CN101865496A - 冷冻水直供系统及方法 - Google Patents

冷冻水直供系统及方法 Download PDF

Info

Publication number
CN101865496A
CN101865496A CN 201010206935 CN201010206935A CN101865496A CN 101865496 A CN101865496 A CN 101865496A CN 201010206935 CN201010206935 CN 201010206935 CN 201010206935 A CN201010206935 A CN 201010206935A CN 101865496 A CN101865496 A CN 101865496A
Authority
CN
China
Prior art keywords
total
chilled water
water
pipe
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 201010206935
Other languages
English (en)
Inventor
赵建春
张雷
刘涛
苗冬梅
陈永昌
杨柯
赵元山
吕永峰
张海燕
曾青
高迎军
代永军
张成林
李本勇
敖立平
芮立平
丁锐
王勤虎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Construction Eighth Engineering Division Co Ltd
China Construction Industrial Equipment Installation Co Ltd
Original Assignee
China Construction Eighth Engineering Division Co Ltd
China Construction Industrial Equipment Installation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Construction Eighth Engineering Division Co Ltd, China Construction Industrial Equipment Installation Co Ltd filed Critical China Construction Eighth Engineering Division Co Ltd
Priority to CN 201010206935 priority Critical patent/CN101865496A/zh
Publication of CN101865496A publication Critical patent/CN101865496A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

本发明提出一种冷冻水直供系统及方法,其系统包括能源中心、热力交换站和至少一二次泵,能源中心和热力交换站之间通过总供水管和总回水管相连。其中,能源中心用于制备冷冻水,其又进一步包括至少一制冷机和至少一一次泵,制冷机和一次泵串接后设置在总供水管和总回水管之间。热力交换站用于消耗冷冻水的冷量,其又进一步包括至少一风机和至少一三次泵,风机和三次泵串接后设置在总供水管和总回水管之间。二次泵设置在总供水管上,用于将能源中心输出的冷冻水传输到热力交换站。本发明具有成本、能源损失率低、占用面积小的优点。

