CN101864933A - Reduce the method for perforating gun internal pressure - Google Patents

Reduce the method for perforating gun internal pressure Download PDF

Info

Publication number
CN101864933A
CN101864933A CN201010173521.9A CN201010173521A CN101864933A CN 101864933 A CN101864933 A CN 101864933A CN 201010173521 A CN201010173521 A CN 201010173521A CN 101864933 A CN101864933 A CN 101864933A
Authority
CN
China
Prior art keywords
gas
pressure
perforating gun
perforating
reduces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201010173521.9A
Other languages
Chinese (zh)
Other versions
CN101864933B (en
Inventor
B·M·格洛芙
L·A·比尔曼
I·C·瓦尔顿
P·克尼斯尔
A·T·沃娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schlumberger Holdings Ltd
Original Assignee
Schlumberger Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schlumberger Holdings Ltd filed Critical Schlumberger Holdings Ltd
Publication of CN101864933A publication Critical patent/CN101864933A/en
Application granted granted Critical
Publication of CN101864933B publication Critical patent/CN101864933B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/11Perforators; Permeators
    • E21B43/119Details, e.g. for locating perforating place or direction
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/11Perforators; Permeators
    • E21B43/116Gun or shaped-charge perforators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S102/00Ammunition and explosives
    • Y10S102/704Coolants

Landscapes

  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
  • Circuit Breakers (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Press Drives And Press Lines (AREA)

Abstract

The perforating gun that provides one to have perforating bullet is provided the method for the pressure after a kind of blast of reduction by one perforating gun; Make the perforating bullet blast, produce the explosion gas of pressurization; And reduce detonation gas pressure by the molar density that reduces explosion gas.Detonation gas pressure reduces in a time scope as required, is enough to form a dynamic under-balanced state in this time range, so that fluid surge stream flow to the well from oil reservoir.The step that reduces detonation gas pressure can also comprise heat dump, reactant or physical compression mechanism or their combination separately, heat dump is used to reduce the temperature of explosion gas, reactant is used for combining again to reduce the molar density of explosion gas with reactant gas, physical compression mechanism utilizes the discarded energy acting of explosion gas, reduces the molar density of gas temperature and explosion gas simultaneously.

