CN101857604B - Three-dimensional hypoxanthine tetraphthalic acid mixed ligand copper coordination polymer and its preparation method - Google Patents

Three-dimensional hypoxanthine tetraphthalic acid mixed ligand copper coordination polymer and its preparation method Download PDF

Info

Publication number
CN101857604B
CN101857604B CN2010101730855A CN201010173085A CN101857604B CN 101857604 B CN101857604 B CN 101857604B CN 2010101730855 A CN2010101730855 A CN 2010101730855A CN 201010173085 A CN201010173085 A CN 201010173085A CN 101857604 B CN101857604 B CN 101857604B
Authority
CN
China
Prior art keywords
hypoxanthine
dimensional
copper
coordination polymer
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010101730855A
Other languages
Chinese (zh)
Other versions
CN101857604A (en
Inventor
赵小军
刘正宇
杨恩翠
刘忠义
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Normal University
Original Assignee
Tianjin Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Normal University filed Critical Tianjin Normal University
Priority to CN2010101730855A priority Critical patent/CN101857604B/en
Publication of CN101857604A publication Critical patent/CN101857604A/en
Application granted granted Critical
Publication of CN101857604B publication Critical patent/CN101857604B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

The invention relates to a three-dimensional copper coordination polymer containing a hypoxanthine base and pyromellitic benzoic acid mixed ligand, and a preparation method and application thereof. The chemical formula of the three-dimensional coordination polymer is Cu2(hypH)0.5(H2O)0.5(btec)]·1.5H2O, wherein hypH is hypoxanthine base and btec is the quaternary anion of pyromellitic benzoic acid. The complex is prepared by a hydrothermal method, and has high yield and good reproducibility. The complex is a first three-dimensional copper coordination polymer containing hypoxanthine base and has ferromagnetic characteristics,can be used for developing materials such as magnetic ink, information recording, magnetic induction, aerospace, microwave and the like.

Description

三维次黄嘌呤均四苯甲酸混合配体铜配位聚合物及其制备方法Three-dimensional hypoxanthine tetraphthalic acid mixed ligand copper coordination polymer and its preparation method

技术领域 technical field

本发明涉及金属-有机配位聚合物及分子基磁体领域,特别是含有次黄嘌呤碱基的高维磁性材料的制备方法及其应用,所述配位聚合物是第一个含有次黄嘌呤碱基和均四苯甲酸配体的三维铜配位聚合物,其磁学性质使其可以作为分子基磁体。The invention relates to the field of metal-organic coordination polymers and molecular-based magnets, especially the preparation method and application of high-dimensional magnetic materials containing hypoxanthine bases. The coordination polymer is the first one containing hypoxanthine Three-dimensional copper coordination polymers of bases and pyrene ligands whose magnetic properties enable their use as molecular-based magnets.

背景技术 Background technique

近年来,设计和合成具有高维有序的空间结构和优良的理化性能的分子基材料已经引起了人们极大的兴趣(游效曾,分子材料-光电功能化合物,上海科学技术出版社,2001;朱道本,功能材料化学进展,化学工业出版社,2005;洪茂春,陈荣,梁文平,21世纪的无机化学,科学出版社,2005;Larsson,K.Molecule-Based Materials:TheStructural Network Approach,Elsevier B.V.;Amsterdam,2005)。与传统的无机材料相比,当有机配体和无机阳离子聚集成固体时,原子的排列次序以及连接方式对体系的功能有极大的影响。作为分子基材料的一个分支,分子基磁体涉及化学、物理、材料和生命科学等诸多学科的新兴交叉研究领域,其主要任务之一是研究分子体系中自旋载体之间的相互作用及其机理,揭示分子磁性与结构之间的内在关系,发现和筛选新的功能材料(J.S.Miller,M.Drillon,Eds.Magnetism:Molecules to Materials(I-IV).Weinheim,Willey-VCH,2002;E.Coronado,F.Palacio,J.Veciana,Angew.Chem.Int.Ed.,2003,42,2570-2572;O.Kahn,Molecular Magnetism,VCH,Weinheim,Germany,1993;M.Sakamoto,K.Manseki,H.

Figure GSA00000101639600011
Coord.Chem.Rev.2001,219-221,379-414;X.-Y.Wang,Z.-M.Wang,S.Gao,Chem.Commun.2008,281-294)。In recent years, the design and synthesis of molecular-based materials with high-dimensional ordered spatial structure and excellent physical and chemical properties have attracted great interest (You Xiaozeng, Molecular Materials-Photoelectric Functional Compounds, Shanghai Science and Technology Press, 2001; Zhu Daoben , Advances in Chemistry of Functional Materials, Chemical Industry Press, 2005; Hong Maochun, Chen Rong, Liang Wenping, Inorganic Chemistry in the 21st Century, Science Press, 2005; Larsson, K. Molecule-Based Materials: The Structural Network Approach, Elsevier BV; Amsterdam, 2005). Compared with traditional inorganic materials, when organic ligands and inorganic cations are aggregated into a solid, the arrangement of atoms and the way of connection have a great impact on the function of the system. As a branch of molecular-based materials, molecular-based magnets involve emerging interdisciplinary research fields in many disciplines such as chemistry, physics, materials, and life sciences. One of its main tasks is to study the interaction and mechanism of spin carriers in molecular systems. , to reveal the intrinsic relationship between molecular magnetism and structure, to discover and screen new functional materials (JSMiller, M.Drillon, Eds.Magnetism: Molecules to Materials (I-IV). Weinheim, Willey-VCH, 2002; E.Coronado , F. Palacio, J. Veciana, Angew. Chem. Int. Ed., 2003, 42, 2570-2572; O. Kahn, Molecular Magnetism, VCH, Weinheim, Germany, 1993; M. Sakamoto, K. Manseki, H .
Figure GSA00000101639600011
Coord. Chem. Rev. 2001, 219-221, 379-414; X.-Y. Wang, Z.-M. Wang, S. Gao, Chem. Commun. 2008, 281-294).

