阵,0≤k≤N-1,N为组的数量。
CN 200910082269 2009-04-20 2009-04-20 基于部分干扰消除的分组译码方法和接收机 Active CN101867459B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN 200910082269 CN101867459B (zh) 2009-04-20 2009-04-20 基于部分干扰消除的分组译码方法和接收机
PCT/CN2010/070999 WO2010121508A1 (zh) 2009-04-20 2010-03-12 基于部分干扰消除的分组译码方法和接收机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200910082269 CN101867459B (zh) 2009-04-20 2009-04-20 基于部分干扰消除的分组译码方法和接收机

Publications (2)

Publication Number Publication Date
CN101867459A CN101867459A (zh) 2010-10-20
CN101867459B true CN101867459B (zh) 2012-12-19

Family

ID=42959033

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200910082269 Active CN101867459B (zh) 2009-04-20 2009-04-20 基于部分干扰消除的分组译码方法和接收机

Country Status (2)

Country Link
CN (1) CN101867459B (zh)
WO (1) WO2010121508A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102447533A (zh) * 2010-09-30 2012-05-09 上海贝尔股份有限公司 在通信网络的接收机中用于部分干扰消除的方法及装置
CN104022809B (zh) * 2013-03-01 2017-11-14 电信科学技术研究院 一种mu‑mimo波束赋形发端干扰抑制方法及装置
CN108540184A (zh) * 2018-04-11 2018-09-14 南京大学 一种优化的大规模天线系统信号检测方法及其硬件架构
CN114337923B (zh) * 2021-12-27 2022-12-16 同济大学 一种基于连续干扰消除的低复杂度分组解码方法和设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101277140A (zh) * 2008-05-09 2008-10-01 清华大学 一种多用户分布式天线系统上行链路接收方法
CN101379748A (zh) * 2006-02-10 2009-03-04 交互数字技术公司 在多输入多输出单载波频分多址系统中用于执行上行链路传输的方法和设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101379748A (zh) * 2006-02-10 2009-03-04 交互数字技术公司 在多输入多输出单载波频分多址系统中用于执行上行链路传输的方法和设备
CN101277140A (zh) * 2008-05-09 2008-10-01 清华大学 一种多用户分布式天线系统上行链路接收方法

Also Published As

Publication number Publication date
WO2010121508A1 (zh) 2010-10-28
CN101867459A (zh) 2010-10-20

Similar Documents

Publication Publication Date Title
CN101032109B (zh) 在多输入多输出(mimo)系统接收端发送反馈信息的方法
CN101841375B (zh) 一种多输入多输出单载波分块传输系统的检测方法及装置
CN1951077B (zh) Miso和mimo系统的导频传输和信道估计
Yu et al. DS-NLCsiNet: Exploiting non-local neural networks for massive MIMO CSI feedback
CN101416414B (zh) 接收机和接收方法
CN101409604B (zh) 多输入多输出系统中的串行干扰消除方法
JP5074148B2 (ja) 最尤復号化方法、最尤復号装置、及び受信機
KR100930522B1 (ko) 다중 입출력 무선통신 시스템에서 수신 장치 및 방법
CN101867459B (zh) 基于部分干扰消除的分组译码方法和接收机
US20230403182A1 (en) Radio Receiver
CN106330284A (zh) 一种低复杂度大规模mimo信道估计方法
CN113114313A (zh) 一种mimo-noma系统导频辅助信号检测方法、系统及存储介质
CN102315912A (zh) 预编码矩阵的提供方法、解码矩阵的提供方法和基站
CN101615942B (zh) 一种数据通信方法、装置及系统
CN1913390B (zh) 一种基于Cholesky分解实现干扰消除的方法
CN105978609A (zh) 一种相关信道下大规模mimo线性检测硬件构架及方法
CN104184505B (zh) 发射信号的多输入多输出mimo检测方法、装置及系统
CN102468932A (zh) 多用户多输入多输出系统的信道质量估计方法和用户设备
CN102217222B (zh) 信号处理方法及装置
CN106559117A (zh) K用户系统及其干扰消除方法
CN107248876B (zh) 基于稀疏贝叶斯学习的广义空间调制符号检测方法
CN103595663B (zh) 一种发射复数信号的估计方法
CN107995134B (zh) 一种adma场景下mimo系统信道估计的实现方法
CN104883213B (zh) 一种扩维mimo系统数据流接收方法及装置
EP3378168B1 (en) Apparatus and method for deriving a submatrix

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant