CN101858811B - Method for compensating signal of high-precision pressure sensor - Google Patents

Method for compensating signal of high-precision pressure sensor Download PDF

Info

Publication number
CN101858811B
CN101858811B CN 201010202078 CN201010202078A CN101858811B CN 101858811 B CN101858811 B CN 101858811B CN 201010202078 CN201010202078 CN 201010202078 CN 201010202078 A CN201010202078 A CN 201010202078A CN 101858811 B CN101858811 B CN 101858811B
Authority
CN
China
Prior art keywords
pressure
signal
temperature
vt
vpm
Prior art date
Application number
CN 201010202078
Other languages
Chinese (zh)
Other versions
CN101858811A (en
Inventor
李晨
杨川
Original Assignee
西安交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安交通大学 filed Critical 西安交通大学
Priority to CN 201010202078 priority Critical patent/CN101858811B/en
Publication of CN101858811A publication Critical patent/CN101858811A/en
Application granted granted Critical
Publication of CN101858811B publication Critical patent/CN101858811B/en

Links

Abstract

The invention discloses a method for compensating a signal of a high-precision pressure sensor. The method comprises the following steps of: inputting a pressure measuring signal and a temperature measuring signal measured by a pressure sensor into a digital signal processor; converting an original pressure signal into a pressure signal which is not subjected to temperature compensation and capable of eliminating lagging errors through a lagging error compensation method; carrying out temperature correction on the pressure signal through a signal interface processing method to acquire the pressure signal subjected to the temperature correction; and processing the pressure signal and the temperature signal subjected to the temperature correction to acquire a pressure signal and a temperature signal subjected to temperature compensation and non-linear error compensation through a temperature compensating method. The invention can compensate lagging errors and non-linear errors of the pressure sensor and errors caused by the change of the environment temperature, and can improve the measurement precision of the pressure sensor.

Description

高精度压力传感器信号补偿方法 Precision pressure sensor signal compensation method

技术领域: FIELD:

[0001] 本发明属于信号处理领域,涉及一种传感器的信号补偿方法,尤其是一种对于硅压力传感器的非线性误差、迟滞误差和温度变化引起的误差的补偿方法。 [0001] The present invention belongs to the field of signal processing, to a method of compensating the signal of the sensor, the error compensation method for nonlinear errors, especially a silicon pressure sensor, and a hysteresis errors caused by temperature variations.

背景技术: Background technique:

[0002] 硅压力传感器是微机械工艺最成功的传感器产品,主要有硅压阻式、电容式和谐振式三种,其中硅压阻式应用最广泛。 [0002] The silicon pressure sensor is a micromechanical sensors the process of the most successful products, mainly silicon piezoresistive, capacitive, and resonant three, including the most widely used silicon piezoresistive. 硅压阻式压力传感器利用半导体材料硅的压阻效应、 惠斯顿电桥原理、集成电路工艺和微机械加工技术制成。 Piezoresistive pressure transducer utilizing the piezoresistive effect of a semiconductor silicon material, the principle of a Wheatstone bridge, made of integrated circuit technology and micromachining technology. 硅压阻式压力传感器因其微型化、 高灵敏度、响应快、可集成化和高稳定性等优点,现在已经广泛应用作微型真空计、绝对压力计、流速计、流量计、声传感器、气动过程控制器等,其应用遍及石油、化工、生物、医疗、航天、海洋工程、原子能等尖端科技和工业领域。 Piezoresistive pressure sensor because of miniaturization, high sensitivity, fast response, and advantages of the integrated high stability, is now widely used as a miniature vacuum gauge, absolute pressure, flow, flow meters, acoustic sensors, pneumatic process controllers, its application throughout the petroleum, chemical, biological, medical, aerospace, marine engineering, nuclear energy and other cutting-edge technology and industry.

[0003] 衡量传感器性能的静态指标主要有非线性误差、迟滞误差和重复性误差。 [0003] measure the performance of the sensor main nonlinear static indicator, hysteresis and repeatability errors. 为了提高传感器的测量精度,需要对这些误差进行补偿。 In order to improve the measurement accuracy of the sensor, it is necessary to compensate for these errors. 目前,非线性误差的补偿方法已经非常成熟,常用的非线性误差的补偿方法有查表法、曲线拟合法和神经网络法。 Currently, non-linear error compensation method has been very mature, conventional compensation methods have nonlinear error lookup table, curve fitting, and neural networks. 重复性误差属于随机误差,需要通过统计方法进行分析,目前还不能对其进行补偿。 Repeatability errors are random errors need to be analyzed by statistical methods, it is still not compensate. 迟滞是一种多值对应、非常规、非平滑的特殊现象,它是由传感器内部元件存在的能量吸收和传递延迟造成的。 Hysteresis is a multi-value corresponds, irregular, non-smooth special phenomenon, which is present in the interior of the sensor element and the energy absorption caused by the transfer delay. 迟滞与传感器受到的外界载荷的加载过程相关。 Loading sensor is subjected to hysteresis associated external load. 因为迟滞误差的规律十分复杂,所以目前还没有关于硅压力传感器的迟滞误差补偿应用的报道。 Because the law hysteresis error is very complex, so there is no lag error compensation reported on the application of silicon pressure sensor. 迟滞误差占基本误差的比重通常在30 % 左右,是影响硅压力传感器测量精度的重要因素。 Hysteresis The hysteresis proportion accounted basic error usually about 30%, the measurement accuracy is an important factor to affect the silicon pressure sensor.

[0004] 硅压阻式压力传感器的缺点是对温度变化十分敏感,其零点输出和灵敏度都会随着温度变化而产生微小的变化,这种现象称为温度漂移。 [0004] The disadvantage of piezoresistive pressure sensors are very sensitive to temperature changes, which are zero output and sensitivity as the temperature changes produce small changes, this phenomenon is called temperature drift. 为了降低温度变化对传感器测量精度的影响,需要对温度变化引起的误差进行补偿。 To reduce the impact of the temperature sensor measurement accuracy, the need for error due to temperature change compensation. 目前工业中常用的温度补偿方法有:硬件补偿方法和软件补偿方法(计算机补偿、微处理器补偿)。 Commonly used in current industrial temperature compensation are: Hardware and software compensation method for compensating method (computer compensation, compensation microprocessor). 硬件补偿方法有二极管、三极管、热敏电阻等补偿电路方法。 A diode, transistor, thermistor compensation circuit hardware method of compensation method. 软件补偿方法是利用计算机或微处理器采集压力信号、温度信号,采用数字信号处理技术对温度漂移产生的误差进行补偿,得到高精度的压力信号。 Software compensation method is to use a computer or microprocessor collecting pressure and temperature signals, an error using digital signal processing technology to temperature drift compensation is performed, a highly accurate pressure signal.

发明内容: SUMMARY:

[0005] 本发明要解决的技术问题是为了克服现有的硅压力传感器测量中迟滞误差无法补偿的不足和提高硅压力传感器的测量精度,提供一种可以补偿迟滞误差,同时补偿硅压力传感器的非线性误差和温度变化产生的误差的高精度信号处理方法。 [0005] The present invention is to solve the technical problem to overcome deficiencies and improve the measurement accuracy of the silicon pressure sensor can not compensate for the hysteresis error of a conventional silicon pressure sensor measurements, to provide a hysteresis compensation errors, while compensating the silicon pressure sensor the signal processing method of high-precision error nonlinearity error and temperature change.

[0006] 本发明采用的技术方案是一种高精度压力传感器信号补偿方法,所述方法应用在作者研制的智能压力传感器系统中,该系统包括硅压力传感器、信号放大电路、模数转换电路(A/D)、DSP数据采集补偿电路、接口电路和工业控制计算机;所述硅压力传感器上分别连接有信号放大电路和模数转换电路(A/D),信号放大电路同时又与模数转换电路(A/D) 连接;所述模数转换电路(A/D)上连接有DSP数据采集补偿电路;所述DSP数据采集补偿电路通过接口电路与工业控制计算机;所述的接口电路包括CAN现场总线和USB接口;所述系统的工作流程:传感器环境的温度信号,与经过信号放大的电压信号一起经过模数转换电路(A/D),由模拟信号转换为数字信号,再经过数字信号处理器(DSP)进行数字信号处理,得到迟滞误差补偿、温度补偿和非线性误差补偿的高精度的 [0006] aspect of the present invention uses a high-precision pressure sensor signal compensation method, the method is used in intelligent pressure sensor system developed by the authors, the system includes a silicon pressure sensor, signal amplification circuitry, analog-digital conversion circuit ( A / D), DSP data acquisition compensation circuit, an interface circuit, and industrial control computer; signal amplification circuit are connected, and analog to digital converter (A / D) on the silicon pressure sensor signal amplification circuit while the analog to digital conversion circuit (a / D) is connected; DSP is connected to the data acquisition compensation circuit analog to digital converter (a / D); the DSP data acquisition via the interface circuit and the compensation circuit industrial control computer; the CAN interface circuit comprises a USB interface and the fieldbus; workflow of the system: sensor environmental temperature signal, the signal passes through the amplified voltage signal with the analog to digital converter (a / D), an analog signal into a digital signal, and then through a digital signal processor (DSP) for digital signal processing, to obtain the hysteresis error compensation, temperature compensation and precision compensation of non-linear error 力信号和温度信号。 Force signal and the temperature signal. 最后,通过CAN现场总线或USB接口将数据传输到工业控制计算机。 Finally, field bus via CAN or USB interface to transfer data to an industrial control computer.