次黄嘌呤核酸碱基含有多个可与顺磁金属离子配位的N和O给体,并可显示出多种不同的配位模式,已经成为构筑不同维度的有序聚集体的理想配体(E.Sletten,ActaCrystallogr.1970,B26,1609-1614;M.E.Kastner,K.F.Coffey,M.J.Clarke,S.E.Edmonds,K.Eriks,J.Am.Chem.Soc.1981,103,5747-5752;E.Dubler,G.W.Bensch,J.Inorg.Biochem.1987,29,269-288;E.Dubler,G.

Figure GSA00000101639600013
H.W.Schmalle,Acta Crystallogr.1987,C43,1872-1875;E.Dubler,G.
Figure GSA00000101639600014
H.W.Schmalle,Inorg.Chem.1990,29,2518-2523;G.H.W.Schmalle,E.Dubler,Acta Crystallogr.1992,C48,1008-1012;P.Annen,S.Schildberg,W.S.Sheldrick,Inorg.Chim.Acta 2000,307,115-124;M.A.Salam,K.Aoki,Inorg.Chim.Acta 2001,314,71-82;D.Badura,H.Vahrenkamp,Inorg.Chem.2002,41,6013-6019;García-Raso,A.;Fiol,J.J.;Tasada,A.;Prieto,M.J.;Moreno,V.;I.Mata,E.Molins,T.
Figure GSA00000101639600022
A.
Figure GSA00000101639600023
I.Turel,Inorg.Chem.Commun.2005,8,800-804;K.Aoki,M.A.Salam,C.Munakata,I.Fujisawa,Inorg.Chim.Acta 2007,360,3658-3670;M.A.Salam,H.-Q.Yuan,T.Kikuchi,N.A.Prasad,I.Fujisawa,K.Aoki,Inorg.Chim.Acta 2009,362,1158-1168)。The hypoxanthine nucleic acid base contains multiple N and O donors that can coordinate with paramagnetic metal ions, and can display a variety of different coordination modes, and has become an ideal ligand for the construction of ordered aggregates of different dimensions (E.Sletten, ActaCrystallogr.1970, B26, 1609-1614; MEKastner, KFCoffey, MJClarke, SEEdmonds, K.Eriks, J.Am.Chem.Soc.1981, 103, 5747-5752; E.Dubler, G. W. Bensch, J. Inorg. Biochem. 1987, 29, 269-288; E. Dubler, G.
Figure GSA00000101639600013
HWSchmalle, Acta Crystallogr. 1987, C43, 1872-1875; E. Dubler, G.
Figure GSA00000101639600014
HWSchmalle, Inorg. Chem. 1990, 29, 2518-2523; G. HWSchmalle, E. Dubler, Acta Crystallogr. 1992, C48, 1008-1012; P. Annen, S. Schildberg, WS Sheldrick, Inorg. Chim. Acta 2000, 307, 115-124; MASalam, K. Aoki, Inorg. Chim. Acta 2001, 314, 71-82; D. Badura, H. Vahrenkamp, Inorg. Chem. 2002, 41, 6013-6019; García-Raso, A.; Fiol, JJ; Tasada, A.; Prieto, MJ; Moreno , V.; I. Mata, E. Molins, T.
Figure GSA00000101639600022
a.
Figure GSA00000101639600023
I. Turel, Inorg. Chem. Commun. 2005, 8, 800-804; K. Aoki, MASalam, C. Munakata, I. Fujisawa, Inorg. Chim. Acta 2007, 360, 3658-3670; MASalam, H.- Q. Yuan, T. Kikuchi, NAPrasad, I. Fujisawa, K. Aoki, Inorg. Chim. Acta 2009, 362, 1158-1168).

另一方面,具有丰富配位模式的多元羧酸类配体,特别是含有芳香环的多羧基配体可以通过金属离子与不同构象的羧基形成的配位构型有效地调控铁磁与反铁磁耦合作用。实际上,通过不同的芳香酸构筑具有铁磁,反铁磁,以及场诱导自旋转变性质的配合物已经被人们广泛而大量的研究(Z.-B.Han,J.-W.Ji,H.-Y.An,W.Zhang,G.-X.Han,G.-X.Zhang,L.-G.Yang,Dalton Trans.2009,9807-9811;Y.Y.Karabach,A.M.Kirillov,M.Haukka,J.Sanchiz,M.N.Kopylovich,A.J.L.Pombeiro,Cryst.Growth Des.2008,8,4100-4108;X.Zhu,J.-W.Zhao,B.-L.Li,Y.Song,Y.-M.Zhang,Y.Zhang,Inorg.Chem.2010,49,1266-1270;H.-P.Jia,W.Li,Z.-F.Ju,J.Zhang,Dalton Trans.2007,3699-3704;O.Fabelo,J.Pasán,L.

