CN101850961A - 碳纳米管簇的干法密实化方法 - Google Patents
碳纳米管簇的干法密实化方法 Download PDFInfo
- Publication number
- CN101850961A CN101850961A CN201010201218A CN201010201218A CN101850961A CN 101850961 A CN101850961 A CN 101850961A CN 201010201218 A CN201010201218 A CN 201010201218A CN 201010201218 A CN201010201218 A CN 201010201218A CN 101850961 A CN101850961 A CN 101850961A
- Authority
- CN
- China
- Prior art keywords
- carbon nano
- nano tube
- tube bundle
- densification
- dry process
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Carbon And Carbon Compounds (AREA)
Abstract
本发明公开了一种碳纳米管簇的干法密实化技术。由于CVD合成的碳纳米管处于稀松排列的状态,在很多使用碳纳米管簇作为导电或导热途径的应用中,多孔性使其优势和潜力无从体现。因此对碳纳米管簇进行密实化处理是非常重要的。本发明提供了一种干法密实化碳纳米管簇的技术。这一干法密实化工艺,其基本原理为在低压下使用薄膜沉淀技术将碳纳米管簇密封起来。将其取出置于常压下之后,在沉积的薄膜的内外两侧会形成接近于一个大气压的压力差,造成薄膜变形并将压力施加在碳纳米管上,从而实现碳纳米管簇的密实化。和湿法相比,这一干法工艺能显著提高碳纳米管簇密实化过程的一致性和可重复性。
Description
技术领域
本发明涉及的领域为纳米材料的加工技术,潜在的应用领域为微电子器件中的互联技术等,特别涉及一种碳纳米管簇的干法密实化方法。
背景技术
碳纳米管是一种由管状石墨原子层组成的纳米材料。由于其独特的导电,导热,和机械性能,碳纳米管二十年来一直是学术界和工业界研究的热点之一,在许多领域都获得了广泛应用。合成碳纳米管的方法有电弧放电,激光烧蚀,和化学气相沉淀(CVD)等。其中CVD法的应用最为广泛。其最大的优势就在于通过控制催化剂层的形状,可以定向生长各种形状和尺度的碳纳米管簇,从而适应各种应用场合。而催化剂层的形状可以通过各种标准的刻蚀技术来制造。
在通过CVD合成定向排列的碳纳米管这一过程中,一个重要的步骤是在惰性和还原性气体环境中加热催化剂层,使之变成分散排列的纳米颗粒。这些分散排列的催化粒子在后续步骤中催化碳纳米管的合成。基于以上所述的过程,CVD合成的碳纳米管处于稀松排列的状态。碳纳米管簇为典型的多孔材料,文献报道典型碳纳米管膜的孔隙率在90%以上(A.Puretzky,D. Geohegan,S.Jesse,I.Ivanov,and G.Eres,“In situ measurements and modeling of carbon nanotube array growth kinetics during chemical vapor deposition,”Applied Physics A:Materials Science & Processing,vol.81,Jul.2005,pp.223-240.)。在很多使用碳纳米管簇作为导电或导热途径的应用中,多孔性使其优势和潜力无从体现。
近年来,陆续出现了一些在生长后使碳纳米管簇或膜密实化的技术。文献(D.Futaba,K. Hata,T.Yamada,T.Hiraoka,Y.Hayamizu,Y.Kakudate,O.Tanaike,H.Hatori,M.Yumura,and S. Iijima,“Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes,”Nature Materials,vol.5,2006,pp.987-994.)是其中最早也最有代表性的报道。这些技术的原理都是将碳纳米管簇或膜浸在液体(一般为水或各种有机溶剂),通过液体的毛细力使碳纳米管紧密排列。
发明内容
本发明为一种密实化碳纳米管簇的新方法。
本发明的目的是通过下述技术方案实现的。
(1)使用反应溅射法沉积50至200纳米厚的二氧化硅薄膜在碳纳米管簇的表面。这一沉积工艺一般在0.01~0.05毫大气压左右进行。
(2)将载有碳纳米管簇的基底取出至常压下后,便可观测到碳纳米管簇的密实化现象。也可以使用等离子加强型化学气相沉淀法沉积同样厚度的二氧化硅薄膜,得到同样的密实化结果。其它种类的薄膜和薄膜沉积工艺在一定的优化后,也可以使用在这一工艺中。此方法也可以推广至类似的定向排列的纳米管或纳米线结构的密实化过程。
本发明的方法和已有报道的基于液体的方法(湿法)不同,这是一种干法密实化工艺。其基本原理为在低压下使用薄膜沉淀技术将碳纳米管簇密封起来。将其取出置于常压下之后,在沉积的薄膜的内外两侧会形成接近于一个大气压的压力差,造成薄膜变形并将压力施加在碳纳米管上,从而实现碳纳米管簇的密实化(见图1)。和湿法相比,如图2(b)所示,湿法密实化后的碳纳米管簇形状多种多样,而经该干法密实化后的碳纳米管簇形状均匀一致,均呈蘑菇状,说明这一干法工艺能显著提高碳纳米管簇密实化过程的一致性、可控性和可重复性。干法密实化的典型结果示于图2(c)中。
附图说明
图1干法密实化碳纳米管簇的工艺原理图
图2干法密实化前后的碳纳米管簇的形状比较,(a)密实化前的碳纳米管形状,(b)湿法密实化后的碳纳米管形状,(c)干法密实化后的碳纳米管形状。
具体实施方式
下面结合实施例对本发明进行详细描述。
实施例1