[0007] 高精度压力传感器信号补偿方法,按照如下步骤: [0007] The high-precision pressure sensor signal compensation method, the following steps:

[0008] (1)硅压力传感器测量得到压力测量信号Vp和温度测量信号Vt ;压力测量信号Vp依次经信号放大电路和A/D转换电路后进入DSP数据采集补偿电路;温度测量信号Vt经A/D转换电路后进入DSP数据采集补偿电路; [0008] (1) a silicon pressure sensor to obtain pressure measurement signal Vp and the temperature measurement signal Vt; the pressure measurement signal Vp sequentially via the signal amplifier circuit and A / D converter circuit into the DSP data acquisition compensation circuit; temperature measurement signal Vt is A / D conversion circuit after compensating the data acquisition circuit to the DSP;

[0009] (2)在DSP数据采集补偿电路中,采用迟滞误差补偿方法将压力测量信号Vp转化为消除迟滞误差的压力值P' ; [0009] (2) In the DSP data acquisition compensation circuit, hysteretic error compensation method of measuring the pressure signal Vp is converted to eliminate the hysteresis error of the pressure value P ';

[0010] C3)在DSP数据采集补偿电路中,采用信号接口处理方法对压力值P'进行温度校正,得到经过温度校正后的压力信号Vpm ; [0010] C3) in the DSP data acquisition compensation circuit, a signal processing method using an interface pressure value P 'temperature correction, obtained after the temperature correction Vpm of the pressure signal;

[0011] (4)在DSP数据采集补偿电路中,采用温度补偿方法,由经过温度校正的压力信号Vpm和温度信号Vt得到经过温度补偿和非线性误差补偿的压力信号P和温度信号T。 [0011] (4) in the DSP data acquisition compensation circuit, using a temperature compensation method, the temperature-corrected pressure signal and the temperature signal Vt Vpm obtained through temperature compensation and pressure compensation of non-linear error signal and the temperature signal T. P

[0012] 所述迟滞误差补偿方法是指: [0012] The hysteresis refers to the error compensation method:

[0013] 首先,用压力测量信号Vp的极值序列Vpl、Vp2、…、Vpn表示压力;其次,判断压力处在加载过程(即压力载荷递增过程)还是卸载过程(即压力载荷递减过程);然后分别利用迟滞逆模型列或bzxfhx^^O]对压力测量信号Vp的极值序列Vpl、 Vp2、…、Vpn进行处理,得到经过迟滞误差补偿的压力信号P'的序列(P' 1; P' 2,..., P' „); Extreme sequence Vpl [0013] First, the measured pressure signal Vp, Vp2, ..., Vpn represents pressure; secondly, the pressure in the loading process is determined (i.e., the load pressure incrementing sequence), or unloading process (i.e., load pressure decreasing process); then each column or using inverse hysteresis model bzxfhx ^^ O] Extreme pressure measurement sequence Vpl signal Vp, Vp2, ..., Vpn, to give the hysteresis error compensation through the pressure signal P 'serial (P' 1; P '2, ..., P' ");

[0014] 当压力在加载过程中,用于迟滞误差补偿的迟滞逆模型a= χ;1 [x(a, b\ b]为 [0014] When the pressure in the loading process, the hysteresis error compensation for hysteresis inverse model of a = χ; 1 [x (a, b \ b] is

[0015] [0015]

Figure CN101858811BD00051

[0016] 其中,α „为经过迟滞误差补偿的当前的压力值P' η,当前压力处于加载过程; [0016] where, α "is the current through the pressure hysteresis error compensation value P 'η, the current pressure in the loading process;

[0017] Y为输入向量,由当前的极值压力增量所对应的电压Δ Vn和前一个极值压力Plri 组成,即Y =( Δ Vn, Plri),其中Δ Vn = Vpn-Vplri ; [0017] Y is the input vector, the voltage at the current extreme value corresponding to a pressure increment Δ Vn and the front one extreme pressure Plri composition, i.e., Y = (Δ Vn, Plri), where Δ Vn = Vpn-Vplri;

[0018] Yi为支持向量,即由训练样本构成的向量,即Yi = (Xi (8,,^),^),(1 = 1,2,..., 45) ; α i为经过训练得到的支持向量机的权值系数(i = 1,2,. . .,45); [0018] Yi is a support vector, i.e. a vector composed of the training samples, i.e., Yi = (Xi (8 ,, ^), ^), (1 = 1,2, ..., 45); α i is trained SVM obtained weight coefficient (i = 1,2 ,., 45..);

[0019] 当压力在卸载过程中用于迟滞误差补偿的迟滞逆模型bix^Rx^ZO]为 [0019] When inverse model bix pressure hysteresis error compensation for hysteresis during unloading ^ Rx ^ ZO] is

[0020] [0020]

Figure CN101858811BD00052

[0021] 其中,比为经过迟滞误差补偿的当前的压力值P' n,当前压力处于卸载过程; [0021] wherein the ratio of the current through the pressure hysteresis error compensation value P 'n, the current pressure in the unloading process;

[0022] Y为输入向量,由当前的极值压力增量所对应的电压AVn和前一个极值压力Plri 组成,即Y =( Δ Vn, Plri),其中Δ Vn = Vpn-Vplri ; [0022] Y is the input vector, the pressure increase from the current extreme value voltage corresponding to the front and one extreme pressure AVn Plri composition, i.e., Y = (Δ Vn, Plri), where Δ Vn = Vpn-Vplri;

[0023] Yi为支持向量,即由训练样本构成的向量,即Yi = (Xi (¾,^), a,) , (i = 1,2,..., 45); [0023] Yi is a support vector, i.e. a vector composed of the training samples, i.e., Yi = (Xi (¾, ^), a,), (i = 1,2, ..., 45);

[0024] α i为经过训练得到的支持向量机的权值系数(i = 1,2,. . .,45)。 [0024] α i is a coefficient value after the training weights obtained SVM (i = 1,2 ,..., 45). [0025] 所述信号处理接口方法是指:利用压力信号Vpm关于压力P和温度T的函数模型Vpm = f (P',Vt),由未经温度补偿的压力信号P'和温度测量信号Vt处理得到经过温度校正的压力信号Vpm ;函数模型Vpm = f (P',Vt)如下式所示: [0025] The signal processing method of the interface means: the use of a pressure signal on Vpm pressure P and temperature T of the function model Vpm = f (P ', Vt), the non-temperature compensated pressure signal P' and the temperature measurement signal Vt treatment temperature corrected pressure signal obtained through Vpm; function model Vpm = f (P ', Vt) the following formula:

[0026] Vpm = -5. 4969Χ1(Γ6+0· 7526 X Ρ+0. 8192 .Vt+4· 8869 X 10_4 ·Ρ2_0. 02361 ·Ρ 'Vt-0. 0 3881 · Vt2。 [0026] Vpm = -5. 4969Χ1 (Γ6 + 0 · 7526 X Ρ + 0. 8192 .Vt + 4 · 8869 X 10_4 · Ρ2_0. 02361 · Ρ 'Vt-0. 0 3881 · Vt2.

[0027] 所述温度补偿方法是指:利用压力P关于压力信号Vpm-温度信号Vt的函数模型P = g (Vpm, Vt)和温度T关于压力信号Vpm-温度信号Vt的函数模型T = q (Vpm, Vt),将压力信号Vpm和温度测量信号Vt处理为:经过温度补偿和非线性误差补偿的高精度的压力信号P和温度信号T ; [0027] The temperature compensation means: the use of a pressure P on the pressure signal P function model Vpm- temperature signal Vt = g (Vpm, Vt) and the temperature T on the pressure signal function model T Vpm- temperature signal Vt = q (Vpm, Vt), the pressure and temperature measurement signals Vpm signal Vt treatments were: temperature compensated precision error compensation and a signal pressure P and the temperature signal T;

[0028] 压力P关于压力信号Vpm-温度信号Vt的函数模型P = g(Vpm, Vt): [0028] The function of the pressure P on the pressure signal P Vpm- model temperature signal Vt = g (Vpm, Vt):

[0029] P = -117. 758+1. 335XVpm+45. 134 X Vt-0. 00129XVpm2+0. 0477 X Vpm *Vt-4. 5113 XVt2 [0029] P = -117. 758 + 1. 335XVpm + 45. 134 X Vt-0. 00129XVpm2 + 0. 0477 X Vpm * Vt-4. 5113 XVt2

[0030] 温度T关于压力信号Vpm-温度信号Vt的函数模型T = q (Vpm, Vt): [0030] The temperature T of the pressure signal on the temperature signal Vt Vpm- function model T = q (Vpm, Vt):

[0031] T = 2693. 282-1. 3888 X Vpm-1182. 152XVt+0. 00103XVpm2+0. 2441 XVpm 'Vt+130 .1434XVt2。 [0031] T = 2693. 282-1. 3888 X Vpm-1182. 152XVt + 0. 00103XVpm2 + 0. 2441 XVpm 'Vt + 130 .1434XVt2.