Figure GSA00000101639600024
adillas-Delgado,F.S.Delgado,F.Lloret,M.Julve,C.Ruiz-Pérez,Inorg.Chem.2008,47,8053-8061;W.Li,Z.-F.Ju,Q.-X.Yao,J.Zhang,CrystEngComm2008,10,1325-1327;Y.-Z.Zheng,Y.-B.Zhang,M.-L.Tong,W.Xue,X.-M.Chen,Dalton Trans.2009,1396-1406;O.Fabelo,L.adillas-Delgado,J.Pasán,F.S.Delgado,F.Lloret,J.Cano,M.Julve,C.Ruiz-Pérez,Inorg.Chem.2009,48,11342-11351等)。然而,同时含有次黄嘌呤和均四苯甲酸混合配体的铜配位聚合物的磁性材料还未见报道,相关研究为磁性油墨、信息记录、磁感应、航天和微波等材料的开发探索开辟新的道路。On the other hand, polycarboxylic acid ligands with rich coordination modes, especially polycarboxylic ligands containing aromatic rings, can effectively control ferromagnetism and antiferromagnetic properties through the coordination configurations formed by metal ions and carboxyl groups in different conformations. magnetic coupling. In fact, the construction of complexes with ferromagnetic, antiferromagnetic, and field-induced spin transition properties through different aromatic acids has been extensively and extensively studied (Z.-B.Han, J.-W.Ji, H.-Y.An, W. Zhang, G.-X. Han, G.-X. Zhang, L.-G. Yang, Dalton Trans. 2009, 9807-9811; YY Karabach, AM Kirillov, M. Haukka, J .Sanchiz, MNKopylovich, AJL Pombeiro, Cryst.Growth Des.2008, 8, 4100-4108; X.Zhu, J.-W.Zhao, B.-L.Li, Y.Song, Y.-M.Zhang, Y. .Zhang, Inorg.Chem.2010, 49, 1266-1270; H.-P.Jia, W.Li, Z.-F.Ju, J.Zhang, Dalton Trans.2007, 3699-3704; O.Fabelo, J. Pasán, L.
Figure GSA00000101639600024
adillas-Delgado, FSDelgado, F.Lloret, M.Julve, C.Ruiz-Pérez, Inorg.Chem.2008, 47, 8053-8061; W.Li, Z.-F.Ju, Q.-X.Yao, J. Zhang, CrystEngComm2008, 10, 1325-1327; Y.-Z. Zheng, Y.-B. Zhang, M.-L. Tong, W. Xue, X.-M. Chen, Dalton Trans. 2009, 1396 -1406; O. Fabelo, L. adillas-Delgado, J. Pasán, FS Delgado, F. Lloret, J. Cano, M. Julve, C. Ruiz-Pérez, Inorg. Chem. 2009, 48, 11342-11351, etc.). However, magnetic materials containing copper coordination polymers containing mixed ligands of hypoxanthine and pyridine have not been reported yet, and related research has opened up new horizons for the development and exploration of materials such as magnetic ink, information recording, magnetic induction, aerospace and microwave. path of.

发明内容Contents of the invention

本发明的一个目的在于提供一种三维次黄嘌呤均四苯甲酸铜配位聚合物,该配合物是第一例含有次黄嘌呤碱基的三维铜配位聚合物,具有铁磁体的性质。An object of the present invention is to provide a three-dimensional copper coordination polymer of hypoxanthine pyretate, which is the first example of a three-dimensional copper coordination polymer containing hypoxanthine base, and has ferromagnetic properties.

本发明的另一个目的在于提供一种三维次黄嘌呤铜配位聚合物的制备方法。Another object of the present invention is to provide a method for preparing a three-dimensional hypoxanthine copper coordination polymer.

本发明的再一个目的在于提供一种三维次黄嘌呤铜配位聚合物在制备作为分子基磁体方面的应用。为实现上述目的,本发明提供如下的技术方案:Another object of the present invention is to provide the application of a three-dimensional hypoxanthine copper coordination polymer in the preparation of molecular-based magnets. To achieve the above object, the present invention provides the following technical solutions:

具有下述化学通式的三维次黄嘌呤铜配位聚合物:A three-dimensional hypoxanthine copper coordination polymer having the following general chemical formula:

[Cu2(hypH)0.5(H2O)0.5(btec)]·1.5H2O[Cu 2 (hypH) 0.5 (H 2 O) 0.5 (btec)]·1.5H 2 O

其中hypH是次黄嘌呤碱基,btec是均四苯甲酸的四价阴离子,其分子式如下:Among them, hypH is hypoxanthine base, btec is the quaternary anion of pyridine, and its molecular formula is as follows:

Figure GSA00000101639600031
Figure GSA00000101639600031

本发明所述三维次黄嘌呤均四苯甲酸混合配体铜配位聚合物,其特征在于所述配位铜配位聚合物属于正交晶系,空间群为Pmn21,晶胞参数为a=12.0693(5),b=11.0441(5),

Figure GSA00000101639600032
Figure GSA00000101639600033
Z=4;次黄嘌呤碱基通过环外羰基氧原子和咪唑环氮原子双齿桥联两个二价铜离子形成一维波浪状的铜-次黄嘌呤带状结构,进而通过均苯四甲酸的羧基与铜离子的配位行为拓展形成三维共价结构。The three-dimensional hypoxanthine pyrene acid mixed ligand copper coordination polymer of the present invention is characterized in that the copper coordination polymer belongs to the orthorhombic crystal system, the space group is Pmn2 1 , and the unit cell parameter is a =12.0693(5), b=11.0441(5),
Figure GSA00000101639600032
Figure GSA00000101639600033
Z=4; the hypoxanthine base bridges two divalent copper ions through the exocyclic carbonyl oxygen atom and the imidazole ring nitrogen atom bidentate to form a one-dimensional wavy copper-hypoxanthine ribbon structure, and then through the pyromellitic The coordination behavior of the carboxyl group of formic acid and copper ions expands to form a three-dimensional covalent structure.

本发明所述三维次黄嘌呤铜配位聚合物,其主要的红外吸收峰为3437cm-1,1693cm-1,1636cm-1,1566cm-1,1497cm-1,1434cm-1,1398cm-1,1283cm-1,1185cm-1,1138cm-1,1100cm-1,920cm-1,889cm-1,848cm-1,812cm-1,765cm-1,689cm-1,647cm-1,579cm-1,516cm-1(见图3);配合物的在340℃开始分解。The three-dimensional hypoxanthine copper coordination polymer of the present invention has main infrared absorption peaks of 3437cm -1 , 1693cm -1 , 1636cm -1 , 1566cm -1 , 1497cm -1 , 1434cm -1 , 1398cm -1 , 1283cm -1 , 1185cm -1 , 1138cm -1 , 1100cm -1 , 920cm -1 , 889cm -1 , 848cm -1 , 812cm -1 , 765cm -1 , 689cm -1 , 647cm -1 , 579cm -1 , 516cm -1 (see Figure 3); the complex begins to decompose at 340°C.