Description

冷冻水直供系统及方法
技术领域
本发明涉及制冷系统,特别涉及冷冻水直供系统及其方法。
背景技术
目前,中小型中央空调工程中普遍采用一级泵系统。而系统较大、阻力较高,且各环路负荷特性或阻力相差悬殊时,则普遍采用二级泵系统。二级泵系统在空气调节水的冷热源侧和负荷侧分别布置水泵,冷热源侧与冷水机组相对应的水泵称为一次泵或初级泵,并与冷水机组和旁通管路组成一次环路;负荷侧的水泵称为二次泵或次级泵,与负荷末端设备、管路系统及旁通管一起构成二次环路。一次环路负责冷冻水的制备,二次环路负责冷冻水的输送。
请参见图1,其为现有的一种冷冻水供水系统的结构示意图。一次环路中的供水管15和回水管16之间设置有多台并联的制冷机11,每台制冷机11串接一台一次泵12,一次环路的供水管15和回水管16连接到板式热交换器13的一侧。板式热交换器13的另一侧连接二次环路的供水管17和回水管18,板式热交换器13用来完成一次环路和二次环路管道之间的热交换。二次环路的供水管17上连接有多个并联的二次泵14,二次泵14的出水端连接多个并联的风机19,二次泵14将经过板式热交换器13降温处理后的冷水传输到风机19处进行制冷。
现有的这种冷冻水供水系统通常都会采用板式热交换器,既可以完成冷热水之间的热交换,又能将整个供水系统分成两个环路,以解决大型供水系统输水动力不足的问题,但是采用板式热交换器也会存在一定问题:
1、对于大型的供水系统,必然也需要大型的板式热交换器,而板式热交换器价格昂贵,从而增加了供水系统初期的投资成本。
2、大型的板式热交换器安装占用空间多,需要较多的土地成本投入。
3、利用板式热交换器转换热能时,有很大一部分能量流失到空气中,能源损失率高。
发明内容
本发明的目的是提供一种冷冻水直供系统,以解决现有的冷冻水供水系统成本、能源损失率高、占用面积大的问题。
本发明的另一目的是提供一种冷冻水直供方法,以解决现有的冷冻水供水系统成本、能源损失率高、占用面积大的问题。
本发明提出一种冷冻水直供系统,包括能源中心、热力交换站和至少一二次泵,能源中心和热力交换站之间通过总供水管和总回水管相连。其中,能源中心用于制备冷冻水,其又进一步包括至少一制冷机和至少一一次泵,制冷机和一次泵串接后设置在总供水管和总回水管之间。热力交换站用于消耗冷冻水的冷量,其又进一步包括至少一风机和至少一三次泵,风机和三次泵串接后设置在总供水管和总回水管之间。二次泵设置在总供水管上,用于将能源中心输出的冷冻水传输到热力交换站。
优选的,能源中心还包括至少一蓄冷水罐,蓄冷水罐与制冷机相连,用于存储冷冻水。
优选的,制冷机为离心式冷水机。
优选的,所述的冷冻水直供系统还包括若干调节阀和控制中心。调节阀设置在各个风机的供水口。控制中心与各个调节阀以及各个一次泵、二次泵、三次泵相连,用于通过调节各个调节阀的开度以及各个一次泵、二次泵、三次泵的工作频率,实现对冷冻水流量的控制。
优选的,所述的冷冻水直供系统还包括温度传感器,其设置在总回水管上,并与控制中心相连,用于测量回水温度,并将测量信号传输给控制中心。
优选的,所述的冷冻水直供系统还包括若干共有管和若干正反向流量计。共有管设置在总供水管和总回水管之间,以及该热力交换站中的各支供水管和支回水管之间。正反向流量计与共有管一一相连,并与控制中心相连,用于监测共有管上的水流方向,以推测冷冻水的需求量,并将监测信号发送给控制中心。
优选的,所述的冷冻水直供系统还包括压差传感器,压差传感器设置在总供水管和总回水管之间,并与控制中心相连,用于根据总供水管和总回水管之间的压差来控制该二次泵的工作频率。
本发明另提出一种冷冻水直供方法,包括以下步骤:(1)在一能源中心中设置至少一一次泵,在总供水管上设置至少一二次泵,在一热力交换站中设置至少一三次泵。(2)利用一次泵将该能源中心制备的冷冻水传输到总供水管中。(3)利用二次泵将冷冻水通过总供水管传输到该热力交换站。(4)利用三次泵将冷冻水输送到该热力交换站的风机。
优选的,所述的冷冻水直供方法,还包括步骤:(1)测量总回水管中的回水温度。(2)根据回水温度控制各个水泵的工作频率,以控制冷冻水的供水流量。
优选的,所述的冷冻水直供方法,还包括步骤:(1)在总供水管和总回水管之间,以及热力交换站中的各支供水管和支回水管之间设置共有管。(2)监测共有管中的水流方向。(3)根据共有管中的水流方向,控制冷冻水的供水流量。
相对于现有技术,本发明的有益效果是:
1、本发明采用了二次泵来代替原有的板式热交换器,在保证输送能力的前提下,大大降低了系统初期的资金投入成本。
2、相对于板式热交换器,二次泵的占地面积,安装和搬运更加方便。
3、本发明采用二次泵直接将冷冻水供应至热力交换站,避免在供水中途进行热交换,减少换热损失的前提下大大提高了热交换效率,符合节能减排的要求。
4、本发明采用两种控制方案对供水量进行控制,可以实时根据冷量需求调整供水量,有效降低了能源的浪费。