[0032] 本发明的有益效果是:有效的补偿了硅压力传感器的迟滞误差,同时补偿了硅压力传感器的非线性误差和温度变化产生的误差,提高了硅压力传感器的测量精度;这是一种全新的硅压力传感器误差补偿的数字信号处理方法;经过本发明方法补偿的总精度为0.2% FS(量程)的压力传感器的误差可以减小一半。 [0032] Advantageous effects of the invention are: effective compensation of the hysteresis is a silicon pressure sensor, while compensating for the nonlinearity error and temperature error silicon pressure sensors, improvement of the measurement accuracy silicon pressure sensor; this is a species new digital signal processing method of a silicon pressure sensor error compensation; overall accuracy of the method after the error compensation of the present invention is 0.2% FS (range) of the pressure sensor can be reduced by half.

附图说明: BRIEF DESCRIPTION OF:

[0033] 图1是硅压力传感器的惠斯顿电桥示意图; [0033] FIG. 1 is a schematic diagram of a Wheatstone bridge silicon pressure sensor;

[0034] 图2是实施例中使用的智能压力传感器系统结构图; [0034] FIG. 2 is a system configuration diagram of the intelligent pressure sensor used in the embodiment;

[0035] 图3是本发明的高精度压力传感器信号补偿方法的结构图; [0035] FIG. 3 is a block diagram of high-precision pressure sensor signal compensation method according to the present invention;

[0036] 图4是本发明使用的迟滞模型x(a,b)的实验数据绘制图; [0036] FIG. 4 is a hysteresis model of the present invention is used x (a, b) of the experimental data plotted in FIG;

[0037] 图5是本发明使用的支持向量机的结构; [0037] FIG. 5 is a structural support vector machine of the present invention;

[0038] 图6是硅压力传感器关于压力P和温度T的实验数据绘制图; [0038] FIG. 6 is a silicon pressure sensor on the pressure P and the temperature T of the experimental data plotted in FIG;

[0039] 图7是实施例1迟滞误差补偿实验中温度为30°C时的输入压力图; [0039] FIG. 7 is a hysteresis in the temperature error compensation input experimental embodiment of FIG pressure at 30 ° C;

[0040] 图8是实施例1实验结果:经过迟滞补偿和未补偿的误差值比较图; [0040] FIG. 8 is experimental results Example 1: After hysteresis error value comparing FIGS uncompensated and compensated;

[0041] 图9是实施例2迟滞误差补偿和温度补偿实验中的温度为65°C时的输入压力图; [0041] FIG 9 is a temperature hysteresis error Example 2 and temperature compensation for the experiment of FIG input pressure at 65 ° C;

[0042] 图10是实施例2实验结果:经过本发明补偿和仅非线性误差补偿的误差值比较图。 [0042] FIG. 10 is the experimental results Example 2: After the error value comparing FIGS only error compensation and compensation of the present invention.

具体实施方式: Detailed ways:

[0043] 下面结合附图对本发明做进一步详细描述: [0043] DRAWINGS The present invention will be described in detail:

[0044] 在图1中,硅压力传感器的四个力敏电阻构成惠斯顿电桥。 [0044] In FIG 1, four force-sensitive resistive silicon pressure sensors constituting the Wheatstone bridge. 为了提高传感器的测量精度,硅压力传感器采用恒流源供电。 In order to improve the measurement accuracy of the sensor, a pressure sensor using silicon constant current power supply. 由于采用恒流源供电,电桥A、C两端的恒流源电压的变化则反映传感器所在环境温度的变化,而电桥B、D两端的输出电压反映了输入压力, 这种用一个压力传感器可以同时测压力、温度的系统通常被称为“一桥二测”系统。 As a result of constant current power supply, a bridge A, the voltage change across the constant current source C where the sensor reflects changes in ambient temperature, and the bridge B, the output voltage across the input D reflects the pressure, with which a pressure sensor pressure can be measured at the same time, the temperature of the system is usually referred to as "a bridge two test" system. 本实施例中使用“一桥二测”系统,这样可以减少使用温度传感器,方便现场测试,节约实验成本。 Used in Example "a bridge two measuring" system of the present embodiment, thus reducing the temperature sensor, for field test, experimental cost savings. 当然,对于本发明高精度压力传感器信号补偿方法,也可以不采用“一桥二测”方案,温度模拟信号也可以从设置在与硅压力传感器同一环境中的温度传感器中获得。 Of course, high-precision pressure sensor signal compensation method of the present invention, may not be a "a second test bridge" program, the analog temperature signal may also be provided in the same environment from a silicon pressure sensor and a temperature sensor obtained.

[0045] 图2是实施例中使用的作者研制的智能压力传感器系统的结构。 [0045] FIG. 2 is a configuration of intelligent pressure sensor system used in the embodiment developed. 智能压力传感器系统由硅压阻式压力传感器、信号放大电路、模数转换电路、数字采集处理电路和工业控制计算机组成。 Intelligent pressure sensor system of a silicon piezoresistive pressure sensor, signal amplification circuitry, analog to digital converters, the digital acquisition and processing circuits and industrial control computer. 硅压力传感器的恒流源电压作为温度信号,与经过信号放大的电压信号一起经过模数转换电路(A/D),由模拟信号转换为数字信号,再经过数字信号处理器(DSP)进行数字信号处理,得到迟滞误差补偿、温度补偿和非线性误差补偿的高精度的压力信号和温度信号。 A constant current source voltage silicon pressure sensor as a temperature signal, and then through a digital signal processor (DSP) for digital signal through the signal with the amplified voltage through the analog to digital converter (A / D), an analog signal into a digital signal, signal processing, to obtain the hysteresis error compensation, temperature compensation and nonlinear error compensation with high accuracy pressure and temperature signals. 最后,通过CAN现场总线或USB接口将数据传输到工业控制计算机。 Finally, field bus via CAN or USB interface to transfer data to an industrial control computer. 其中,DSP作为整个系统的核心,负责各个芯片运行、数据采集、数字信号处理和通讯的功能。 Which, DSP as the core of the system is responsible for operating the respective chips, data acquisition, digital signal processing functions and communication.

[0046] 系统的工作流程为:上电后,首先,系统的程序初始化;其次,DSP查询由工控机发出通过USB或CAN接口的采集命令;若接到采集命令,则开启一个CPU定时器,在定时器中断中采集压力信号和温度信号,然后进行数字滤波,软件补偿;最后,将补偿后的压力、温度数据通过USB或CAN接口上传到工控机;数据上传后,DSP查询采集结束命令,若没有接到采集结束命令,系统继续采集、处理信号;若接到采集结束命令,系统结束任务。 Workflow [0046] system is: after power-on, first of all, the system initialization program; secondly, DSP query issue acquisition orders via USB or CAN interfaces by IPC; if receiving the acquisition command, open a CPU timer, acquisition timer interrupt pressure and temperature signals, and digital filtering, software compensation; Finally, the compensated pressure, temperature data is uploaded to the IPC via USB or CAN interface; the data upload, the DSP query acquisition end command, If not received capture end command, the system continues to collect, process the signal; if the received capture end command, the system end task.

[0047] 图3是高精度压力传感器信号补偿方法的结构,包括迟滞误差补偿方法,信号处理接口方法和温度补偿方法。 [0047] FIG. 3 is a high-precision method for compensating pressure sensor signal, the method comprising hysteresis error compensation, temperature compensation signal interface and a method for processing method.

[0048] 迟滞误差补偿方法的目的是消除压力P加载、卸载的过程中压力测量信号Vp产生的迟滞误差。 [0048] The object of the hysteresis error compensation approach is to eliminate the pressure P loading, unloading process pressure measurement signal Vp generated by the hysteresis error. 迟滞误差补偿方法包含二部分:第一部分是记录压力加载过程中的压力测量信号Vp的极值序列,这是因为迟滞与加载过程相关,压力测量信号Vp的极值序列记录了压力加载过程。 Hysteresis error compensation method comprises two parts: The first part is the recording pressure measurements during loading sequence extrema signal Vp, which is related to the hysteresis as the loading process, the pressure signal Vp extrema series of measurements recorded pressure loading process. 第二部分是首先判断压力处在加载还是卸载过程,然后分别利用迟滞逆模型&=1:>(«,外^^=161[«4权州对压力测量信号Vp的极值序列进行处理,得到经过迟滞误差补偿的压力信号P'。 The second part is determining the pressure in the first loading or unloading process, respectively, and then using the inverse model & hysteresis = 1:> ( «outer ^^ = 161 [« extremum sequence of state 4 the right pressure measurement signal Vp processed, obtained through the hysteresis error compensated pressure signal P '.