Description

Reduce the method for perforating gun internal pressure
The application be that April 25, application number in 2005 are 200510066906.4 the applying date, denomination of invention divides an application for the Chinese patent application of " reducing the method and apparatus of perforating gun internal pressure ".
Technical field
The fluid that the present invention relates to improve between a reservoir formation and the well is communicated with, and particularly relates to the gas pressure that reduces in perforating job in the perforating gun.
Background technology
Perforation is a kind of oil reservoir completion practice, and its realizes that the fluid between a subsurface geology stratum and the well is communicated with, and this fluid is communicated with makes oil reservoir be communicated with ground conversely.Its objective is the controllable flow that helps between reservoir formation and the well.
Perforating job is by a perforating gun being lowered in the well near in the purpose reservoir formation and light perforating bullet and finish.Perforating bullet accumulates a large amount of energy in reservoir formation in several microseconds.
Although successfully realized being connected of oil reservoir and well, the perforation incident may destroy the partial bores gap structure (permeability) on stratum, therefore destroys the productivity ratio on stratum.The destruction in impact zone alleviates by surge stream usually, the rock that wherein destroys by " suction " apace in well.The surge circulation often realizes by underbalanced perforating that wherein, the well internal pressure is less than reservoir pressure.
Yet underbalanced perforating is always not effective.Recent findings, the reason that underbalanced perforating is invalid is " a underbalance environment ", should " underbalance environment " temporarily become overbalance, thereby cause fluid to flow in the oil reservoir, thereby stop required removing surge stream.This " dynamically overbalance " owing to gases at high pressure, these gases at high pressure can influence borehole pressure.In other words, up to the present, perforating gun is a unheeded factor in the perforation environment always.The perforating gun internal pressure is accurately considered and controls designing and carrying out an effective perforating job to be very important.
Therefore, need provide a kind of method and system that is used for a perforating job control perforating gun internal pressure.But also need provide a method and system that is used for after blast, reducing the perforating gun internal pressure.
Summary of the invention
According to above-mentioned consideration and other factors, the present invention relates to strengthen a well and be communicated with fluid between the stratum by reducing pressure after the blast in the perforating gun.
One object of the present invention is exactly to be minimized in pressure after the blast that produces in the perforating gun fast.The reduction of blast back pressure has reduced the trend that blast back borehole pressure increases.Therefore in addition, the fluid that lower perforating gun pressure can produce fluctuation flows in the perforating gun, makes it is that the well of overbalance becomes under-balanced state fast at first.These technology are called as " dynamically underbalance ".
Pressure in preset time in the gas is the certainty enthalpy number of its temperature and molar density (molecular weight gas in the unit volume).Therefore in order to reduce gas pressure, must use a mechanism to reduce the temperature and/or the molar density of gas.
The main source of perforating gun internal pressure is the explosive of lined-cavity charge." useful part " of the chemical energy of explosive is converted into injection kinetic energy, sprays kinetic energy moving target material again, therefore forms required perforation tunnel.Other energy accumulates in the closed housing of lined-cavity charge with the kinetic energy form.Because hole caves in, IMPULSIVE HEATING, plastic strain and cause of rupture is on the contrary a small amount of but very important energy can enter in bushing pipe and/or the sleeve pipe with form of heat.Remaining explosion gas energy show as heat, gases at high pressure, some gas can be discharged in perforating gun, and well is carried out " pressurization ".Need to reduce the pressure of this remaining explosive energy or " discarded energy ".This discarded energy finally dissipates by heat transfer mechanism really, but most of energy still exists in the relevant markers (tens milliseconds) of surge stream.Usually, these the remaining explosion gas in the perforating gun have 30% of explosive initial (any heat is transmitted before) chemical energy.Remaining is in 70%, and about 30% is assigned to bushing pipe, and 40% is assigned in the sleeve pipe.
In order to describe, the ratio of the chemical energy before the initial blast of " energy efficiency " remnants (discarding) energy that is defined as at explosion gas and explosive here.The discarded energy value of conventional perforation lined-cavity charge is about 30%.By changing the lined-cavity charge design example as increasing ball shell thickness, quality, intensity and/or ductility, this discarded energy of 30% can reduce to about 25% a little.The present invention needs further to reduce discarded energy, thus pressure after the implode of reduction perforating gun.
In one embodiment of the invention, by utilizing the quick refrigerating gas of a snap action energy heat dump (heat sink) to reduce blast back pressure.Cooling directly causes decompression.
In the second embodiment of the present invention, reduce detonation gas pressure by the molar density that reduces gas.By forming the molar density that solid chemical compound reduces explosion gas with the reaction of gaseous state explosion product.
Another one embodiment of the present invention comprises by gas pressure after temperature that reduces explosion gas and the blast that molar density reduces perforating gun.A kind of method is exactly to be used in combination for example heat dump in first embodiment and a kind ofly be used for reducing mole explosion product to form for example reactant of the compound of second embodiment of solid chemical compound of a snap action heat dump.The another one method is utilized the discarded energy acting exactly.
Therefore, the invention provides a kind of device that is used to reduce pressure after the perforating gun detonation, this device comprises: a perforating gun, load at least one perforating bullet, and wherein the perforating bullet explosion time produces the explosion gas of pressurization; With the mechanism that is used to reduce detonation gas pressure that is positioned at the perforating gun near-end.Detonation gas pressure reduces in the regular hour framework as required, is enough in this time frame wellbore fluid " suction " in perforating gun, to form dynamic under-balanced state, flow in the well from oil reservoir thereby make fluid surge flow.
Pressure reduces mechanism can comprise heat dump, reactant, physical compression mechanism or their combination separately, heat dump is used to reduce the temperature of explosion gas, reactant is used for combining again and reducing with reactant gas the molar density of explosion gas, and physical compression mechanism utilizes the discarded energy acting of explosion gas to reduce the temperature and the molar density of explosion gas.
Characteristics of the present invention and technological merit have briefly been enumerated in the front, are in order to make following detailed description of the present invention easier to understand.The invention discloses and be used for reducing and/or molar density reduces the method and apparatus of the gas pressure after the blast of perforation gun rack, thereby help surge stream from the stratum by means of temperature.Other characteristics of the present invention and advantage will be explained hereinafter, and these characteristics and advantage have formed the theme of technical scheme of the present invention.
Description of drawings
Aforementioned and other characteristics of the present invention preferably by understanding with reference to following description to specific embodiments of the invention, are described with reference to following accompanying drawing:
Fig. 1 is to use the pressure samples device lined-cavity charge blast back preceding 20 millisecond curve map of various heat dump materials in a seal-off pressure sampler test;
Fig. 2 is to use pressure samples device lined-cavity charge blast back 1st second the curve map of various heat dump materials in a seal-off pressure sampler test;
Fig. 3 A is to use the fragmentary cross-sectional view of an embodiment of a perforating gun of the present invention of the heat dump material of increase;
Fig. 3 B is to use the fragmentary cross-sectional view of an embodiment of a perforating gun of the present invention of the heat dump material of increase;
Fig. 3 C is to use the fragmentary cross-sectional view of an embodiment of a perforating gun of the present invention of the heat dump material of increase;
Fig. 4 A is the fragmentary cross-sectional view of an embodiment of a perforating gun with reactant of the present invention;
Fig. 4 B is the fragmentary cross-sectional view of an embodiment of a perforating gun with reactant of the present invention;
Fig. 4 C is the fragmentary cross-sectional view of an embodiment of a perforating gun with reactant of the present invention;
Fig. 5 A is the schematic diagram of a perforating gun of mechanical compress section in the time 1 that perforating bullet is exploded that have of the present invention;
Fig. 5 B be a perforating gun with mechanical compress section of the present invention at perforating bullet by the schematic diagram of the time 2 in the several milliseconds in the back of exploding;
Fig. 5 C is a curve, is described in perforating bullet and explodes to the pressure drop of the several milliseconds of implode gases in blast back and the pressure increase situation of mechanical compress material.
The specific embodiment
With reference now to accompanying drawing,, described in the accompanying drawings parts not necessarily according to a certain percentage, wherein, similar or alike parts in several views with same Reference numeral.
In one embodiment of the invention, by use one fast the snap action energy heat dump of refrigerating gas reduce blast back pressure.Cooling directly causes decompression.The additional advantage of cooling is possible condense from any steam, and is well-known, comprises a large amount of explosion gas in the steam.Condense and reduce gas density and form enough heat transfer rates, thereby significantly reduce pressure.
Effectively heat dump must have two intrinsic properties: absorb heat fast (high thermal conductivity) and bigger thermal energy memory capacity.Energy storage capacity can be expressed as concrete heat capacity and/or enthalpy of phase change.The examples of material that shows high thermal conductivity, high heat capacity and/or high enthalpy of phase change comprises steel, copper, silver, nickel and water, but is not limited to above-mentioned material.
In these metals, copper shows the best of breed of high thermal conductivity (heat absorption fast) and heat capacity (amount of the heat of absorption).In the discussion here, all material character is all regarded as is in standard state.In all conventional materials, glassware for drinking water has maximum heat conductivity, and water is faster 40% than silver, than copper fast 50%.Water also has the heat capacity of very high volume ratio, and is higher by about 23% than the heat capacity of steel or copper.In addition, glassware for drinking water has very high heat evaporation characteristic, is 2.2kJ/g.Be exactly that gas pressure in this last characteristic and the perforating gun fact that keeps below the boiling point of metal usually above the boiling point of water makes water and other metal obviously separate.
Except above-mentioned intrinsic property, physical arrangement is also extremely important.The total amount of the close degree of heat dump and explosion gas, exposed surface zone and heat dump material is determining scope and the speed that energy transmits to a great extent.There has been test to show that various heat dumps are in the efficient that reduces detonation gas pressure fast.Test is to carry out in the pressure samples device experiment of sealing, wherein, after an airtight chamber implode, writes down the pressure of the gas of emitting at a spot of explosive.In each test, a different heat dump subjects is assessed, and the gas pressure of measuring is as an index of energy absorption efficiency.
Fig. 1 and 2 represents the pressure data of these tests.After Fig. 1 represents to explode with curve preceding 20 milliseconds.After Fig. 2 represents to explode with curve whole the 1st second.In each test, the deadline of explosive charge is about 10 microseconds, impacts transients after 3~5 milliseconds and begins decay, and reach spatial balance.
With reference to Fig. 1 and 2,4 curve tables are shown in the variation of 4 pressure in the different tests along with the time.
The result of curve topmost 1 expression benchmark test wherein, adds without any heat dump.Because " confining pressure sampler " housing itself is as a heat dump, the pressure in the test is decayed.This is a benchmark, according to this benchmark the efficient of other heat dump is estimated.
In second test, a kind of copper powder is introduced in the confining pressure sampler chamber.From the 2nd curve of last terminal number, curve 2, the pressure of expression copper powder is along with the variation of time.In preceding 5~10 milliseconds after blast, copper powder reduces pressure effectively.
In the 3rd test, water is introduced in the confining pressure sampler chamber.The volume of test water equals the volume of the whole copper powder that uses in second test.Owing to the quantity reason in the structure of testing, water can more effectively reduce air pressure (curve 3) than copper powder, particularly can more effectively reduce air pressure (curve 3) in preceding 2~5 milliseconds.
In the 4th test, the microencapsulation globule is introduced in the confining pressure sampler.These globules are thin powder basically, and wherein, each powder particle is the thin plastic casing of an inner filling water.The water yield that is filled in the powder is identical with the water yield of use in the 3rd test.As shown in the figure, the time dependent curve 4 of pressure is positioned on the curve 3.
Fig. 3 A is the fragmentary cross-sectional view of an embodiment of a perforating gun 10 of the present invention.Perforating gun 10 comprises that one forms the interior reducing transformer of perforation gun rack 12, a plurality of perforating bullet 14, a plurality of lined-cavity charge carrier 14a and perforating gun of perforating gun chamber 18.In this embodiment, reducing transformer is a heat dump 16, is placed near the lined-cavity charge 14, and is positioned at perforating gun 10.Heat dump (cooler) thus 16 temperature that reduce from the explosion gas of perforating bullet 14 reduce its pressure.
Fig. 3 A represents that heat dump material 16 is placed in the perforating gun chamber 18 or is connected on the lined-cavity charge carrier 12, perhaps is embedded in the lined-cavity charge carrier 12.Should be able to predict, heat dump 16 can form or be provided with near a plurality of positions perforating bullet 14 and the formed explosion gas (not shown, as still to be full of perforating gun chamber 18 basically).The example that is used for being provided with the diverse location of heat dump 16 describes at different views, and these examples are not restrictive.
Fig. 3 B is the fragmentary cross-sectional view of the another one embodiment of a perforating gun 10 of the present invention, and this perforating gun 10 has other heat dump 16.In this embodiment, heat dump 16 is included in the lid 20, and lid 20 is positioned at front surface 22 near-ends of perforating bullet 14.
Fig. 3 C is the fragmentary cross-sectional view of the another one embodiment of a perforating gun 10 of the present invention, and this perforating gun 10 has other heat dump 16.In this embodiment, heat dump 16 is included in the jet perforating shell case 14a of perforating bullet 14.
To 3C, heat dump can be formed by any material with following one or more attribute with reference to figure 3A: high heat capacity (specific heat capacity and/or enthalpy of phase change), high thermal conductivity, high surface and high evaporation enthalpy.Heat dump 16 materials comprise that (but being not limited to) micro-solid, powder and monomer material comprise water, copper or other suitable material.Heat dump material 16 can embed, is placed into or is connected to jet perforating shell case 14a, perforation gun rack 12, perforating gun chamber 18, load the other parts of managing (not shown) or perforating gun 10.
In another one embodiment of the present invention, reduce blast back gas pressure by a reducing transformer, this reducing transformer reduces the molar density (molar density reducing transformer) of gas.The purpose of the disclosure, because gas temperature will equal the temperature of general well, the back period, final balancing gas pressure was determined by its molar density.Therefore, unique mode that can reduce back period pressure reduces molar density exactly.And for the present invention, the volume of supposing the system is fixed, so the reduction of the reduction of molar density and number of moles of gas or molecular amounts is synchronous.
Have the perforating gun system that unlimited Rapid Thermal is transmitted for being positioned at, wherein, explosion gas moment is cooled to the temperature of general well, if the molar density height of gas, pressure is can also right and wrong high ideally.And in practice, heat transmission is limited, and present embodiment can increase the temperature of gas at short notice, and therefore being enough to produce a net pressure increases.Yet along with enough heat transmission fast, the present invention reduces the pressure in the perforating gun in the markers of being paid close attention to.Embodiments of the invention also can be used for non-perforation application reduction back period pressure.
Usually, desirable explosive (CHNO) decomposes main following molecular species: the N of generation 2, H 2O, CO 2, CO and C.All molecules all are gas except that C, and C is solid graphite (carbon black) normally.Also have other trace gas kind to exist, but these molecules comprise the overwhelming majority of blast products gas.Gas molecule quantity for the back is calculated, and supposes N 2And H 2O is about 40% respectively, and CO 2With CO constitute remaining 20%.
This embodiment discloses by making composed atom combine again with other reactant, thereby one or more below producing in the solid chemical compound (many is known ceramic materialss) of kind: nitride, oxide, hydroxide and hydride, reduce the quantity of main gaseous species.Be positioned at the fixing system of volume, the result of present embodiment reduces the molar density of explosion gas.
Oxide.Following reactant forms than CO, CO 2Perhaps H 2O (the optimization compound of each compound correspondence is represented with round parentheses) is stable oxide more: Al (Al 2O 3), B (B 2O 3), Ba (BaO), Ca (CaO), Fe (Fe 3O 4), K (K 2O), Li (Li 2O), Mg (MgO), Mn (MnO), Mo (MoO 2), Na (Na 2O), Si (SiO 2), Sn (SnO 2), Ta (Ta 2O 5), Ti (TiO), V (V 2O 3), WO 2), Zn (ZnO), Zr (ZrO 2).With CO and CO 2Be reduced into C (solid) and will reduce whole gas molar density about 20%.
Hydroxide and hydride.Several above-mentioned elements also can form hydroxide, and/or their composition forms oxide.The oxide that sodium and calcium produce is more stable than basic oxide: K 2B 4O 7, KOH, Na 2B 4O 7And NaOH.The hydroxide that other element for example resembles Al, Ba, Ca, Fe, Li, Mg, Sn, Zn formation does not have their oxide stable (but still stable than water).
Following reactant forms hydride; They all do not have H 2O is stable, so they are formed on the H that is reduced into of front 2Perhaps gas mode (as mentioned above) (the optimization compound of each compound correspondence is represented with round parentheses) afterwards.Al(AlH 3)、Ca(CaH 2),Li(LiH),Mg(MgH 2),K(KH),Na(NaH),Ta(Ta 2H),Ti(TiH 2),Zr(ZrH 2)。Consume all oxygen and hydrogen and will reduce about 60% of whole gas molar density.
Nitride.Following reactant forms stable nitride (the optimization compound of each compound correspondence is represented with round parentheses): Al (AlN), B (BN), Ca (Ca 3N 2), Li (Li 3N), Mg (Mg 3N 2), Si (Si 3N 4), Ta (TaN), Ti (TiN), V (VN), Zr (Zrn).Consume all oxygen and hydrogen and will reduce about 40% of whole gas molar density.
From top enumerating, we can determine to form the classes of compounds of stable nitride, oxide and hydroxide or hydride.These compounds consume all explosion gas kinds in theory basically: AL, Ca, Li, Mg, Ta, Ti and Zr.The compound that may form is disclosed in the table 1.
Table 1
Element Oxide (Gibbs free energy: KJ-mol-0) Hydroxide (Gibbs free energy: KJ-mol-0) Hydride (Gibbs free energy: KJ-mol-H) Nitride (Gibbs free energy: KJ-mol-N)
??Al ??Al 2O 3;-527 ??Al(OH) 3;-435 ??AlH 3;? ??AlN;-287
Element Oxide (Gibbs free energy: KJ-mol-0) Hydroxide (Gibbs free energy: KJ-mol-0) Hydride (Gibbs free energy: KJ-mol-H) Nitride (Gibbs free energy: KJ-mol-N)
??Ca ??CaO;-603 ??Ca(OH) 2;-449 ??CaH 2;-72 ??Ca3N 2;??
??Li ??Li 2O;-561 ??LiOH;-439 ??LiH;-68 ??Li 3N;-129
??Mg ??MgO;-569 ??Mg(OH) 2;-417 ??MgH 2;-18 ??Mg 3N 2;-201
??Ta ??Ta 2O 5;-382 ??Ta 2H;-69 ??TaN;?
??Ti ??TiO;-495 ??TiH 2;-53 ??TiN;-244
??Zr ??ZrO 2;-522 ??ZrH 2;-65 ??ZrN;-337
The formation enthalpy of compound (formation enthalpy) is proportional to Gibbs free energy basically, so the value of Gibbs function (stability) has been represented the value of thermal discharge (rising with the short term pressure of following).More precisely, the difference between the formation enthalpy of product and reactant is represented clean thermal discharge.Desirable reactant 24 is a kind of reactants that produce minimum thermal discharge, and it needs a spot of reactant (reducing the influence to explosion property), and necessary activation energy is provided.
Therefore, the present invention includes and place near a plurality of reactants 24 (near-end) explosion gas of perforating bullet 14, be included in unexploded perforating bullet 14 and be embedded in one or more following reactant.Material as reactant 24 includes but not limited to Al, Ca, Li, Mg, Ta, Ti and Zr.
Should be understood that the amount of reactant 24 can change according to operation kinetics, required molar density reduction amount and the requirement that reduces the influence of explosion property.The embodiments of the invention that use reactant to reduce the molar density of explosion gas are illustrated among Fig. 4 A~4C.
Fig. 4 A is the fragmentary cross-sectional view that has as an embodiment of a perforating gun 10 of the reactant 24 of reducing transformer in the perforating gun of the present invention.Shown in Fig. 4 A, reactant 24 is placed near perforating bullet 14.Reactant 24 can be positioned in the chamber 18, connects or is embedded in the perforation gun rack 12 or be placed on other position of the near-end explosion gas that perforating bullet 14 blasts produce near.The example of the diverse location of placing response agent 24 is illustrated in each accompanying drawing, but these positions are not limited to these examples.
Fig. 4 B is the fragmentary cross-sectional view that has as the another one embodiment of a perforating gun 10 of the reactant 24 of reducing transformer in the perforating gun of the present invention.Fig. 4 B explanation reactant 24 is included among the housing 14a of perforating bullet 14.
Fig. 4 C is the fragmentary cross-sectional view that has as the another one embodiment of a perforating gun 10 of the reactant 24 of reducing transformer in the perforating gun of the present invention.Fig. 4 C explanation reactant 24 is embedded in the perforating bullet 14.
In another one embodiment of the present invention, perforating gun 10 can comprise the temperature that is used to reduce blast back perforating gun pressure and the mechanism of molar density simultaneously.As an example, the technical characterictic among Fig. 3 and Fig. 4 can combine.An example is illustrated among Fig. 4 A.Should be able to recognize that heat dump material 16 and reactant 24 can be included in the perforating gun 10 of the present invention, with pressure after the blast that reduces perforating job.
Blast back pressure also can reduce by mechanical device, and these methods are not also recognized.
When perfect gas isenthalpic expansion (that is " chokes "-desirable example is to expand into vacuum), gas does not do work, and has substantially the same energy before blast back and the blast.If the specific heat capacity of gas is constant, this expansion is exactly an isothermal.
From perfect gas law, P=R * (n/V) * and T, this expansion can only reduce pressure, P2=P1 (V1/V2) by reducing molar density.Here, n is a constant, and V is a variable, and is just opposite with the embodiment that describes among Fig. 4 A, 4B and the 4C.
But when an expanding gas begins acting, it is the surrounding environment that releases energy in acting.The cooling of law of conservation of energy control expanding gas.When the perfect gas isenthalpic expansion, its pressure descends according to the following equation: the ^ γ of P2=P1 * (V1/V2), wherein, γ is specific heat ratio (being approximately 1.4 for air or a lot of other gas).Therefore, isenthalpic expansion produces more significant pressure drop than isothermal expansion.
One effective " acting " expand isothermal not necessarily or even adiabatic because other reversible process may take place.In fact, this process (the impact heat of sleeve pipe or bushing pipe etc., plasticity flow or hole caves in) takes place in the initial expansion process of explosion gas 26 really.The present invention and embodiment note by means of PdV (applied pressure multiply by stereomutation) acting the potential energy of gas (heat energy) being converted into kinetic energy.This kinetic energy then or simultaneously for example resembles viscosity heating, plastic strain or hole by means of any mechanism and caves in and disperse.Perhaps selectively, after having passed through the enough time (tens of millisecond) after lined-cavity charge 14 blasts, energy can be discharged in the explosion gas, to realize reducing the advantage of perforating gun pressure.
Fig. 5 A is the schematic diagram that comprises the perforating gun of the present invention 10 of a reducing transformer, and this reducing transformer is a compression section 28.5A and 5B with reference to the accompanying drawings, perforating gun 10 comprises a perforation gun rack 12 and a perforating gun chamber 18.Perforating gun chamber 18 surrounds 36 functional connections an of compression chamber that form with compression section 28.A compression dividing plate 34 is sealably separated perforating gun chamber 18 and compression chamber 36.Compression dividing plate 34 can move in the compression chamber 36.Compression dividing plate 34 can resemble the diaphragm and slidably move and/or distortion.Compression chamber 36 comprises for example compressible gas or for example resemble spring or the material of gas piston types of devices of a compressible material 30.Compressible material 30 must be compressible in its existing borehole environment, and must be compressible in several milliseconds after the perforating bullet blast.Compressible material 30 can comprise for example for example gas or liquid or compressible solids of spring, a compressible fluid of a mechanical device.
The perforating gun 10 that Fig. 5 A is illustrated in several milliseconds of perforating bullet (Fig. 3,4) the blast backs or the time 1 (t1) is located.Explosion gas 26 has been full of perforating gun chamber 18.
Fig. 5 B is illustrated in several milliseconds of the perforating bullet blast backs, i.e. the perforating gun 10 located of time 2 (t2).Explosion gas 26 has overcome and has compressed compressible material 30 acting of expanding, and therefore consumes the discarded energy in the explosion gas 26, reduces the molar density and the temperature of explosion gas 26, thereby reduces pressure.
Fig. 5 C arrives " t2 " in the time with curve shows at relevant " t1 ", the situation that the pressure of the reduction situation of pressure and compressible material increases after the perforating gun implode gas burst.
Referring to figs. 1 to 5, the method for the pressure of gas 26 after a kind of blast that reduces perforating gun 10 has been described.The pressure reduction mechanism that perforating gun 10 has perforating bullet 14 and is used to reduce the pressure of perforating bullet 14 formed explosion gas 26.
Reducing transformer can comprise that the heat dump 16 of a temperature that is used to reduce explosion gas 16 and/or one are used to reduce reactant 24 and/or a compression section 28 of the molar density of explosion gas 16, make explosion gas acting, the volume that reduces the temperature of perforating gun 10 thus and increase perforating gun is to reduce molar density.
Heat dump 16 is arranged to be adjacent to perforating bullet 14.Heat dump 16 can include, but are not limited to micro-solid, powder, monomer material and comprise water, copper or other suitable material.
Desirable reactant 24 is a kind of reactants that produce minimum thermal discharge, needs a spot of reactant (reducing the influence to explosion property), thereby avoids necessary activation energy.Reactant 24 can comprise AL individually, Ca, and Li, Mg, Ta, Ti and Zr or their combination, but be not limited to these reactants or its combination.
In the face of the detailed description of specific embodiments of the invention, the system of a novelty of control dynamic pressure transients in perforating job is disclosed obviously in the past.Although specific embodiment of the present invention is open with certain concrete form, this is not a limitation of the present invention just in order to describe each technical characterictic of the present invention and aspect.For example, should be able to recognize that the perforating gun internal pressure is included in the pressure of formation in the perforating gun and near the pressure perforating gun.Be arranged in the perforating gun or be connected to object of reference on the perforating gun and comprise the part of perforating gun tubing string or be connected, thereby make that the object that is arranged in the perforating gun is an extension of perforating gun or a part that forms the perforation gun rack with perforating gun is functional.Should be able to expect, can make various replacements, modification and/or improvement, include, but are not limited to the various structural changes that to expect, and do not depart from the defined the spirit and scope of the invention of appended technical scheme the disclosed embodiments.

Claims (10)

1. the method for the pressure after the blast of reduction by one perforating gun comprises the steps:
Perforating gun with perforating bullet is provided;
Make the perforating bullet blast, produce the explosion gas of pressurization; And
Reduce detonation gas pressure by the molar density that reduces explosion gas.
2. according to the described method of claim 1, wherein, the step that reduces detonation gas pressure comprises provides heat dump, and this heat dump is connected with perforating gun is functional, is applicable to the temperature that reduces explosion gas.
3. according to the described method of claim 1, wherein, the step that reduces detonation gas pressure comprises provides a compression section, and this compression section is connected with perforating gun is functional, is used to reduce the pressure of explosion gas.
4. according to the described method of claim 1, wherein, the step that reduces detonation gas pressure comprises that providing a reactant, this reactant to be applicable to explosion gas combines again to form solid.
5. according to the described method of claim 2, wherein, described heat dump comprises copper.
6. according to the described method of claim 2, wherein, described heat dump comprises water.
7. according to the described method of claim 3, wherein, described compression section comprises compressible spring.
8. according to the described method of claim 3, wherein, described compression section comprises compressible fluid.
9. according to the described method of claim 3, wherein, described compression section comprises compressible solids.
10. according to the described method of claim 4, wherein, described reactant is selected from the group that following material is formed: Al, Ca, Li, Mg, Ta, Ti, Zr and their combination.
CN201010173521.9A 2004-04-23 2005-04-25 Method for reducing pressure in a perforating gun Expired - Fee Related CN101864933B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/709250 2004-04-23
US10/709,250 US7121340B2 (en) 2004-04-23 2004-04-23 Method and apparatus for reducing pressure in a perforating gun