本发明所述三维次黄嘌呤铜配位聚合物的制备方法,其特征在于将次黄嘌呤、均四苯甲酸与三水合硝酸铜或二水合氯化铜在二次蒸馏水中经由水热反应得到蓝色块状单晶体,然后用甲醇洗涤,干燥;其中次黄嘌呤、均四苯甲酸与三水合硝酸铜或二水合氯化铜的摩尔比为1~2∶1∶2。其中水热反应二次蒸馏的水的用量为8.0mL~10.0mL。所述的水热反应的pH值范围为5~8之间。所述水热反应温度为120℃~140℃保温3天后降到室温。The preparation method of the three-dimensional hypoxanthine copper coordination polymer of the present invention is characterized in that hypoxanthine, pyrene carboxylic acid and copper nitrate trihydrate or copper chloride dihydrate are hydrothermally reacted in twice distilled water to obtain Blue bulky single crystal, washed with methanol, and dried; the molar ratio of hypoxanthine, pyrene, and copper nitrate trihydrate or copper chloride dihydrate is 1-2:1:2. Wherein, the amount of water used for secondary distillation in the hydrothermal reaction is 8.0 mL to 10.0 mL. The pH range of the hydrothermal reaction is between 5 and 8. The hydrothermal reaction temperature is 120° C. to 140° C. for 3 days and then lowered to room temperature.

本发明所述的水热反应指的是指在特制的密闭容器(一般使用内衬聚四氟乙烯的不锈钢反应釜)中,以水或其他有机溶剂为反应介质,通过外界的加热(温度范围:100-300℃)使容器内部产生自生压强(1-100Mpa),使得在通常情况下难溶或不溶的物质溶解并结晶析出。The hydrothermal reaction of the present invention refers to that in a special airtight container (generally using a stainless steel reactor lined with polytetrafluoroethylene), with water or other organic solvents as the reaction medium, through external heating (temperature range : 100-300°C) to generate autogenous pressure (1-100Mpa) inside the container, so that the insoluble or insoluble substances are usually dissolved and crystallized.

本发明制备的(实施例1-5)三维次黄嘌呤铜配位聚合物的结构表征如下:The structural characterization of the three-dimensional hypoxanthine copper coordination polymer (Example 1-5) prepared by the present invention is as follows:

(1)晶体结构测定(图1)(1) Determination of crystal structure (Figure 1)

在显微镜下选取合适大小的单晶,室温下在Bruker APEX II CCD衍射仪上,用经石墨单色化的Mo-Kα射线(),以

Figure GSA00000101639600042
方式收集衍射数据。所有衍射数据通过SADABS软件用multi-scan方法进行半经验吸收校正。晶胞参数用最小二乘法确定。数据还原和结构解析分别使用SAINT和SHELXL程序包完成。所有非氢原子用全矩阵最小二乘法进行各向异性精修。结构见图1。晶体学衍射点数据收集和结构精修的部分参数见表1。Select a single crystal of appropriate size under a microscope, and use graphite monochromatized Mo-Kα rays ( ),by
Figure GSA00000101639600042
to collect diffraction data. All diffraction data were semi-empirically corrected by SADABS software using the multi-scan method. The unit cell parameters were determined using the least squares method. Data restoration and structure elucidation were accomplished using the SAINT and SHELXL program packages, respectively. All non-hydrogen atoms were anisotropically refined using full matrix least squares. The structure is shown in Figure 1. Some parameters of crystallographic diffraction point data collection and structure refinement are shown in Table 1.

表1.三维次黄嘌呤铜配位聚合物的主要晶体学数据与精修参数Table 1. The main crystallographic data and refinement parameters of the three-dimensional hypoxanthine copper coordination polymer

Figure GSA00000101639600043
Figure GSA00000101639600043

aR1=∑||Fo|-|Fc||/|Fo|; a R 1 =∑||F o |-|F c ||/|F o |;

bwR2=[∑w(Fo 2-Fc 2)2/∑w(Fo 2)2]1/2. b wR 2 =[∑w(F o 2 -F c 2 ) 2 /∑w(F o 2 ) 2 ] 1/2 .

(2)红外光谱测定(图2)(2) Infrared spectrometry (Fig. 2)

红外光谱采用溴化钾压片法在型号为Nicolet IR-200的红外光谱仪上测定。Infrared spectra were measured on a Nicolet IR-200 infrared spectrometer by the potassium bromide tablet method.

(3)热重分析测定(图3)(3) thermogravimetric analysis (Fig. 3)

热重分析实验是在Shimadzu simultaneous DTG-60A的热重分析仪上完成,在氮气保护下以5℃/min的速率从室温加热到800℃测定,结果显示配合物晶体在340℃发生分解。The thermogravimetric analysis experiment was completed on a Shimadzu simultaneous DTG-60A thermogravimetric analyzer. Under the protection of nitrogen, it was heated from room temperature to 800 °C at a rate of 5 °C/min. The results showed that the crystal of the complex decomposed at 340 °C.