[0049] 图4是迟滞模型x(a,b)的实验数据的绘制图。 [0049] FIG. 4 is a sketch hysteresis model x (a, b) of the experimental data. 建立正确的、高精度的迟滞模型和逆模型是迟滞误差补偿程序的关键。 Establish the correct, high-precision hysteresis model and the inverse model is the key to the hysteresis error compensation program. 硅压力传感器的迟滞模型是建立在关于迟滞误差的压力P-压力测量信号Vp标定实验数据基础上。 Silicon pressure sensor hysteresis model is based on a pressure hysteresis error signal Vp is P- pressure measurement data based on calibration experiments. 具体的实验过程如下:在室温30°C,湿度56%冊条件下,参照邛八10524-2005机械行业标准进行实验,实验仪器主要有:压力传感器标定工作台、恒流源、温控箱和高精度数字万用表。 Specific experimental procedure is as follows: at room temperature, 30 ° C, 56% humidity conditions books, reference mound eight 10524-2005 machinery industry standard test, the experimental apparatus are: a pressure sensor calibration stage, a constant current source, temperature control box, and high-precision digital multimeter. 实施例中用的硅压力传感器的量程为40Mpa,综合考虑训练样本对拟合精度的影响以及测试试验的复杂性,将0〜40Mpa分成8 等分进行测试,载荷从OMpa加载到5Mpa,记下输出电压,然后减载到OMpa,记下输出电压, 算出χ (5,0)。 Range silicon pressure sensor used in the embodiment according to 40Mpa, considering the complexity of the training samples and the impact of the fitting accuracy of the test method, the test 0~40Mpa divided into 8 equal parts, the load to be loaded from OMpa of 5Mpa, a note output voltage and load shedding to OmpA, a note of the output voltage, is calculated χ (5,0). 再加载到lOMpa,记下输出电压,减载到5Mpa,记下输出电压,再减载到OMpa, 记下输出电压,分别算得χ (10,5)和χ (10,0),依此类推,直到40Mpa,得到极值间输出电压x(a,b)实验数据。 Lompa to reload, note the output voltage, the load shedding of 5Mpa, note the output voltage minus the carrier to OmpA, a note of the output voltage, respectively, calculated χ (10,5) and χ (10,0), and so on until 40Mpa, to obtain an output voltage between the extreme values ​​x (a, b) experimental data. 迟滞模型x(a,b)的实验数据经过数据处理可以得到分别关于a,b的迟滞逆模型a= χ;1 [χ(α, b),糾和b= X61 [a, x(a,勿]的建模数据。 Hysteresis Model X (a, b) experimental data processed data can be obtained separately on a, b hysteresis inverse model of a = χ; 1 [χ (α, b), correction, and b = X61 [a, x (a, Do not] modeling data.

[0050] 通过对迟滞模型x(a,b)的实验数据和迟滞逆模型的建模数据进行回归分析, 可以得到硅压力传感器的迟滞模型和用于迟滞误差补偿的逆模型。 [0050] experimental data by regression analysis and modeling hysteresis model data x (a, b) hysteresis inverse model, hysteresis model can be obtained and a silicon pressure sensor hysteresis inverse model error compensation. 常用的回归分析方法有二次曲面回归分析方法、神经网络等方法。 Commonly used regression analysis has quadric regression analysis, neural networks and other methods. 为了提高回归分析建立的模型精度,兼顾建模效率,本发明采用支持向量机的方法对建模数据进行回归分析。 In order to improve the accuracy of the model regression analysis, taking into account the efficiency of modeling, the present invention employs a method of SVM regression analysis modeling data. 支持向量机(Support VectorMachine,简称SVM)是一种基于统计学习理论的机器学习算法。 SVM (Support VectorMachine, referred to as SVM) is a machine learning algorithm based on statistical learning theory. 它是建立在统计学习理论和结构风险最小原理基础上,根据有限的样本信息在模型的复杂性和学习能力之间寻求最佳折衷,以期获得最好的推广能力的机器学习算法,能够保证所得到解是全局最有解。 It is based on statistical learning theory and structural risk minimization principle, to seek the best compromise between complexity and learning model based on limited sample information in order to obtain the best machine learning algorithm generalization ability, to ensure the get a global solution is the most solvable. 支持向量机在解决小样本、非线性问题中表现出特有的优势。 SVM showed a unique advantage in solving small sample, nonlinear problems.

[0051] 图5是本发明使用的支持向量机的结构,支持向量机的数学模型对训练样本进行数据拟合时,用下式表示。 [0051] FIG. 5 is a structural support vector machine in the present invention, when the support vector machine a mathematical model for the training sample data can be fitted by the following formula.

[0052] X(Y) = YjaiK(YJi)^P [0052] X (Y) = YjaiK (YJi) ^ P

i i

[0053] 其中,Y为被测试的输入向量; [0053] wherein, Y is the input vector to be tested;

[0054] η为支持向量的数量,即样本数量; [0054] η is the number of support vectors, i.e., number of samples;

[0055] Yi为支持向量,即由训练样本构成的向量。 [0055] Yi support vector, that is composed of a training sample vectors. (i = 1,2,...,η); (I = 1,2, ..., η);

[0056] WY)为与Y对应的输出量; [0056] WY) is the output and corresponding to Y;

[0057] α i为与权值系数相对应的拉格朗日乘子。 [0057] α i is the weight coefficient corresponding to the Lagrange multiplier. (i = 1,2,. . .,η); (I = 1,2 ,., η..);

[0058] β为阈值; [0058] β is a threshold value;

[0059] K(xi; χ)为支持向量机的核函数。 [0059] K (xi; χ) is the kernel function support vector machine.

[0060] 支持向量机有多种形式的核函数,例如:线性核函数、多项式核函数和径向基核函数等核函数。 [0060] There are many forms of SVM kernel function, for example: a linear kernel, a polynomial kernel function and the radial basis function kernel function and the like. 本发明的支持向量机回归模型使用径向基核函数,因为径向基核函数是产生的偏差较小。 Support Vector Regression of the present invention uses radial basis functions, radial basis functions as a small deviation generated. 径向基核函数如下式所示 Kernel function as shown in the following formula

[0062] 其中,I IY-YiI I表示输入向量与支持向量取差后求模; [0062] wherein, I IY-YiI I represents the input vector and the modulo support after taking the difference vector;

[0063] ρ为核函数参数,调整ρ可改善支持向量机的测量精度。 [0063] ρ is a kernel function, [rho] can be adjusted to improve the measurement accuracy of the SVM.

[0064] 学习参数:核函数参数P、不敏感损失函数ε和惩罚因子C的选择对于支持向量机的训练效率和数据拟合精度有很大的影响。 [0064] The learning parameters: kernel function parameters P, up sensitive loss function ε and fitting accuracy penalty factor C has a great influence on the efficiency of training and data support vector machine. 实际应用中,参数的确定方法主要有经验确定和网格搜索。 Practical application, the method of determining parameters are mainly determined empirically and grid search. 作者通过对样本进行多次训练和比较,最终选择参数为: Author of multiple training samples and comparison, the final choice of parameters:

[0065] 核函数参数ρ = 5; [0065] The kernel function ρ = 5;

[0066] 不敏感损失函数参数ε = 0. 0001 ; [0066] insensitivity Function parameters ε = 0. 0001;

[0067]惩罚因子 C = 1000; [0067] The penalty factor C = 1000;

[0068] 将建模数据构成的学习样本作为支持向量,一次全部输入构成支持向量机,然后将训练样本中的每一个输入向量依次输入支持向量机进行训练;基于训练样本及结构风险最小原则,求解出SVM结构参数,使输出向量与训练样本中的期望输出向量的偏差最小,此时,支持向量机的训练结束。 [0068] The configuration of the learning sample data modeling as support vector, once all the input configuration SVM, and then each of the training samples are sequentially input vector input trained SVM; minimal training samples based on the principles and structural risk, SVM solved structural parameters, so that the deviation of the desired output vector and the output vector of the minimum training samples, at this time, the end of SVM training. 最后得到满足误差要求的基于训练样本的支持向量机的结构参数:权值系数α。 Finally, satisfied requirements of structural error parameters based on the training sample SVM: weight coefficient α. α 2,...,%和阈值β。 α 2, ...,%, and the threshold value β.