5、本发明采用两种控制方案对供水量进行控制,且在一套方案出现故障时自动切换到另一套方案,可以长时间地保证系统的正常运行。
当然,实施本申请的任一系统并不一定需要同时达到以上所述的所有优点。
附图说明
图1为现有的一种冷冻水供水系统的结构示意图;
图2为本发明冷冻水直供系统的一种实施例结构图;
图3为本发明冷冻水直供系统的另一种实施例结构图;
图4为本发明冷冻水直供方法的一种实施例流程图;
图5为本发明冷冻水直供方法的一种供水量控制方案流程图;
图6为本发明冷冻水直供方法的另一种供水量控制方案流程图。
具体实施方式
本发明的主要思想是使冷冻水不经板式热交换器而直接进入末端风机盘管进行热交换,从而可以大大节约建设成本和运行成本。
以下结合附图具体说明本发明。
请参见图2,其为本发明冷冻水直供系统的一种实施例结构图。此系统包括能源中心21和热力交换站22,能源中心21和热力交换站22之间通过总供水管23和总回水管24相连。在总供水管23上设置有多个并联的二次泵25,用于将能源中心21输出的冷冻水输送到热力交换站22处,以对冷量进行消耗。
其中,能源中心21包括并联的多个制冷机211,制冷机211可以采用离心式冷水机(离心式冷水机冷量衰减极少,可实现无极调节,具有很好的节能效果),每个制冷机211串接一个一次泵212,并将经每个制冷机211降温处理的冷冻水汇聚到总供水管23上。由于一次泵212通常是定流量的,因而其供水距离有限,因此为了保证一次泵212的传输能力,连接各个制冷机211的水管管径不能过大。
由于受一次泵212的传输距离的限制,冷冻水汇聚到总供水管23之后,需要采用二次泵25将其输送到热力交换站22。本实施例的热力交换站22包括多个风机221和多个三次泵222,三次泵222和风机221串接后设置在总供水管23和总回水管24之间。冷冻水被输送到热力交换站22之后,利用三次泵222传输到风机221的盘管处,并由风机221将冷空气送入各个空调设备。
本发明采用了二次泵25来代替原有的板式热交换器,在保证输送能力的前提下,大大降低了系统初期的资金投入成本。而且相对于板式热交换器,二次泵25的体积更小,安装和搬运更加方便。
请参见图3,其为本发明冷冻水直供系统的另一种实施例结构图。此系统包括能源中心31、热力交换站32和控制中心33,能源中心31和热力交换站32之间通过总供水管23和总回水管24相连。总供水管23上设置有多个并联的二次泵25,用于将能源中心31输出的冷冻水输送到热力交换站32处。
能源中心21包括并联的多个制冷机211和多个蓄冷水罐311,制冷机211可以采用离心式冷水机,每个制冷机211串接一个一次泵212,并将经每个制冷机211降温处理的冷冻水汇聚到总供水管23上。蓄冷水罐311和制冷机211相连通,制冷机211制备的冷冻水也可以存储在蓄冷水罐311中,以备需要时使用。由于一次泵212通常是定流量的,因而其供水距离有限,因此为了保证一次泵212的传输能力,连接各个制冷机211的水管管径不能过大。
热力交换站32包括多个风机221和多个三次泵222,总供水管23和总回水管24在热力交换站32处分出多组支供水管321和支回水管322,每条支供水管321上设置一个三次泵222,且每组支供水管321和支回水管322之间并接两个风机221。冷冻水被输送到热力交换站32之后,利用三次泵222传输到各个风机221的盘管处,并由风机221将冷空气送入各个空调设备。其中,在各个风机221的供水口设置调节阀323,用来调节风机221管盘的供冷量。
另外,在总回水管24上设置有一个温度传感器34,用来测量总回水管24中的水温,从而推测热力交换站32消耗的冷量,并进一步对能源中心31的供冷量进行控制。即当总回水管24中的水温较高时,则减小供冷量,当总回水管24中的水温较低时,增大供冷量。
在总供水管23和总回水管24之间,以及各组支供水管321和支回水管322之间均设置有共有管35,每个共有管35上均连接一个正反向流量计36,用来监测共有管35中的水流方向,以推测冷冻水的需求量。当冷冻水的供水量与需求量相同时,总供水管23和总回水管24之间的共有管35上的流量为零。当总供水管23上的流量小于总回水管24上的流量时,说明此时能源中心21的冷冻水供水量大于热力交换站32的需求量(例如某个风机221停止工作,原来经过该风机221盘管的冷冻水直接进入回水管,造成回水流量增大),因此可以控制能源中心21相应地减小冷冻水的供应量。而各组支供水管321和支回水管322之间的共有管35,可以用来判断热力交换站32各处的冷冻水需求量。反之,当总供水管23上的流量大于总回水管24上的流量时,可以控制能源中心21相应地增大冷冻水的供应量。
在总供水管23和总回水管24之间还设置有压差传感器37,其用来测量总供水管23和总回水管24之间的压差,并控制二次泵25的工作频率。即当总供水管23中的水压超过总回水管24中水压一个阀值时,说明此时供水速度大于回水速度,二次泵25的工作频率过高,可以相应地降低二次泵25的工作频率。反之,当总供水管23中的水压低于总回水管24中水压一个阀值时,可以相应地提高二次泵25的工作频率。