(4)粉末衍射表征相纯度(图4)(4) Powder diffraction characterization of phase purity (Figure 4)

粉末衍射数据收集在Rigaku D/Max-2500衍射仪上测定。仪器操作电压为40kV,电流为100mA。使用石墨单色化的Cu靶X射线。固定扫描,发散偏离为1°,接收狭缝宽度为0.3mm;密度数据收集使用2θ/θ扫描模式,在3°到60°范围内连续扫描完成,扫描速度为8°/秒,步长为0.02°。数据拟合使用Cerius2程序,单晶结构粉末衍射谱模拟转化使用Mercury 1.4.1软件包。Powder diffraction data were collected on a Rigaku D/Max-2500 diffractometer. The operating voltage of the instrument is 40kV and the current is 100mA. Cu target X-rays monochromated using graphite. Fixed scanning, the divergence deviation is 1°, the receiving slit width is 0.3mm; the density data collection uses 2θ/θ scanning mode, and the scanning is completed continuously within the range of 3° to 60°, the scanning speed is 8°/s, and the step size is 0.02°. Cerius2 program was used for data fitting, and Mercury 1.4.1 software package was used for simulation transformation of single crystal structure powder diffraction spectrum.

本发明进一步公开了三维次黄嘌呤均四苯甲酸混合配体的铜配位聚合物在制备分子基磁体方面的应用。可应用于磁性油墨、信息记录、磁感应、航天和微波材料等领域。The invention further discloses the application of the copper coordination polymer of the mixed ligand of three-dimensional hypoxanthine pyrene in the preparation of molecular-based magnets. It can be applied to fields such as magnetic ink, information recording, magnetic induction, aerospace and microwave materials.

本发明所述的分子基磁体是利用超分子化学的方法,将顺磁性金属离子与有机桥联配体以自组装和控制组装的方式所构筑的一类化合物,在临界温度以下具有自发磁化行为。分子基磁体具有体积小、重量轻、透明度高、溶解性好、结构多样化及易于复合加工成型等优点。The molecular-based magnet described in the present invention is a class of compounds constructed by self-assembly and controlled assembly of paramagnetic metal ions and organic bridging ligands by means of supramolecular chemistry, and has spontaneous magnetization behavior below the critical temperature . Molecular-based magnets have the advantages of small size, light weight, high transparency, good solubility, diverse structures, and easy composite processing and molding.

本发明制备的三维次黄嘌呤铜配位聚合物的显著特点在于:The salient features of the three-dimensional hypoxanthine copper coordination polymer prepared by the present invention are:

(1)本发明是首个含有次黄嘌呤碱基的三维结构的配位聚合物。(1) The present invention is the first coordination polymer containing a three-dimensional structure of hypoxanthine base.

(2)本发明制备的配位聚合物中次黄嘌呤碱的环外羰基氧原子首次参与配位,并与咪唑环氮原子双齿桥联两个二价铜离子来拓展结构。(2) In the coordination polymer prepared by the present invention, the exocyclic carbonyl oxygen atom of the hypoxanthine base participates in coordination for the first time, and two bivalent copper ions are bidentately bridged with the nitrogen atom of the imidazole ring to expand the structure.

(3)本发明中的配位聚合物采用水热合成法制备,产率较高,重现性好,具有较高的热稳定性,且具有铁磁体性质,可作为分子基磁体,应用于未来的磁性油墨、信息记录、磁感应、航天和微波材料等领域。(3) The coordination polymer in the present invention is prepared by hydrothermal synthesis, with high yield, good reproducibility, high thermal stability, and ferromagnetic properties, which can be used as molecular-based magnets for Future magnetic ink, information recording, magnetic induction, aerospace and microwave materials and other fields.

附图说明 Description of drawings

图1[Cu2(hypH)0.5(H2O)0.5(btec)]·1.5H2O的三维结构图;Figure 1 The three-dimensional structure of [Cu 2 (hypH) 0.5 (H 2 O) 0.5 (btec)]·1.5H 2 O;

图2[Cu2(hypH)0.5(H2O)0.5(btec)]·1.5H2O的红外光谱图;Figure 2 [Cu 2 (hypH) 0.5 (H 2 O) 0.5 (btec)] · 1.5H 2 O infrared spectrum;

图3[Cu2(hypH)0.5(H2O)0.5(btec)]·1.5H2O的热重分析图;Figure 3 [Cu 2 (hypH) 0.5 (H 2 O) 0.5 (btec)]·1.5H 2 O thermogravimetric analysis diagram;

图4[Cu2(hypH)0.5(H2O)0.5(btec)]·1.5H2O的粉末衍射图;Figure 4 [Cu 2 (hypH) 0.5 (H 2 O) 0.5 (btec)] · 1.5H 2 O powder diffraction pattern;

图5[Cu2(hypH)0.5(H2O)0.5(btec)]·1.5H2O的磁性图。Fig. 5 Magnetic diagram of [Cu 2 (hypH) 0.5 (H 2 O) 0.5 (btec)]·1.5H 2 O.

具体实施方式 Detailed ways

为了简单和清楚的目的,下文恰当的省略了公知技术的描述,以免那些不必要的细节影响对本技术方案的描述。以下结合较佳实施例,对本发明做进一步的描述,特别加以说明的是,制备本发明化合物的起始物质次黄嘌呤,均苯四甲酸、三水合硝酸铜或二水合氯化铜均可以从市场上买到。For the purpose of simplicity and clarity, descriptions of known technologies are appropriately omitted below, so as not to affect the description of the technical solution with unnecessary details. Below in conjunction with the preferred embodiment, the present invention is further described, and it is particularly illustrated that the starting material hypoxanthine for the preparation of the compound of the present invention, pyromellitic acid, copper nitrate trihydrate or copper chloride dihydrate can all be obtained from available in the market.