[0069] 采用上述结构和参数的支持向量机建立用于迟滞误差补偿的模型如下: [0069] With the above structure and parameters of the SVM model for the hysteresis error compensation as follows:

[0070] 当压力在加载过程中,用于迟滞误差补偿的迟滞逆模型a= χ;1 [x(a, b), b]为45 Mf [0070] When the pressure in the loading process, the hysteresis error compensation for hysteresis inverse model of a = χ; 1 [x (a, b), b] of 45 Mf

^re 50 ^ Re 50

[0072] 其中,α „为经过迟滞误差补偿的当前的压力值P' η,当前压力处于加载过程; [0072] where, α "is the current through the pressure hysteresis error compensation value P 'η, the current pressure in the loading process;

[0073] Y为输入向量,由当前的极值压力增量所对应的电压Δ Vn和前一个极值压力Plri 组成,即Y =( Δ Vn, Plri),其中Δ Vn = Vpn-Vplri ; [0073] Y is the input vector, the voltage at the current extreme value corresponding to a pressure increment Δ Vn and the front one extreme pressure Plri composition, i.e., Y = (Δ Vn, Plri), where Δ Vn = Vpn-Vplri;

剛αη=Υ[0074] Yi为支持向量,即由训练样本构成的向量,即Yi = (Xi (8,,^),^),(1 = 1,2,..., 45); Just αη = Υ [0074] Yi is a support vector, i.e. a vector composed of the training samples, i.e., Yi = (Xi (8 ,, ^), ^), (1 = 1,2, ..., 45);

[0075] α i为经过训练得到的支持向量机的权值系数(i = 1,2,...,45),权值系数(α ” [0075] α i is a coefficient value after the training weights obtained SVM (i = 1,2, ..., 45), the weight coefficient (α "

[0079] [0079]

Figure CN101858811BD00091

[0077] [0078] [0080] [0081] [0082] [0077] [0078] [0080] [0081] [0082]

[0083] [0083]

40. 8106 44. 0773 48. 0054 27. 7502 38. 5530) 阈值β = 0 40.8106 44.0773 48.0054 27.7502 38.5530) the threshold value β = 0

当压力在卸载过程中用于迟滞误差补偿的迟滞逆模型b= X61㈣为45^ Mt When the inverse model b hysteresis pressure error compensation for hysteresis during unloading of 45 ^ Mt = X61㈣

Wi.e 50 Wi.e 50

[0084] 其中,比为经过迟滞误差补偿的当前的压力值P' n,当前压力处于卸载过程; [0084] wherein the ratio of the current through the pressure hysteresis error compensation value P 'n, the current pressure in the unloading process;

[0085] Y为输入向量,由当前的极值压力增量所对应的电压Δνη和前一个极值压力Plri 组成,即Y =( Δ Vn, Plri),其中Δ Vn = Vpn-Vplri ; [0085] Y is the input vector, the pressure increase from the current extreme value voltage corresponding to the front and one extreme pressure Δνη Plri composition, i.e., Y = (Δ Vn, Plri), where Δ Vn = Vpn-Vplri;

[0086] Yi为支持向量,即由训练样本构成的向量,即Yi = (Xi (¾,^),¾), (i = 1,2,..., 45); [0086] Yi is a support vector, i.e. a vector composed of the training samples, i.e., Yi = (Xi (¾, ^), ¾), (i = 1,2, ..., 45);

[0087] α i为经过训练得到的支持向量机的权值系数(i = 1,2,. . .,45),权值系数(α [0087] α i is a coefficient value after the training weights obtained SVM (i = 1,2 ,..., 45), the weight coefficient ([alpha]

Ct 2 ? Ct 2? ... ? ...? Ct 45) Ct 45)

[0088] (-2.7459 -11.0461 12.1109 -6.2765 11.6702 -2.7377 -18.6998 35. 3271-37. 7082 22. 8823 [0088] (11.6702 -2.7377 -6.2765 -2.7459 -11.0461 12.1109 -18.6998 35. 3271-37. 7082 22.8823

[0089] -5.8964 15.5362 -11.6501 7.9822 8.0876 -28.7951 59. 5846-82.8821 81. 8036 -53. 0894 [0089] 8.0876 -5.8964 7.9822 15.5362 -11.6501 -28.7951 5846-82.8821 59. 81. 8036-53. 0894

[0090] 21.1136 -30.2184 88.5497 -124.8046 143.7415 -94.2631 36.5565 13.2669-74. 1277 216.7344 [0090] 21.1136 143.7415 -94.2631 -124.8046 -30.2184 88.5497 36.5565 13.2669-74. 1277 216.7344

[0091] -415. 9337 528. 2465 -564. 6080 425. 8700 -171. 0906 43. 4731 -18. 934981. 7430 -173. 8384 239. 6889 [0091] -415. 9337 528. 2465-564. 6080 425. 8700-171. 0906 43.4731 -18. 934981.7430 -173. 8384 239.6889

[0092] -208.0146 157.9626 -57. 5958 8.9726 37. 1454) [0092] -57 -208.0146 157.9626. 5958 8.9726 37.1454)

[0093]阈值 β =0 [0093] The threshold value β = 0

[0094] 信号处理接口方法的目的是联接迟滞误差补偿方法和温度补偿方法,同时对经过迟滞误差补偿、但未经过温度补偿的压力信号进行温度校正。 [0094] The object of the signal processing method of an interface is a hysteresis coupling method and error compensation method for temperature compensation, while the hysteresis error compensation through, but after a pressure-compensated temperature signal of the temperature correction. 信号处理接口方法中的压力信号Vpm关于压力P和温度T的函数模型Vpm = f (P',Vt)是建立在硅压力传感器关于压力P和温度T的压力测量信号Vp-温度信号Vt标定实验数据基础上,通过回归分析方法得到的。 Pressure signal processing interface method Vpm function model of pressure P and temperature T Vpm = f (P ', Vt) is built on a silicon pressure sensor on the pressure P and the temperature T of the temperature signal Vt measurement signal calibration experiments Vp- Based on the data, obtained by regression analysis.

[0095] 图6是硅压力传感器关于压力P和温度T的实验数据绘制图。 [0095] FIG. 6 is a silicon pressure sensor on the pressure P and the temperature T of the experimental data plotted in FIG. 实验的具体过程如下:实验仪器主要有:压力传感器标定工作台、恒流源、温控箱和高精度数字万用表,参照JB/T 10524-2005机械行业标准进行实验。 Specific experimental procedure is as follows: the experimental apparatus are: a pressure sensor calibration stage, a constant current source, temperature control box, and high-precision digital multimeter, with reference to JB / T 10524-2005 machinery industry standard test. 实施例中用的硅压阻式压力传感器的量程为40Mpa,将硅压阻式压力传感器装入温控箱中,在温度分别为20V、30V、40°C、50V、60°C、 65°C的条件下进行压力传感器的压力-BD端电压-AC端电压的测量、记录。 Range piezoresistive pressure sensor used in the Examples is 40Mpa, the charged silicon piezoresistive pressure sensor temperature control box, the temperatures of 20V, 30V, 40 ° C, 50V, 60 ° C, 65 ° -AC terminal voltage measured pressure -BD terminal voltage under pressure sensor C is recorded. 压力量程为0〜 40Mpa,在0Mpa、5Mpa、10Mpa、15Mpa、20Mpa、25Mpa、30Mpa、35Mpa、40Mpa 这九点处记录电压输出值。 Pressure range of 0~ 40Mpa, in 0Mpa, 5Mpa, 10Mpa, 15Mpa, 20Mpa, 25Mpa, 30Mpa, 35Mpa, 40Mpa which voltage output recorded at nine o'clock. 压力传感器的加载过程为从OMpa逐渐加载到满量程40Mpa,然后再从满量程逐渐递减到OMpa。 Loading a pressure sensor is gradually loaded from full scale OmpA to 40Mpa, and then gradually decreases from full-scale to OMpa. 最后,得到实验数据:压力P-温度T-压力测量信号Vp-温度信号Vt。 Finally, experimental data were obtained: Temperature Pressure T- P- pressure measurement signal Vp- temperature signal Vt. 因为迟滞的存在,所以在相同温度、相同压力时正、反行程的压力测量信号Vp不同。 Because the presence of hysteresis, the measurement signal Vp at different pressures the same temperature, the same pressure when the positive and negative stroke. 因此,将在相同温度、相同压力时正、反行程的的压力信号Vp取平均值,得到压力信号Vpm,压力信号Vpm与压力P是一种一一映射关系。 Thus, the timing at the same temperature and pressure, the pressure signal Vp anti-stroke were averaged to obtain Vpm pressure signal, the pressure signal and the pressure P is a Vpm one mapping.