在本实施例中,控制中心33是整个系统的控制核心,其通过有线或无线的方式与系统中的各个被控单元和测量单元相连(此处所述的被控单元包括各个一次泵212、二次泵25、三次泵222、调节阀323,所述的测量单元包括正反向流量计36、温度传感器34、压差传感器37。由于布线较为复杂,因而图3中未绘示出控制中心33与各个被控单元和测量单元的连接关系)。控制中心33用来接收各个测量单元发送来的采集数据,并对各个位置的采集数据进行处理,以及对各个被控单元进行调节,从而达到供需平衡、节约能源的目的。
特别的,控制中心33可以采用两套方案来对各个被控单元进行控制。一套方案是根据温度传感器34所测量的总回水管24温度进行控制,另一套方案是根据各个正反向流量计36所测的各个共有管35中的流量方向来实现的控制,其中一套方案可以作为主控方案,另一套方案则作为辅助控制方案,而在主控方案故障时可以切换到辅助控制方案,从而保证系统的正常运行。
上述两个实施例仅为本发明冷冻水直供系统的两种实施方式,但并不以此限制本发明,其中各个测量单元和被控单元的数量和安装位置均可以根据实际需要进行调整,而在迎合本发明主要思想的情况下,任何可以思之的变化均应在本发明的保护范围内。为了更能说明本发明所带来的实际效益,申请人根据计算统计,给出了一组数据如下:
申请人试运行的冷冻水直供系统选用8台1,900RT离心式冷水机组,设计2台22000m 3蓄冷水罐进行蓄冷,系统供、回水温度5/13℃,温差达8℃。
1、初投资的比较:
1)、离心式冷水机组在相同设计工况下制冷量下降1.95%,合计296.4USRT,节省造价799,500元;
2)、冷冻水二次泵单台最大流量1500m 3/h,5用1备,若采用板交系统(即采用板式热交换器的冷冻水供水系统),扬程将由45mH 2O提高到51mH 2O,造价(含变频控制器等配件)将由3028800元升至3634560元,因此节省造价605760元;
3)、若采用板交系统,各热力交换站房造价将由5467680元提升至18021186元,直供系统造价为板交系统30.34%,节约造价1255万元;
4)、节省建筑面积380m2,节约输配电100万元;
因此,应用冷冻水直供系统,共减少直接投资1396万元。
2、运行能耗比较:
1)、在直供系统形式下,全年供冷期离心式冷水机组运行能耗减少375303kWh/年,节能率达2.16%;
2)、冷冻水二次泵能耗比较:
直供系统运行能耗1379923.4kWh
板交系统运行能耗1517293.4kWh
节约运行能耗137370kWh/年
节能率9%
3)、各热力交换站房内三次泵运行能耗节约为111821kWh/年,节能率达7.5%。
因此,直供系统减少运行能耗624494kWh/年,系统综合节能率3.1%。
相应于上述系统,本发明另提出一种冷冻水直供方法,请参见图4,其包括以下步骤:
S401,在一能源中心中设置至少一一次泵,在总供水管上设置至少一二次泵,在一热力交换站中设置至少一三次泵。其中一次泵定流量,二次泵为变频泵。
S402,利用一次泵将该能源中心制备的冷冻水传输到总供水管中。
S403,利用二次泵将冷冻水通过总供水管传输到该热力交换站。
S404,利用三次泵将冷冻水输送到该热力交换站的风机。
其中,此冷冻水直供方法可以采用两种方案实现对供水量的控制,请参见图5,其为本发明冷冻水直供方法的一种供水量控制方案流程图,其包括以下步骤:
S501,测量总回水管中的回水温度。
S502,根据回水温度控制各个水泵的工作频率,以控制冷冻水的供水流量。当总回水管中的水温较高时,则减小供冷量,当总回水管中的水温较低时,增大供冷量。
请参见图6,其为本发明冷冻水直供方法的另一种供水量控制方案流程图,其包括以下步骤:
S601,在总供水管和总回水管之间,以及热力交换站中的各支供水管和支回水管之间设置共有管。
S602,监测共有管中的水流方向。
S603,根据共有管中的水流方向,控制冷冻水的供水流量。
当冷冻水的供水量与需求量相同时,总供水管和总回水管之间的共有管上的流量为零。当总供水管上的流量小于总回水管上的流量时,说明此时能源中心的冷冻水供水量大于热力交换站的需求量(例如某个风机停止工作,原来经过该风机盘管的冷冻水直接进入回水管,造成回水流量增大),因此可以控制能源中心相应地减小冷冻水的供应量。而各组支供水管和支回水管之间的共有管,可以用来判断热力交换站各处的冷冻水需求量。反之,当总供水管上的流量大于总回水管上的流量时,可以控制能源中心相应地增大冷冻水的供应量。
本发明采用了二次泵来代替原有的板式热交换器,在保证输送能力的前提下,大大降低了系统初期的资金投入成本。而且相对于板式热交换器,二次泵的体积更小,安装和搬运更加方便。
以上公开的仅为本发明的几个具体实施例,但本发明并非局限于此,任何本领域的技术人员能思之的变化,都应落在本发明的保护范围内。