实施例1Example 1

三维次黄嘌呤铜配位聚合物A的合成:Synthesis of three-dimensional hypoxanthine copper coordination polymer A:

将有机配体,次黄嘌呤(0.1毫摩尔,13.6毫克)、均苯四甲酸(0.05毫摩尔,12.7毫克)与三水合硝酸铜(0.1毫摩尔,24.2毫克)溶解在二次蒸馏水中(10.0mL),用三乙胺调节pH为8,搅拌数分钟后封入水热釜中。在120℃下保温3天后,程序降温至室温后得到蓝色块状单晶,然后用甲醇洗涤,干燥。The organic ligands, hypoxanthine (0.1 mmol, 13.6 mg), pyromellitic acid (0.05 mmol, 12.7 mg) and copper nitrate trihydrate (0.1 mmol, 24.2 mg) were dissolved in double distilled water (10.0 mL), adjust the pH to 8 with triethylamine, stir for a few minutes and seal it into a hydrothermal kettle. After incubating at 120° C. for 3 days, the temperature was programmed to cool down to room temperature to obtain a blue bulk single crystal, which was then washed with methanol and dried.

实施例2Example 2

三维次黄嘌呤铜配位聚合物B的合成:Synthesis of three-dimensional hypoxanthine copper coordination polymer B:

将有机配体,次黄嘌呤(0.05毫摩尔,6.8毫克)、均苯四甲酸(0.05毫摩尔,12.7毫克)与三水合硝酸铜(0.1毫摩尔,24.2毫克)溶解在二次蒸馏水中(8.0mL),用三乙胺调节pH为5,搅拌数分钟后封入水热釜中。在140℃下保温3天后,程序降温至室温后得到蓝色块状单晶,然后用甲醇洗涤,干燥。The organic ligands, hypoxanthine (0.05 mmol, 6.8 mg), pyromellitic acid (0.05 mmol, 12.7 mg) and copper nitrate trihydrate (0.1 mmol, 24.2 mg) were dissolved in double distilled water (8.0 mL), adjust the pH to 5 with triethylamine, stir for a few minutes and seal it into a hydrothermal kettle. After incubating at 140° C. for 3 days, the temperature was programmed to cool down to room temperature to obtain a blue bulk single crystal, which was then washed with methanol and dried.

实施例3Example 3

三维次黄嘌呤铜配位聚合物C的合成:Synthesis of three-dimensional hypoxanthine copper coordination polymer C:

将有机配体,次黄嘌呤(0.1毫摩尔,13.6毫克)、均四苯甲酸(0.05毫摩尔,12.7毫克)与二水合氯化铜(0.1毫摩尔,17.5毫克)溶解在二次蒸馏水中(10.0mL),用三乙胺调节pH为8,搅拌数分钟后封入水热釜中。在120℃下保温3天后,程序降温至室温后得到蓝色块状单晶,然后用甲醇洗涤,干燥。The organic ligands, hypoxanthine (0.1 mmol, 13.6 mg), pyrene (0.05 mmol, 12.7 mg) and copper chloride dihydrate (0.1 mmol, 17.5 mg) were dissolved in double distilled water ( 10.0mL), adjust the pH to 8 with triethylamine, stir for a few minutes and seal it into a hydrothermal kettle. After incubating at 120° C. for 3 days, the temperature was programmed to cool down to room temperature to obtain a blue bulk single crystal, which was then washed with methanol and dried.

实施例4Example 4

三维次黄嘌呤铜配位聚合物D的合成:Synthesis of three-dimensional hypoxanthine copper coordination polymer D:

将有机配体,次黄嘌呤(0.05毫摩尔,6.8毫克)、均四苯甲酸(0.05毫摩尔,12.7毫克)与二水合氯化铜(0.1毫摩尔,17.5毫克)溶解在二次蒸馏水中(8.0mL),用三乙胺调节pH为6,搅拌数分钟后封入水热釜中。在140℃下保温3天后,程序降温至室温后得到蓝色块状单晶,然后用甲醇洗涤,干燥。The organic ligands, hypoxanthine (0.05 mmol, 6.8 mg), pyrene (0.05 mmol, 12.7 mg) and copper chloride dihydrate (0.1 mmol, 17.5 mg) were dissolved in double distilled water ( 8.0mL), adjust the pH to 6 with triethylamine, stir for a few minutes and seal it into a hydrothermal kettle. After incubating at 140° C. for 3 days, the temperature was programmed to cool down to room temperature to obtain a blue bulk single crystal, which was then washed with methanol and dried.

实施例5Example 5

对三维次黄嘌呤铜配位聚合物的铁磁性能研究:Ferromagnetic properties of three-dimensional hypoxanthine copper coordination polymer:

磁学性能采用Quantum Design MPMS-XL-7 SQUID磁强计测定选用2000高斯直流场在2-300K测定了配合物单晶的变温磁化率曲线。晶态样品的磁性测量数据表明此配位聚合物是一个三维磁有序的铁磁体,作为分子基磁体可应用于磁性油墨、信息记录、磁感应、航天和微波材料等领域,见图5。例如该配合物具有和氧化铁黑或氧化铁棕相似的铁磁性且更易于粉碎分散,因而可作为磁性油墨的基本组分即磁性颜料来使用。与传统的颜料(氧化铁黑或氧化铁棕)相比,含有该配合物的磁性颜料具有更好的耐热性能和耐酸碱性。The magnetic properties were measured by Quantum Design MPMS-XL-7 SQUID magnetometer, and the temperature-varying magnetic susceptibility curve of the complex single crystal was measured at 2-300K using a 2000 Gauss DC field. The magnetic measurement data of the crystalline sample shows that the coordination polymer is a three-dimensional magnetically ordered ferromagnet, which can be used as a molecular-based magnet in the fields of magnetic ink, information recording, magnetic induction, aerospace and microwave materials, as shown in Figure 5. For example, the complex has ferromagnetism similar to iron oxide black or iron oxide brown and is easier to pulverize and disperse, so it can be used as the basic component of magnetic ink, that is, magnetic pigment. Compared with traditional pigments (iron oxide black or iron oxide brown), the magnetic pigments containing this complex have better heat resistance and acid and alkali resistance.