[0096] 从硅压力传感器关于压力P和温度T的实验数据中得到建模数据:压力信号Vpm-压力信号P-温度信号Vt,通过对这些数据进行回归分析,得到压力信号Vpm关于压力信号P和温度信号Vt的函数模型Vpm = f (P',Vt)。 [0096] modeling data obtained from the experimental data silicon pressure sensor on the pressure P and the temperature T: the pressure signal Vpm- P- temperature signal Vt of a pressure signal, by regression analysis of these data, to obtain a pressure signal on pressure signal P Vpm Vpm function model and the temperature signal Vt = f (P ', Vt). 本发明中使用二次曲面回归分析建立压力信号Vpm关于压力信号P和温度信号Vt的函数模型Vpm = f (P',Vt),函数模型如下式所示: In the present invention quadric regression analysis function model Vpm Vpm pressure signal on pressure signal P and a temperature signal Vt = f (P ', Vt), function model following formula:

[0097] Vpm = -5. 4969Χ10_6+0· 7526 X Ρ+0. 8192 *Vt+4. 8869 X 10_4 ·Ρ2_0. 02361 ·Ρ 'Vt-0. 0 3881 · Vt2 [0097] Vpm = -5. 4969Χ10_6 + 0 · 7526 X Ρ + 0. 8192 * Vt + 4. 8869 X 10_4 · Ρ2_0. 02361 · Ρ 'Vt-0. 0 3881 · Vt2

[0098] 利用压力信号Vpm关于压力信号P和温度信号Vt的函数模型,由未经温度补偿的压力值P'和温度信号Vt处理得到经过温度校正的压力信号Vpm。 [0098] using the pressure signal and the pressure signal P on Vpm function model temperature signal Vt by temperature non-compensated pressure value P 'and the temperature signal Vt to obtain a pressure signal processing Vpm after temperature correction.

[0099] 所述的温度补偿方法是:在硅压力传感器关于压力P和温度T的压力测量信号Vp-温度信号Vt标定实验数据基础上,通过二次曲面回归分析方法建立压力P关于压力信号Vpm-温度信号Vt的函数模型P = g (Vpm, Vt)和温度T关于压力信号Vpm-温度信号Vt 的函数模型T = q(Vpm, Vt);利用压力P函数模型P = g(Vpm, Vt)和温度T函数模型T = q(Vpm,Vt),将压力信号Vpm和温度信号Vt处理为:经过温度补偿和非线性误差补偿的压力信号P和温度信号T。 [0099] The temperature compensation is: In the calibration experiment data on the basis of the pressure P and the temperature T of the pressure measurement signal Vp- temperature signal Vt silicon pressure sensor, the pressure P on the pressure signal established by quadratic surface Vpm regression analysis - P function model temperature signal Vt = g (Vpm, Vt) and the temperature T on the temperature signal Vt pressure signal Vpm- function model T = q (Vpm, Vt); function model using pressure P P = g (Vpm, Vt ) model function of the temperature T and T = q (Vpm, Vt), the pressure signal and the temperature signal Vt Vpm treatments were: temperature compensation and pressure through the non-linear error compensation signal and the temperature signal T. P

[0100] 温度补偿方法需要使用压力P函数模型P = g(Vpm, Vt)和温度T函数模型T = q(Vpm, Vt)。 [0100] The method requires the use of temperature compensation function model pressure P P = g (Vpm, Vt) and the temperature T function model T = q (Vpm, Vt). 这些函数模型都是建立在硅压力传感器关于压力P和温度T的压力测量信号Vp-温度信号Vt标定实验数据基础上,这个实验与信号处理接口方法中的硅压力传感器关于压力P和温度T的压力测量信号Vp-温度信号Vt标定实验完全相同。 These models are based on functions silicon pressure sensor on the pressure P and temperature T measured experimental data calibration signal Vp- temperature signal Vt based on the experiment and the silicon pressure sensor signal processing interface methods on the pressure P and temperature T Vp- pressure measurement signal identical to the temperature signal Vt calibration experiments. 从实验数据:压力P-温度T-压力测量信号Vp-温度信号Vt中,可以分别得到建模数据:(压力P-压力信号Vpm-温度信号Vt)和(温度T-压力测量信号Vp-温度信号Vt)。 From the experimental data: Temperature Pressure T- P- pressure measurement signal Vp- temperature signal Vt can be obtained modeling data :( pressure P- pressure signal Vpm- temperature signal Vt) and (T- temperature pressure measurement signal temperatures Vp- signal Vt). 对这些实验数据进行二次曲面回归分析方法,分别建立压力P关于压力信号Vpm-温度信号Vt的函数模型P = g (Vpm, Vt)和温度T关于压力信号Vpm-温度信号Vt的函数模型T = q (Vpm,Vt),函数模型如下式所示。 Quadric surface regression analysis of the experimental data, the model function are established pressure P on the pressure signal P Vpm- temperature signal Vt = g (Vpm, Vt) and the temperature T on the pressure signal T function model temperature signal Vt Vpm- = q (Vpm, Vt), the following function model formula.

[0101] 压力P关于压力信号Vpm-温度信号Vt的函数模型P = g(Vpm, Vt): [0101] a function of the pressure P on the pressure signal P Vpm- model temperature signal Vt = g (Vpm, Vt):

[0102] P = -117. 758+1. 335XVpm+45. 134 X Vt-0. 00128XVpm2+0. 0477 X Vpm *Vt-4. 5113 XVt2[0103] 温度T关于压力信号Vpm-温度信号Vt的函数模型T = q (Vpm, Vt): [0102] P = -117. 758 + 1. 335XVpm + 45. 134 X Vt-0. 00128XVpm2 + 0. 0477 X Vpm * Vt-4. 5113 XVt2 [0103] pressure on the temperature T of the temperature signal Vt signal Vpm- function model T = q (Vpm, Vt):

[0104] T = 2693. 282-1. 3888 X Vpm-1182. 152XVt+0. 00103XVpm2+0. 2441 XVpm 'Vt+130 • 1434XVt2 [0104] T = 2693. 282-1. 3888 X Vpm-1182. 152XVt + 0. 00103XVpm2 + 0. 2441 XVpm 'Vt + 130 • 1434XVt2

[0105] 利用压力P函数模型P = g(Vpm, Vt)和温度T函数模型T = q(Vpm, Vt),将压力信号Vpm和温度信号Vt处理为:经过温度补偿和非线性误差补偿的压力信号P和温度信号T。 [0105] using the pressure P function model P = g (Vpm, Vt) and the temperature T function model T = q (Vpm, Vt), the pressure signal and the temperature signal Vt Vpm treatments were: temperature compensated and non-linear error compensation pressure signal P and a temperature signal T.

[0106] 下面是为了检验本发明高精度压力传感器信号补偿方法而做的两个实施例。 [0106] The following is a test for two high-precision pressure sensor signal compensation method embodiments of the present invention do. 实施例1 :迟滞误差补偿实验是在温度不变的条件下检验迟滞误差补偿效果而做的实验。 Example 1: Experimental hysteresis error compensation is the compensation effect test experiment hysteresis is done at a temperature the same conditions. 实施例2 :迟滞误差补偿和温度补偿实验是在温度改变的条件下做的实验。 Example 2: hysteresis error and temperature compensation at a temperature of experiments was done to change the experiment. 实验仪器主要有:活塞式压力计、恒流电源、温度控制箱和高精度数字万用表。 Experimental apparatus are: piston gauge, constant current power supply, temperature control box and high-precision digital multimeter. 实施例中使用的硅压力传感器的量程为0〜40Mpa。 Range silicon pressure sensor used in the embodiment is 0~40Mpa. 在室温,湿度56% RH条件下,参照JB/T 10524-2005机械行业标准进行试验。 At room temperature, 56% RH humidity condition, with reference to JB / T 10524-2005 machinery industry standard tests.

[0107] 实施例1 :迟滞误差补偿实验 [0107] Example 1: Experimental hysteresis error compensation

[0108] 为了检验本发明高精度压力传感器信号补偿方法的迟滞补偿效果,采用如图7所示的压力极值序列作为输入压力,传感器所在温控箱的温度为30°C。 [0108] To test the effect of the hysteresis compensation precision pressure sensor signal compensating method of the present invention, a pressure as shown in FIG. 7 extremum sequence as input pressure, temperature control box where the temperature sensor is 30 ° C. 将输出电压作为输入信号,分别用本发明高精度压力传感器信号补偿方法和未经迟滞补偿方法进行计算和比较,误差比较如图8所示。 Output voltage as an input signal, respectively calculated and compared with a high-precision pressure sensor signal and the compensation method of the present invention without hysteresis compensation method, error comparison as shown in FIG. 其中,实线为本发明方法的误差,虚线为非迟滞补偿方法的误差。 Wherein, the solid lines of the present invention Error Error of the broken line a non-hysteresis compensation method. 误差值分析比较如表1所示。 Comparative analysis of error values ​​shown in Table 1.