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN200510066906.4A Division CN1690358B (en) 2004-04-23 2005-04-25 Method and apparatus for reducing pressure in a perforating gun

Publications (2)

Publication Number Publication Date
CN101864933A true CN101864933A (en) 2010-10-20
CN101864933B CN101864933B (en) 2012-04-18

Family

ID=34590850

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201010173521.9A Expired - Fee Related CN101864933B (en) 2004-04-23 2005-04-25 Method for reducing pressure in a perforating gun
CN200510066906.4A Expired - Fee Related CN1690358B (en) 2004-04-23 2005-04-25 Method and apparatus for reducing pressure in a perforating gun

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN200510066906.4A Expired - Fee Related CN1690358B (en) 2004-04-23 2005-04-25 Method and apparatus for reducing pressure in a perforating gun

Country Status (7)

Country Link
US (1) US7121340B2 (en)
CN (2) CN101864933B (en)
GB (2) GB2426040B (en)
MX (1) MXPA05003886A (en)
NO (1) NO20051984L (en)
RU (1) RU2299975C2 (en)
SG (1) SG116639A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023113836A1 (en) * 2021-12-15 2023-06-22 Halliburton Energy Services, Inc. Energy-absorbing impact sleeve for perforating gun

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7806035B2 (en) * 2007-06-13 2010-10-05 Baker Hughes Incorporated Safety vent device
US7849919B2 (en) * 2007-06-22 2010-12-14 Lockheed Martin Corporation Methods and systems for generating and using plasma conduits
US20090078420A1 (en) * 2007-09-25 2009-03-26 Schlumberger Technology Corporation Perforator charge with a case containing a reactive material
US7896077B2 (en) * 2007-09-27 2011-03-01 Schlumberger Technology Corporation Providing dynamic transient pressure conditions to improve perforation characteristics
US7640986B2 (en) * 2007-12-14 2010-01-05 Schlumberger Technology Corporation Device and method for reducing detonation gas pressure
US20090151589A1 (en) * 2007-12-17 2009-06-18 Schlumberger Technology Corporation Explosive shock dissipater
US7712532B2 (en) * 2007-12-18 2010-05-11 Schlumberger Technology Corporation Energized fluids and pressure manipulation for subsurface applications
US7721820B2 (en) * 2008-03-07 2010-05-25 Baker Hughes Incorporated Buffer for explosive device
US7861784B2 (en) * 2008-09-25 2011-01-04 Halliburton Energy Services, Inc. System and method of controlling surge during wellbore completion
US8726995B2 (en) * 2008-12-01 2014-05-20 Geodynamics, Inc. Method for the enhancement of dynamic underbalanced systems and optimization of gun weight
US8424606B2 (en) * 2008-12-27 2013-04-23 Schlumberger Technology Corporation Method and apparatus for perforating with reduced debris in wellbore
US8286706B2 (en) * 2009-03-26 2012-10-16 Baker Hughes Incorporated Pressure compensation for a perforating gun
US10384281B2 (en) * 2012-03-02 2019-08-20 Sawstop Holding Llc Actuators for power tool safety systems
US8381822B2 (en) 2009-11-12 2013-02-26 Halliburton Energy Services, Inc. Managing pressurized fluid in a downhole tool
WO2011163252A1 (en) * 2010-06-22 2011-12-29 Schlumberger Canada Limited Gas cushion near or around perforating gun to control wellbore pressure transients
WO2012148429A1 (en) 2011-04-29 2012-11-01 Halliburton Energy Services, Inc. Shock load mitigation in a downhole perforation tool assembly
US8397814B2 (en) 2010-12-17 2013-03-19 Halliburton Energy Serivces, Inc. Perforating string with bending shock de-coupler
US8393393B2 (en) 2010-12-17 2013-03-12 Halliburton Energy Services, Inc. Coupler compliance tuning for mitigating shock produced by well perforating
US8985200B2 (en) 2010-12-17 2015-03-24 Halliburton Energy Services, Inc. Sensing shock during well perforating
US8397800B2 (en) 2010-12-17 2013-03-19 Halliburton Energy Services, Inc. Perforating string with longitudinal shock de-coupler
US20120241169A1 (en) 2011-03-22 2012-09-27 Halliburton Energy Services, Inc. Well tool assemblies with quick connectors and shock mitigating capabilities
CN102155200A (en) * 2011-04-21 2011-08-17 西南石油大学 Perforator with damping and buffering functions
US9091152B2 (en) 2011-08-31 2015-07-28 Halliburton Energy Services, Inc. Perforating gun with internal shock mitigation
US9297228B2 (en) 2012-04-03 2016-03-29 Halliburton Energy Services, Inc. Shock attenuator for gun system
WO2014046655A1 (en) 2012-09-19 2014-03-27 Halliburton Energy Services, Inc. Perforation gun string energy propagation management with tuned mass damper
US9598940B2 (en) 2012-09-19 2017-03-21 Halliburton Energy Services, Inc. Perforation gun string energy propagation management system and methods
US9447678B2 (en) 2012-12-01 2016-09-20 Halliburton Energy Services, Inc. Protection of electronic devices used with perforating guns
DE112014006644B4 (en) * 2014-05-08 2021-08-26 Halliburton Energy Services, Inc. Method of controlling energy inside a perforating gun using an endothermic reaction
US10337301B2 (en) 2015-02-13 2019-07-02 Halliburton Energy Services, Inc. Mitigated dynamic underbalance
CN104847315A (en) * 2015-03-25 2015-08-19 大庆红祥寓科技有限公司 Expansion composite perforating gun
US10415353B2 (en) 2015-05-06 2019-09-17 Halliburton Energy Services, Inc. Perforating gun rapid fluid inrush prevention device
AU2016389004A1 (en) 2016-01-27 2018-06-07 Halliburton Energy Services, Inc. Autonomous annular pressure control assembly for perforation event
US11346184B2 (en) 2018-07-31 2022-05-31 Schlumberger Technology Corporation Delayed drop assembly