Claims (10)

1.一种冷冻水直供系统,包括:
一能源中心,用于制备冷冻水,其又进一步包括至少一制冷机和至少一一次泵,该制冷机和该一次泵串接后设置在总供水管和总回水管之间;
一热力交换站,通过总供水管和总回水管与该能源中心相连,用于消耗冷冻水的冷量,其又进一步包括至少一风机和至少一三次泵,该风机和该三次泵串接后设置在总供水管和总回水管之间,
其特征在于,其还包括至少一二次泵,该二次泵设置在总供水管上,用于将该能源中心输出的冷冻水传输到热力交换站。
2.如权利要求1所述的冷冻水直供系统,其特征在于,该能源中心还包括至少一蓄冷水罐,该蓄冷水罐与该制冷机相连,用于存储冷冻水。
3.如权利要求1所述的冷冻水直供系统,其特征在于,该制冷机为离心式冷水机。
4.如权利要求1所述的冷冻水直供系统,其特征在于,其还包括:
若干调节阀,其设置在各个风机的供水口;
一控制中心,其与各个调节阀以及各个一次泵、二次泵、三次泵相连,用于通过调节各个调节阀的开度以及各个一次泵、二次泵、三次泵的工作频率,实现对冷冻水流量的控制。
5.如权利要求4所述的冷冻水直供系统,其特征在于,其还包括一温度传感器,其设置在总回水管上,并与该控制中心相连,用于测量回水温度,并将测量信号传输给该控制中心。
6.如权利要求4所述的冷冻水直供系统,其特征在于,其还包括:
若干共有管,其设置在总供水管和总回水管之间,以及该热力交换站中的各支供水管和支回水管之间;
若干正反向流量计,其与该共有管一一相连,并与该控制中心相连,用于监测该共有管上的水流方向,以推测冷冻水的需求量,并将监测信号发送给该控制中心。
7.如权利要求1所述的冷冻水直供系统,其特征在于,其还包括一压差传感器,该压差传感器设置在总供水管和总回水管之间,并与该控制中心相连,用于根据总供水管和总回水管之间的压差来控制该二次泵的工作频率。
8.一种冷冻水直供方法,其特征在于,包括以下步骤:
在一能源中心中设置至少一一次泵,在总供水管上设置至少一二次泵,在一热力交换站中设置至少一三次泵;
利用一次泵将该能源中心制备的冷冻水传输到总供水管中;
利用二次泵将冷冻水通过总供水管传输到该热力交换站;
利用三次泵将冷冻水输送到该热力交换站的风机。
9.如权利要求8所述的冷冻水直供方法,其特征在于,还包括步骤:
测量总回水管中的回水温度;
根据回水温度控制各个水泵的工作频率,以控制冷冻水的供水流量。
10.如权利要求8所述的冷冻水直供方法,其特征在于,还包括步骤:
在总供水管和总回水管之间,以及该热力交换站中的各支供水管和支回水管之间设置共有管;
监测该共有管中的水流方向;
根据该共有管中的水流方向,控制冷冻水的供水流量。
CN 201010206935 2010-06-22 2010-06-22 冷冻水直供系统及方法 Pending CN101865496A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010206935 CN101865496A (zh) 2010-06-22 2010-06-22 冷冻水直供系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010206935 CN101865496A (zh) 2010-06-22 2010-06-22 冷冻水直供系统及方法