在0.01毫大气压下,使用反应溅射法沉积50纳米厚的二氧化硅薄膜在碳纳米管簇的表面。将载有碳纳米管簇的基底取出至常压下后,便可观测到碳纳米管簇的密实化现象。
Claims (1)
1.一种碳纳米管簇的干法密实化方法,其特征在于该方法具有以下的工艺过程和步骤:
(1)使用反应溅射法沉积50至200纳米厚的二氧化硅薄膜在碳纳米管簇的表面,沉积在0.01~0.05毫大气压下进行;
(2)将载有碳纳米管簇的基底取出至常压下后,可得到密实化的碳纳米管簇。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010102012185A CN101850961B (zh) | 2010-06-12 | 2010-06-12 | 碳纳米管簇的干法密实化方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010102012185A CN101850961B (zh) | 2010-06-12 | 2010-06-12 | 碳纳米管簇的干法密实化方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101850961A true CN101850961A (zh) | 2010-10-06 |
CN101850961B CN101850961B (zh) | 2012-07-04 |
Family
ID=42802678
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010102012185A Expired - Fee Related CN101850961B (zh) | 2010-06-12 | 2010-06-12 | 碳纳米管簇的干法密实化方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101850961B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102328925A (zh) * | 2011-09-02 | 2012-01-25 | 上海大学 | 高密度碳纳米管束的制备工艺 |
US9540242B2 (en) | 2012-04-25 | 2017-01-10 | Beijing Funate Innovation Technology Co., Ltd. | Method for making carbon nanotube film |
TWI602776B (zh) * | 2012-04-25 | 2017-10-21 | 北京富納特創新科技有限公司 | 導電元件 |
US10377120B2 (en) | 2012-04-25 | 2019-08-13 | Beijing Funate Innovation Technology Co., Ltd. | Apparatus and method for making conductive element |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040043219A1 (en) * | 2000-11-29 | 2004-03-04 | Fuminori Ito | Pattern forming method for carbon nanotube, and field emission cold cathode and method of manufacturing the cold cathode |
CN1937138A (zh) * | 2005-09-19 | 2007-03-28 | 东元电机股份有限公司 | 一种增加电泳沉积电子发射源寿命及附着力的方法 |
CN1994876A (zh) * | 2006-12-22 | 2007-07-11 | 中国科学院上海硅酸盐研究所 | 一种纳米二氧化硅颗粒包覆碳纳米管复合粉体的制备方法 |
-
2010
- 2010-06-12 CN CN2010102012185A patent/CN101850961B/zh not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040043219A1 (en) * | 2000-11-29 | 2004-03-04 | Fuminori Ito | Pattern forming method for carbon nanotube, and field emission cold cathode and method of manufacturing the cold cathode |
CN1937138A (zh) * | 2005-09-19 | 2007-03-28 | 东元电机股份有限公司 | 一种增加电泳沉积电子发射源寿命及附着力的方法 |
CN1994876A (zh) * | 2006-12-22 | 2007-07-11 | 中国科学院上海硅酸盐研究所 | 一种纳米二氧化硅颗粒包覆碳纳米管复合粉体的制备方法 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102328925A (zh) * | 2011-09-02 | 2012-01-25 | 上海大学 | 高密度碳纳米管束的制备工艺 |
US9540242B2 (en) | 2012-04-25 | 2017-01-10 | Beijing Funate Innovation Technology Co., Ltd. | Method for making carbon nanotube film |
TWI602776B (zh) * | 2012-04-25 | 2017-10-21 | 北京富納特創新科技有限公司 | 導電元件 |