在详细说明的较佳实施例之后,熟悉该项技术人士可清楚地了解,在不脱离上述申请专利范围与精神下可进行各种变化与修改,凡依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均属于本发明技术方案的范围。且本发明亦不受说明书中所举实例实施方式的限制。After the preferred embodiment described in detail, those skilled in the art can clearly understand that various changes and modifications can be carried out without departing from the scope and spirit of the above-mentioned patent application. Any simple modifications, equivalent changes and modifications all belong to the scope of the technical solution of the present invention. And the present invention is not limited by the example implementations in the specification.

Claims (7)

1.具有下述化学通式的三维次黄嘌呤均四苯甲酸混合配体铜配位聚合物:1. A three-dimensional hypoxanthine pyrene-tetraphthalic acid mixed ligand copper coordination polymer having the following general chemical formula: [Cu2(hypH)0.5(H2O)0.5(btec)]·1.5H2O;[Cu 2 (hypH) 0.5 (H 2 O) 0.5 (btec)]·1.5H 2 O; 其中hypH是次黄嘌呤碱基,btec是均四苯甲酸的四价阴离子,其分子式如下:Among them, hypH is hypoxanthine base, btec is the quaternary anion of pyridine, and its molecular formula is as follows:
Figure FSB00000744509200011
Figure FSB00000744509200011
所述配位铜配位聚合物属于正交晶系,空间群为Pmn21,晶胞参数为
Figure FSB00000744509200012
Figure FSB00000744509200013
Z=4;次黄嘌呤碱基通过环外羰基氧原子和咪唑环氮原子双齿桥联两个二价铜离子形成一维波浪状的铜-次黄嘌呤带状结构,进而通过均苯四甲酸的羧基与铜离子的配位行为拓展形成三维共价结构。
The coordinated copper coordination polymer belongs to the orthorhombic crystal system, the space group is Pmn2 1 , and the unit cell parameter is
Figure FSB00000744509200012
Figure FSB00000744509200013
Z=4; the hypoxanthine base bridges two divalent copper ions through the exocyclic carbonyl oxygen atom and the imidazole ring nitrogen atom bidentate to form a one-dimensional wavy copper-hypoxanthine ribbon structure, and then through the pyromellitic The coordination behavior of the carboxyl group of formic acid and copper ions expands to form a three-dimensional covalent structure.
2.权利要求1所述三维次黄嘌呤铜配位聚合物,其主要的红外吸收峰为3437cm-1,1693cm-1,1636cm-1,1566cm-1,1497cm-1,1434cm-1,1398cm-1,1283cm-1,1185cm-1,1138cm-1,1100cm-1,920cm-1,889cm-1,848cm-1,812cm-1,765cm-1,689cm-1,647cm-1,579cm-1,516cm-1;配合物在340℃分解。2. The three-dimensional hypoxanthine copper coordination polymer according to claim 1, its main infrared absorption peaks are 3437cm -1 , 1693cm -1 , 1636cm -1 , 1566cm -1 , 1497cm -1 , 1434cm -1 , 1398cm -1 1 , 1283cm -1 , 1185cm -1 , 1138cm -1 , 1100cm -1 , 920cm -1 , 889cm -1 , 848cm -1 , 812cm -1 , 765cm -1 , 689cm -1 , 647cm -1 , 579cm -1 , 516cm -1 ; the complex decomposes at 340°C. 3.权利要求1所述三维次黄嘌呤铜配位聚合物的制备方法,其特征在于将次黄嘌呤、均四苯甲酸与三水合硝酸铜或二水合氯化铜在二次蒸馏水中经由水热反应得到蓝色块状单晶体,然后用甲醇洗涤,干燥;其中次黄嘌呤、均四苯甲酸与三水合硝酸铜或二水合氯化铜的摩尔比为1-2∶1∶2。3. the preparation method of the three-dimensional hypoxanthine copper coordination polymer described in claim 1 is characterized in that hypoxanthine, pyrene carboxylic acid and copper nitrate trihydrate or copper chloride dihydrate are passed through water in twice distilled water Heat reaction to obtain blue blocky single crystal, then wash with methanol, and dry; the molar ratio of hypoxanthine, pyrene carboxylic acid and copper nitrate trihydrate or copper chloride dihydrate is 1-2:1:2. 4.权利要求3所述的制备方法,其特征在于所述水热反应的二次蒸馏水的用量为8.0mL-10.0mL。4. The preparation method according to claim 3, characterized in that the amount of double distilled water in the hydrothermal reaction is 8.0mL-10.0mL. 5.权利要求3所述的制备方法,其中所述的水热反应的pH值范围为5-8之间。5. The preparation method according to claim 3, wherein the pH range of the hydrothermal reaction is between 5-8. 6.权利要求3所述配位聚合物的制备方法,其特征在于所述水热反应温度为120℃-140℃保温3天后降到室温。6. The preparation method of the coordination polymer according to claim 3, characterized in that the hydrothermal reaction temperature is 120°C-140°C for 3 days and then dropped to room temperature. 7.权利要求1所述三维次黄嘌呤铜配位聚合物在制备分子基磁体方面的应用。7. The application of the three-dimensional hypoxanthine copper coordination polymer according to claim 1 in the preparation of molecular-based magnets.
CN2010101730855A 2010-05-17 2010-05-17 Three-dimensional hypoxanthine tetraphthalic acid mixed ligand copper coordination polymer and its preparation method Expired - Fee Related CN101857604B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010101730855A CN101857604B (en) 2010-05-17 2010-05-17 Three-dimensional hypoxanthine tetraphthalic acid mixed ligand copper coordination polymer and its preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010101730855A CN101857604B (en) 2010-05-17 2010-05-17 Three-dimensional hypoxanthine tetraphthalic acid mixed ligand copper coordination polymer and its preparation method