Publications (1)

Publication Number Publication Date
CN101865496A true CN101865496A (zh) 2010-10-20

Family

ID=42957320

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010206935 Pending CN101865496A (zh) 2010-06-22 2010-06-22 冷冻水直供系统及方法

Country Status (1)

Country Link
CN (1) CN101865496A (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103277863A (zh) * 2013-06-24 2013-09-04 机械工业第三设计研究院 空调冷水变流量系统及其控制方法
CN103383121A (zh) * 2012-05-03 2013-11-06 南京市建筑设计研究院有限责任公司 区域空调分散二次泵系统
CN103673198A (zh) * 2012-09-04 2014-03-26 林铖 中央空调载冷剂变温度变压力控制系统
CN103868205A (zh) * 2012-12-13 2014-06-18 美的集团股份有限公司 空调及其控制方法
CN105066341A (zh) * 2015-07-31 2015-11-18 新智能源系统控制有限责任公司 适用于空调二级泵系统的变水温控制系统
CN105222230A (zh) * 2015-10-16 2016-01-06 珠海格力电器股份有限公司 列间空调、列间空调的调压方法和列间空调系统
CN105698311A (zh) * 2016-03-07 2016-06-22 西安工程大学 干燥地区用动力分布式蒸发冷却温湿度独立控制空调系统
CN106918115A (zh) * 2017-02-22 2017-07-04 深圳达实智能股份有限公司 一种数据中心冷冻水输送控制方法及系统
CN107270455A (zh) * 2017-08-03 2017-10-20 珠海格力电器股份有限公司 制冷装置、集成冷站以及空调
CN109282398A (zh) * 2018-08-23 2019-01-29 中国建筑西北设计研究院有限公司 一种空调冷、热水输配系统和方法
CN109340933A (zh) * 2018-10-25 2019-02-15 华南理工大学 一种冷冻水大温差节能空调系统及其实现方法
CN110762673A (zh) * 2019-11-06 2020-02-07 珠海格力电器股份有限公司 冷水空调系统及其防冻控制方法、存储介质和计算机设备
CN115355580A (zh) * 2022-08-16 2022-11-18 浙江大冲能源科技股份有限公司 中央空调二次泵平衡管蓄冷系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2842275Y (zh) * 2005-10-25 2006-11-29 深圳市豪慧元智能化技术有限公司 可根据制冷负荷变化自动调节的中央空调节能系统
CN2929552Y (zh) * 2006-07-18 2007-08-01 熊伟安 用于中央空调系统的控制装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2842275Y (zh) * 2005-10-25 2006-11-29 深圳市豪慧元智能化技术有限公司 可根据制冷负荷变化自动调节的中央空调节能系统
CN2929552Y (zh) * 2006-07-18 2007-08-01 熊伟安 用于中央空调系统的控制装置