[0109] 表1 [0109] TABLE 1

[0110] [0110]

Figure CN101858811BD00111

[0111] 由试验结果对比可知,经迟滞补偿后的压力值的误差明显小于未经迟滞补偿的压力值误差。 [0111] apparent from the comparison of the test results, the pressure value of the hysteresis compensation error value significantly less than the pressure hysteresis error is not compensated. 因此,对于硅压力传感器的迟滞误差,使用本发明高精度压力传感器信号补偿方法是有效的。 Thus, the hysteresis is for the silicon pressure sensor, a high-precision pressure sensor signal compensating method of the present invention is effective.

[0112] 实施例2 :迟滞误差补偿和温度补偿实验 [0112] Example 2: hysteresis error and temperature compensation experiment

[0113] 为了检验本发明高精度压力传感器信号补偿方法整体的补偿效果,采用如图9所示的压力作为输入压力,传感器所在温控箱的温度为65°C。 [0113] In order to test the overall high-precision pressure sensor signal compensation method for compensating the effect of the present invention, shown in Figure 9 uses the pressure as the input pressure, temperature control box where the temperature sensor is 65 ° C. 将输出电压作为输入信号,分别用本发明高精度压力传感器信号补偿方法和非线性误差补偿方法进行计算和比较,误差比较如图10所示。 Output voltage as an input signal, respectively calculated and compared with a high-precision pressure sensor signal compensating method and error compensation method of the present invention, the error comparator 10 shown in FIG. 其中,实线为本发明方法的误差,虚线为非线性误差补偿方法的误差。 Wherein, the solid lines of the present invention, the error process, the broken line is a nonlinear error error compensation methods. 误差值分析比较如表2所示。 Comparative analysis of error values ​​shown in Table 2.

[0114]表 2 [0114] TABLE 2

[0115] [0115]

Figure CN101858811BD00121

[0116] 由试验结果可知,经迟滞、非线性误差补偿和温度补偿后的压力值的误差得到明显的减小,本发明高精度压力传感器信号补偿方法是有效的。 [0116] apparent from the test results, the hysteresis error of the pressure value after the error compensation and temperature compensation has been significantly reduced, high-precision pressure sensor signal compensating method of the present invention is effective.

[0117] 以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施方式仅限于此,对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单的推演或替换,都应当视为属于本发明由所提交的权利要求书确定专利保护范围。 [0117] The above content with the specific preferred embodiments of the present invention is further made to the detailed description should not be considered specific embodiments of the present invention be limited thereto, the present invention belongs to the technical field of ordinary skill in the art, without departing from the present invention concept premise, can make various simple deduction or replacement, should be deemed to belong to the present invention as claimed in claims submitted to determine the scope of protection.

Claims (3)

1. 一种高精度压力传感器信号补偿方法,其特征在于,按照如下步骤:(1)硅压力传感器测量得到压力测量信号Vp和温度测量信号Vt ;压力测量信号Vp依次经信号放大电路和A/D转换电路后进入DSP数据采集补偿电路;温度测量信号Vt经A/D 转换电路后进入DSP数据采集补偿电路;(2)在DSP数据采集补偿电路中,采用迟滞误差补偿方法将压力测量信号Vp转化为消除迟滞误差的压力值P' ;(3)在DSP数据采集补偿电路中,采用信号接口处理方法对压力值P'进行温度校正,得到经过温度校正后的压力信号Vpm ;(4)在DSP数据采集补偿电路中,采用温度补偿方法,由经过温度校正的压力信号Vpm 和温度信号Vt得到经过温度补偿和非线性误差补偿的压力信号P和温度信号T ;所述迟滞误差补偿方法是指:首先,用压力测量信号Vp的极值序列Vpl、Vp2、…、Vpn表示压力;其次,判断压力处 A high-precision pressure sensor signal compensation method, wherein the following steps: (1) a silicon pressure sensor to obtain pressure measurement signal Vp and Vt of the temperature measurement signal; sequentially via the pressure measurement signal Vp signal amplifying circuit and an A / D conversion circuit into the DSP data acquisition compensation circuit; temperature measurement signal Vt after A / D conversion circuit into the DSP data acquisition compensation circuit; (2) in the DSP data acquisition compensation circuit, hysteretic error compensation method of the pressure measurement signal Vp conversion to eliminate the pressure hysteresis error value P '; (. 3) in the DSP data acquisition compensation circuit, using a signal interface processing method of the pressure value P' temperature correction, obtained after the temperature corrected pressure signal Vpm; (4) the DSP data acquisition compensation circuit, using a temperature compensation method, the temperature-corrected pressure signal and the temperature signal Vt obtained Vpm temperature compensated and non-linear error compensated pressure signal and the temperature signal T P; hysteresis error compensation means of the method : first, the pressure signal Vp extremum of the measurement sequence Vpl, Vp2, ..., Vpn represents pressure; secondly, determines the pressure at 加载过程还是卸载过程;然后分别利用迟滞逆模型a= χ;1 [χ(α, b),列或b= X61 [α, χ(α,州对压力测量信号Vp的极值序列Vpl、Vp2、…、Vpn进行处理,得到经过迟滞误差补偿的压力信号P,的序列P' i;P' 2,...,P' „;当压力在加载过程中,用于迟滞误差补偿的迟滞逆模型a= χ;1 [χ(α, b), b]为^ JMf 501=1其中,an为经过迟滞误差补偿的当前的压力值P' n,当前压力处于加载过程; Y为输入向量,由当前的极值压力增量所对应的电压Δ Vn和前一个极值压力Plri组成, 即γ = ( Δ Vn,Pirf),其中Δ Vn = Vpn-Vpiri ;Yi为支持向量,即由训练样本构成的向量,即Yi = Mapbi^bi), i = 1,2,...,45 ; α i为经过训练得到的支持向量机的权值系数,i = l,2,...,45; 当压力在卸载过程中用于迟滞误差补偿的迟滞逆模型bix^hxk州为 Loading or unloading process; then using the inverse hysteresis model were a = χ; extremum sequence Vpl 1 [χ (α, b), a column, or b = X61 [α, χ (α, the state of the pressure measurement signal Vp, Vp2 , ..., the Vpn, to give the hysteresis error compensation through the pressure signal P, the sequence P 'i; P' 2, ..., P ' "; when the pressure in the loading process of the hysteresis, the hysteresis error compensation for the reverse model a = χ; 1 [χ (α, b), b] is ^ JMf 501 = 1 wherein, AN value P 'n is the current pressure through hysteresis error compensation, the current pressure in the loading process; Y is the input vector, the voltage at the current extreme value corresponding to the pressure increase Δ Vn and the front one extreme pressure Plri composition, i.e. γ = (Δ Vn, Pirf), where Δ Vn = Vpn-Vpiri; Yi is a support vector, i.e., by the training samples vector configuration, i.e., Yi = Mapbi ^ bi), i = 1,2, ..., 45; α i is the weight value of the coefficient after training SVM obtained, i = l, 2, ..., 45 ; when the inverse hysteresis model bix ^ hxk state pressure error compensation for hysteresis in the process of unloading
Figure CN101858811BC00021
其中,比为经过迟滞误差补偿的当前的压力值P' n,当前压力处于卸载过程; Y为输入向量,由当前的极值压力增量所对应的电压Δ Vn和前一个极值压力Plri组成, 即γ = ( Δ Vn,Pirf),其中Δ Vn = Vpn-Vpirf ;Yi为支持向量,即由训练样本构成的向量,即Yi = (Xi(B^bi)jBi), i = 1,2,...,45 ; α i为经过训练得到的支持向量机的权值系数,i = 1,2,...,45。 Wherein the ratio of the current through the pressure hysteresis error compensation value P 'n, the current pressure in the unloading process; Y is the input vector, the voltage at the current extreme value corresponding to a pressure increment Δ Vn and the front one extreme pressure composition Plri , i.e. γ = (Δ Vn, Pirf), where Δ Vn = Vpn-Vpirf; Yi support vectors, i.e. vectors constructed by the training samples, i.e., Yi = (Xi (B ^ bi) jBi), i = 1,2 , ..., 45; α i is the weight value of the coefficient after training SVM obtained, i = 1,2, ..., 45.
2.如权利要求1所述高精度压力传感器信号补偿方法,其特征在于,所述信号处理接口方法是指:利用压力信号Vpm关于压力P和温度T的函数模型Vpm = f (P,Vt),由未经温度补偿的压力信号P'和温度测量信号Vt处理得到经过温度校正的压力信号Vpm ;函数模型Vpm = f(P, Vt)如下式所示: 2. The high-precision pressure sensor signal compensation method according to claim 1, wherein said signal processing means interface methods: using the model of a function of the pressure signal Vpm pressure P and temperature T Vpm = f (P, Vt) , obtained by unauthorized 'temperature measurement signal Vt and processing temperature compensated pressure signal after temperature correction P Vpm of a pressure signal; function model Vpm = f (P, Vt) the following formula:
Figure CN101858811BC00022
3.如权利要求1所述高精度压力传感器信号补偿方法,其特征在于,所述温度补偿方法是指:利用压力P关于压力信号Vpm-温度信号Vt的函数模型P = g(Vpm, Vt)和温度T 关于压力信号Vpm-温度信号Vt的函数模型T = q(Vpm, Vt),将压力信号Vpm和温度测量信号Vt处理为:经过温度补偿和非线性误差补偿的高精度的压力信号P和温度信号T ; 压力P关于压力信号Vpm-温度信号Vt的函数模型P = g(Vpm, Vt): P = -117. 758+1. 335XVpm+45. 134 X Vt-0. 00128XVpm2+0. 0477 X Vpm · Vt-4. 5113 X Vt2温度T关于压力信号Vpm-温度信号Vt的函数模型T = q(Vpm, Vt): T = 2693. 282-1. 3888 X Vpm-1182. 152XVt+0. 00103XVpm2+0. 2441 XVpm 'Vt+1301. 43 4XVt2。 3. The high-precision pressure sensor signal compensation method according to claim 1, wherein said temperature compensation means: the use of a pressure P on the pressure signal P function model Vpm- temperature signal Vt = g (Vpm, Vt) T function model and the temperature T on the pressure signal Vpm- temperature signal Vt = q (Vpm, Vt), the pressure and temperature measurement signals Vpm signal Vt treatments were: temperature compensated precision error compensation and a pressure signal P and the temperature signal T; P pressure model function P on the pressure signal Vpm- temperature signal Vt = g (Vpm, Vt): P = -117 758 + 1 335XVpm + 45 134 X Vt-0 00128XVpm2 + 0..... . 0477 X Vpm · Vt-4 5113 X Vt2 temperature T on the temperature signal Vt pressure signal Vpm- function model T = q (Vpm, Vt):.. T = 2693. 282-1 3888 X Vpm-1182 152XVt + 0 . 00103XVpm2 + 0. 2441 XVpm 'Vt + 1301. 43 4XVt2.
CN 201010202078 2010-06-18 2010-06-18 Method for compensating signal of high-precision pressure sensor CN101858811B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010202078 CN101858811B (en) 2010-06-18 2010-06-18 Method for compensating signal of high-precision pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010202078 CN101858811B (en) 2010-06-18 2010-06-18 Method for compensating signal of high-precision pressure sensor