Publications (2)

Publication Number Publication Date
CN101857604A CN101857604A (en) 2010-10-13
CN101857604B true CN101857604B (en) 2012-05-23

Family

ID=42943790

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010101730855A Expired - Fee Related CN101857604B (en) 2010-05-17 2010-05-17 Three-dimensional hypoxanthine tetraphthalic acid mixed ligand copper coordination polymer and its preparation method

Country Status (1)

Country Link
CN (1) CN101857604B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102659822B (en) * 2012-04-23 2014-10-29 天津师范大学 Mixed valence copper (I/II) complex containing a mixed ligand as well as preparation method and application thereof
CN102718805B (en) * 2012-06-26 2014-09-03 天津师范大学 Mixed ligand cobalt (II) coordination polymer magnetic material, preparation method and application thereof
CN104844630B (en) * 2015-04-16 2017-06-20 山西大学 A kind of coordination polymer of copper and preparation method thereof
CN105622643B (en) * 2016-02-14 2017-09-26 南京万全检测技术有限公司 Detect compound of lead ion and its preparation method and application in water
CN107892336A (en) * 2017-12-20 2018-04-10 东南大学 A kind of preparation method of nickel oxide microballoon
CN113265066B (en) * 2021-06-07 2022-08-23 天津师范大学 Adenine metal complex and preparation method and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3962816B1 (en) * 2006-02-27 2007-08-22 国立大学法人北陸先端科学技術大学院大学 Coordination polymer, method for producing the same, and device using the same
CN101372493B (en) * 2008-09-26 2010-09-15 南开大学 Three-dimensional copper azide coordination compound magnetic material and its preparation method and application

Also Published As

Publication number Publication date
CN101857604A (en) 2010-10-13

Similar Documents

Publication Publication Date Title
Mei et al. Modulating spin dynamics of cyclic Ln III-radical complexes (Ln III= Tb, Dy) by using phenyltrifluoroacetylacetonate coligand
CN101857604B (en) Three-dimensional hypoxanthine tetraphthalic acid mixed ligand copper coordination polymer and its preparation method
CN102276658A (en) Mixed ligand cobalt (II) coordination compound as well as preparation method and application thereof
CN102659822B (en) Mixed valence copper (I/II) complex containing a mixed ligand as well as preparation method and application thereof
CN104341460B (en) Dy (III) Mn (II) mixed metal magnetic complex and preparation method and application
CN103087111B (en) Tetrazolyl cobalt (II) complex magnetic material and preparation method and application thereof
Bora et al. Synthesis and properties of a few 1-D cobaltous fumarates
Jiang et al. Synthesis, structure and magnetic properties of two isostructural Co/Mn (II) metal organic frameworks
CN102690296B (en) 5-methyl-1H-tetrazole cobalt (II) complex magnetic material, and preparation method and application thereof
Shao et al. A proton conducting cobalt (II) spin crossover complex
Cerdeira et al. Synthesis, structure and physical properties of transition metal bis 4-cyanobenzene-1, 2-dithiolate complexes [M (cbdt) 2] z−(M= Zn, Co, Cu, Au, Ni, Pd, z= 0, 1, 2)
CN102718805A (en) Mixed ligand cobalt (II) coordination polymer magnetic material, preparation method and application thereof
CN102153591B (en) Manganese (II) complex containing 2-(1H-tetrazole-5-methyl) pyridine and 5-nitroisophthalic acid mixed ligand and preparation method and application of manganese (II) complex
Wu et al. Electrical and magnetic properties of a radical-based Co (II) coordination complex with CH⋯ π and π⋯ π supramolecular interactions
Valigura et al. The first structurally proved copper (II) complex simultaneously containing salicylato mono-and dianions. X-ray crystal structure, spectral and magnetic properties of the trimeric [Cu3 {3, 5-(NO2) 2sal2−} 2 {3, 5-(NO2) 2sal1−} 2 (H2O) 4]· 4H2O
Mikloš et al. Synthesis, spectral and magnetic properties, and crystal structures of copper (II) 2-methylthionicotinate adducts with chelating ligands
CN107417740A (en) A kind of one-dimensional cobalt complex and its preparation method and application
Ghosh et al. Self-assembly of a pentanuclear {Cu5} complex resulting from the trapping of a Cu2+ ion by two {Cu2} building units
Hu et al. A series of Zn/Cd coordination polymers constructed from 1, 4-naphthalenedicarboxylate and N-donor ligands: Syntheses, structures and luminescence sensing of Cr3+ in aqueous solutions
Zhang et al. Four novel lanthanide (III) coordination complexes based on 3, 4, 5-trifluorobenzeneseleninic acid
Vučković et al. X-ray analyses, spectroscopic and magnetic properties of [Cu4 (succinato)(tpmc) 2](ClO4) 6· 2C2H5OH· 4H2O and [Cu2 (C6H5COO) tpmc](ClO4) 3· 0.5 CH3OH· 0.5 H2O complexes
Yang et al. Syntheses, crystal structures and magnetic properties of there low-dimensional CPs based on V-shaped diacylhydrazidate ligand from in situ acylation reaction
Huang et al. Two isostructural layered Lanthanide (III) complexes: Syntheses, structures, magnetic and luminescent properties
Hou et al. 2D crystal structure, magnetic behavior and theoretic analysis of two new molecular solids based on Ni (maleonitriledithiolate) 2 monoanion with substituted 2-aminopyridinium
Korzekwa et al. Post-synthetic modification of divalent nickel acetate cubanes with carboxylates

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120523

Termination date: 20130517