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103383121B (zh) * 2012-05-03 2016-08-31 南京市建筑设计研究院有限责任公司 区域空调分散二次泵系统
CN103383121A (zh) * 2012-05-03 2013-11-06 南京市建筑设计研究院有限责任公司 区域空调分散二次泵系统
CN103673198A (zh) * 2012-09-04 2014-03-26 林铖 中央空调载冷剂变温度变压力控制系统
CN103868205A (zh) * 2012-12-13 2014-06-18 美的集团股份有限公司 空调及其控制方法
CN103868205B (zh) * 2012-12-13 2017-02-15 美的集团股份有限公司 空调及其控制方法
CN103277863A (zh) * 2013-06-24 2013-09-04 机械工业第三设计研究院 空调冷水变流量系统及其控制方法
CN103277863B (zh) * 2013-06-24 2015-12-09 机械工业第三设计研究院 空调冷水变流量系统及其控制方法
CN105066341A (zh) * 2015-07-31 2015-11-18 新智能源系统控制有限责任公司 适用于空调二级泵系统的变水温控制系统
CN105066341B (zh) * 2015-07-31 2017-10-20 新智能源系统控制有限责任公司 适用于空调二级泵系统的变水温控制系统
CN105222230A (zh) * 2015-10-16 2016-01-06 珠海格力电器股份有限公司 列间空调、列间空调的调压方法和列间空调系统
CN105698311A (zh) * 2016-03-07 2016-06-22 西安工程大学 干燥地区用动力分布式蒸发冷却温湿度独立控制空调系统
CN105698311B (zh) * 2016-03-07 2019-03-08 西安工程大学 干燥地区用动力分布式蒸发冷却温湿度独立控制空调系统
CN106918115A (zh) * 2017-02-22 2017-07-04 深圳达实智能股份有限公司 一种数据中心冷冻水输送控制方法及系统
CN106918115B (zh) * 2017-02-22 2019-07-05 深圳达实智能股份有限公司 一种数据中心冷冻水输送控制方法及系统
CN107270455A (zh) * 2017-08-03 2017-10-20 珠海格力电器股份有限公司 制冷装置、集成冷站以及空调
CN109282398A (zh) * 2018-08-23 2019-01-29 中国建筑西北设计研究院有限公司 一种空调冷、热水输配系统和方法
CN109340933A (zh) * 2018-10-25 2019-02-15 华南理工大学 一种冷冻水大温差节能空调系统及其实现方法
CN110762673A (zh) * 2019-11-06 2020-02-07 珠海格力电器股份有限公司 冷水空调系统及其防冻控制方法、存储介质和计算机设备
CN115355580A (zh) * 2022-08-16 2022-11-18 浙江大冲能源科技股份有限公司 中央空调二次泵平衡管蓄冷系统

Similar Documents

Publication Publication Date Title
CN101865496A (zh) 冷冻水直供系统及方法
CN102607146B (zh) 一种中央空调系统及其控制方法
CN203771630U (zh) 可分室分时集中控制的空调地暖系统
CN2929552Y (zh) 用于中央空调系统的控制装置
CN106765776B (zh) 一种分布式变频三级泵区域供冷系统及方法
CN211424603U (zh) 采用二次泵变流量的空调水系统
CN105066544A (zh) 一种小温变组合式冷却循环水系统
CN202149568U (zh) 冷热水机组及中央空调系统
CN111089371A (zh) 一种电子厂房冷源站控制系统及其控制方法
CN202927994U (zh) 一种利用海水热能的节能型空调装置
CN202581682U (zh) 一种中央空调系统
CN103032937A (zh) 中央空调水系统水泵扬程流量与空调管路系统阻力流量匹配系统
CN207280009U (zh) 一种新型区域能源二次泵系统
CN109708226B (zh) 一种用于区域供冷的用户变频分布式混水接入系统及方法
CN101561173B (zh) 中央空调循环泵节电系统
CN209926547U (zh) 一种基于单一冷源的组合空调机组高效节能控制系统
CN208170772U (zh) 节能型制冷系统
CN211575340U (zh) 一种变频多联地板供暖风管机降温的恒温恒湿空调系统
CN102589216A (zh) 同时供冷供热节能系统和控制方法
CN202254130U (zh) 中央空调水系统水泵扬程流量与空调管路系统阻力流量匹配系统
CN113531698A (zh) 单管制空调末端设备冷冻水接管管路
CN109282398A (zh) 一种空调冷、热水输配系统和方法
CN208920421U (zh) 一种空调冷、热水输配系统
CN204987606U (zh) 一种小温变组合式冷却循环水系统
CN104033997A (zh) 一种集中管控冷冻水型机房空调数据中心

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20101020