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2139104A (en) * 1936-02-15 1938-12-06 Lane Wells Co Pressure equalizing and surge relief device for gun perforators
NL88944C (en) * 1949-01-22
US3709294A (en) * 1971-04-16 1973-01-09 Camco Inc Downhole power dissipator
US4800958A (en) * 1986-08-07 1989-01-31 Halliburton Company Annulus pressure operated vent assembly
US5044388A (en) * 1989-02-13 1991-09-03 Dresser Industries, Inc. Perforating gun pressure bleed device
US5445078A (en) * 1989-12-14 1995-08-29 Universal Propulsion Company, Inc. Apparatus and method for dispensing payloads
US5088557A (en) * 1990-03-15 1992-02-18 Dresser Industries, Inc. Downhole pressure attenuation apparatus
US5131470A (en) * 1990-11-27 1992-07-21 Schulumberger Technology Corporation Shock energy absorber including collapsible energy absorbing element and break up of tensile connection
US5117911A (en) * 1991-04-16 1992-06-02 Jet Research Center, Inc. Shock attenuating apparatus and method
US5188191A (en) * 1991-12-09 1993-02-23 Halliburton Logging Services, Inc. Shock isolation sub for use with downhole explosive actuated tools
US6336408B1 (en) * 1999-01-29 2002-01-08 Robert A. Parrott Cooling system for downhole tools
US6412614B1 (en) * 1999-09-20 2002-07-02 Core Laboratories Canada Ltd. Downhole shock absorber
US6286598B1 (en) * 1999-09-29 2001-09-11 Halliburton Energy Services, Inc. Single trip perforating and fracturing/gravel packing
US6732798B2 (en) * 2000-03-02 2004-05-11 Schlumberger Technology Corporation Controlling transient underbalance in a wellbore
US6588508B2 (en) * 2000-08-01 2003-07-08 Schlumberger Technology Corporation Method and apparatus to reduce trapped pressure in a downhole tool
CN2453131Y (en) * 2000-09-05 2001-10-10 大港油田集团测井公司 Oil well perforating gun decompression device
CN2519020Y (en) * 2001-08-10 2002-10-30 吉林石油集团有限责任公司试油处 Downhole damper
US6604818B2 (en) * 2002-01-07 2003-08-12 Xerox Corporation Controlled water evaporation from ink jet inks
US6865792B2 (en) * 2003-02-18 2005-03-15 Edward Cannoy Kash Method for making a well perforating gun
US7246659B2 (en) * 2003-02-28 2007-07-24 Halliburton Energy Services, Inc. Damping fluid pressure waves in a subterranean well

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023113836A1 (en) * 2021-12-15 2023-06-22 Halliburton Energy Services, Inc. Energy-absorbing impact sleeve for perforating gun

Also Published As

Publication number Publication date
RU2005112104A (en) 2006-10-27
NO20051984L (en) 2005-10-24
US20050236183A1 (en) 2005-10-27
RU2299975C2 (en) 2007-05-27
CN1690358A (en) 2005-11-02
US7121340B2 (en) 2006-10-17
GB0506853D0 (en) 2005-05-11
MXPA05003886A (en) 2005-10-27
GB2413837B (en) 2007-01-10
SG116639A1 (en) 2006-01-27
GB2413837A (en) 2005-11-09
GB2426040C (en) 2007-03-07
CN101864933B (en) 2012-04-18
GB2426040A (en) 2006-11-15
CN1690358B (en) 2010-09-29
GB0613908D0 (en) 2006-08-23
NO20051984D0 (en) 2005-04-22
GB2426040B (en) 2007-03-07

Similar Documents

Publication Publication Date Title
CN1690358B (en) Method and apparatus for reducing pressure in a perforating gun
Wohletz Mechanisms of hydrovolcanic pyroclast formation: grain-size, scanning electron microscopy, and experimental studies
Hastings et al. Reactive structural materials: preparation and characterization
Heap et al. Timescales for permeability reduction and strength recovery in densifying magma
CN103119392A (en) Improvements in and relating to oil well perforators
Wilson Relationships between pressure, volatile content and ejecta velocity in three types of volcanic explosion
CA2444826A1 (en) Low density proppant
US7263836B2 (en) Vortex tube cooling system
AU2013377974B2 (en) Methods of controlling the dynamic pressure created during detonation of a shaped charge using a substance
AU2011320466A2 (en) Direct drill bit drive for tools on the basis of a heat engine
CN102182432A (en) Secondary explosion energy-releasing liner
Winkler et al. Subsurface deformation of experimental hypervelocity impacts in quartzite and marble targets
Zhou et al. Effects of geo-stress on the dynamic response of multi-physical field parameters during coal and gas outbursts under true triaxial stress
Li et al. The correlation between crushed coal porosity and permeability under various methane pressure gradients: a case study using Jincheng anthracite
Scheu et al. Magma fragmentation
CN105164758B (en) Local energy is concentrated
Wang et al. Dynamic fragmentation of a Zr-based metallic glass under various impact velocities
Ashman et al. Pre-galactic cooling flows and baryonic dark matter
CA1224139A (en) Pressure responsive explosion initiator with time delay and method of use
Grove et al. Explosion-induced damage to oilwell perforating gun carriers
Sharma Static and dynamic measurement‐based thermodynamic analysis of solid sorption refrigeration system
Wang et al. Consistent determination of the intrinsic kinetic properties between hydrogen and hydriding alloys
RU2340764C1 (en) Detonator for well equipment
Lynch Operating characteristics of high performance commercial metal hydride heat exchangers
Combs et al. Fast-opening, high-throughput gas valve and application for inertial fusion energy R&D

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120418

Termination date: 20140425