Publications (2)

Publication Number Publication Date
CN101858811A CN101858811A (en) 2010-10-13
CN101858811B true CN101858811B (en) 2012-02-01

Family

ID=42944843

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010202078 CN101858811B (en) 2010-06-18 2010-06-18 Method for compensating signal of high-precision pressure sensor

Country Status (1)

Country Link
CN (1) CN101858811B (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102393274A (en) * 2011-10-24 2012-03-28 山东佰测仪表有限公司 Temperature compensation method of intelligent pressure transmitter based on quadric surface
US8930157B2 (en) * 2012-02-21 2015-01-06 Dresser, Inc. Temperature compensated digital pressure transducer
CN103076117A (en) * 2012-12-26 2013-05-01 南京高华科技有限公司 Sensor and measuring method thereof
CN103199801B (en) * 2013-04-03 2016-03-23 上海理工大学 Turbine flow sensor preamplifier with nonlinear compensation and compensation method
CN103278269A (en) * 2013-04-24 2013-09-04 武汉航空仪表有限责任公司 Temperature compensation method for high accuracy pressure transmitter
CN103968998A (en) * 2014-04-12 2014-08-06 沈阳仪表科学研究院有限公司 Method for conducting pressure calibration on diffused silicon sensors through upper computer
US20150378332A1 (en) * 2014-06-30 2015-12-31 Rosemount Inc. Hysteretic process variable sensor compensation
CN104122031A (en) * 2014-07-31 2014-10-29 西安交通大学 Silicon pressure sensor temperature compensation method based on extreme learning machine
CN105588681A (en) * 2014-10-20 2016-05-18 华记科技有限公司 Temperature compensation method and structure of electronic type pressure gauge
CN105300412B (en) * 2015-07-27 2017-09-15 桂林电子科技大学 A kind of temperature self-compensation method for LAPS
CN105301154B (en) * 2015-10-10 2017-10-24 上海炫一电气有限公司 A kind of general air-path control system and method based on temperature-compensating
CN105971976A (en) * 2016-05-25 2016-09-28 广西柳工机械股份有限公司 Method for measuring hydraulic pressure of engineering machine by means of voltage type pressure sensor
CN106092178B (en) * 2016-08-26 2018-09-04 中煤科工集团重庆研究院有限公司 Improve the data correcting method of measurement accuracy
CN106895929B (en) * 2017-01-06 2019-04-05 慧石(上海)测控科技有限公司 Improve the temperature pressure compensation method of embedded pressure sensor output accuracy
CN108181028A (en) * 2018-01-29 2018-06-19 西南交通大学 A kind of humble pressure sensor mushing error modification method of pressure resistance type

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1479192A (en) 1975-09-19 1977-07-06 Avery Ltd W Hysteresis correction
WO2002035191A1 (en) 2000-10-28 2002-05-02 Schenck Process Gmbh Method and device for the hysteresis correction of measured values for sensors with extensometers
CN101089574A (en) 2006-06-14 2007-12-19 昆山双桥传感器测控技术有限公司 Error correcting method for pressure sensor
CN101201284A (en) 2006-12-14 2008-06-18 昆山双桥传感器测控技术有限公司 Error compensation model and algorithm implementation of high-precision pressure sensor
CN101275878A (en) 2007-03-27 2008-10-01 捷顶微电子(上海)有限公司 Compensation method of temperature drift of pressure sensor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3725641B2 (en) * 1996-11-15 2005-12-14 大和製衡株式会社 Hysteresis error compensation method and weighing device with the function

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1479192A (en) 1975-09-19 1977-07-06 Avery Ltd W Hysteresis correction
WO2002035191A1 (en) 2000-10-28 2002-05-02 Schenck Process Gmbh Method and device for the hysteresis correction of measured values for sensors with extensometers
CN101089574A (en) 2006-06-14 2007-12-19 昆山双桥传感器测控技术有限公司 Error correcting method for pressure sensor
CN101201284A (en) 2006-12-14 2008-06-18 昆山双桥传感器测控技术有限公司 Error compensation model and algorithm implementation of high-precision pressure sensor
CN101275878A (en) 2007-03-27 2008-10-01 捷顶微电子(上海)有限公司 Compensation method of temperature drift of pressure sensor

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
杨俊,等.扩散硅压力传感器的迟滞建模与智能补偿.《微计算机信息》.2008,第24卷(第1期),
谢煜,等.电容称重传感器的迟滞性补偿.《仪表技术与传感器》.2007,(第12期),
赵新龙,等.基于神经网络的迟滞非线性逆模型.《上海交通道学学报》.2007,第41卷(第1期),

Also Published As

Publication number Publication date
CN101858811A (en) 2010-10-13

Similar Documents

Publication Publication Date Title
CN1666096A (en) Digitally controlled sensor system
CN102032974B (en) Temperature compensation method for pressure sensor
CN202383103U (en) Temperature drift compensating device of combustible gas sensor
CN103162901A (en) Nonlinear calibrating method for multiple temperature points of pressure sensor
CN201819983U (en) PCB (printed circuit board) of digital flux-gate magnetometer
CN101419102B (en) Ultrathin six-dimensional force sensor and method thereof for measuring three-dimensional force and three-dimensional moment information
CN101706346B (en) Method for compensating for nonlinear temperature drift of measurement of intelligent force sensor
CN203785837U (en) High-precision pressure calibration apparatus
CN201293698Y (en) Pressure transmitter with temperature compensation circuit
CN102279924A (en) Fingerprint identification system and testing device
CN100483093C (en) In-circuit programmable automatic temperature compensation silicon piezoresistive transducer
CN202255263U (en) Visual calibration device for displacement sensor
CN201653608U (en) High-intelligent resistance strain gage sensor
CN202614463U (en) A temperature drift calibration device of a piezoresistive pressure sensor
CN101281074B (en) Pressure sensor calibrating method for test system with calibration scale
CN201382921Y (en) Gas detection device
CN201096560Y (en) Stamping die dynamic stress strain measurement device
CN101936791B (en) Digital pressure gauge
CN201215517Y (en) Pressure detecting device with temperature compensation
CN102279028B (en) Device and method for measuring container volume with high precision
CN102116687B (en) Method for calibrating temperature precision of temperature sensor chip
CN1740790A (en) Automatic measuring system for concrete temperature linear deformation
CN101763096A (en) Automatic calibrating and testing system and calibrating and testing method thereof
CN102500253B (en) Novel device for distributing standard gas
CN202092821U (en) Intrinsic safe digital pressure transducer

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model
EXPY Termination of patent right or utility model