US10377120B2 (en) | 2012-04-25 | 2019-08-13 | Beijing Funate Innovation Technology Co., Ltd. | Apparatus and method for making conductive element |
US10388422B2 (en) | 2012-04-25 | 2019-08-20 | Beijing Funate Innovation Technology Co., Ltd. | Electrically conductive element |
Also Published As
Publication number | Publication date |
---|---|
CN101850961B (zh) | 2012-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Bottom-up growth of carbon nanotube multilayers: unprecedented growth | |
Yu et al. | High density, vertically-aligned carbon nanotube membranes | |
Qi et al. | Mulberry paper-based graphene strain sensor for wearable electronics with high mechanical strength | |
Sun et al. | Electrodeposition of Pd nanoparticles on single-walled carbon nanotubes for flexible hydrogen sensors | |
Ashraf et al. | Spectroscopic investigation of the wettability of multilayer graphene using highly ordered pyrolytic graphite as a model material | |
CN101850961B (zh) | 碳纳米管簇的干法密实化方法 | |
JP6080738B2 (ja) | カーボンナノチューブシートの製造方法 | |
TWI573892B (zh) | 一奈米管膜的製備方法 | |
Stein et al. | Exohedral physisorption of ambient moisture scales non-monotonically with fiber proximity in aligned carbon nanotube arrays | |
TW201538417A (zh) | 奈米管膜 | |
Khan et al. | MWCNTs based flexible and stretchable strain sensors | |
Zhao et al. | Liquid imbibition in ceramic-coated carbon nanotube films | |
Barney et al. | Specific surface area of hierarchical graphitic substrates suitable for multi-functional applications | |
Stano et al. | Ultralight interconnected metal oxide nanotube networks | |
Jessl et al. | Anisotropic carbon nanotube structures with high aspect ratio nanopores for Li-ion battery anodes | |
Suyatin et al. | Gallium phosphide nanowire arrays and their possible application in cellular force investigations | |
EP2719660B1 (en) | Method for synthesizing carbon nanowires on the surface of pores or gaps in a structure | |
Pint et al. | Rapid and scalable reduction of dense surface-supported metal-oxide catalyst with hydrazine vapor | |
Zhou et al. | Zero-expanded gas sensing of chiral-rotating chemiresistive SiCuOC structures | |
Rahman et al. | Graphene and its composites | |
Eslami et al. | Effect of surface area of carbon nanotubes on membrane performance for effective water desalination | |
Wan et al. | Rapid water harvesting and nonthermal drying in humid air by N-doped graphene micropads | |
Pramanick et al. | Fabrication of 3D carbon microelectromechanical systems (C-MEMS) | |
Ebrahim Nataj et al. | Surface effects and wettability measurement considerations in fluorinated carbon nanotubes | |
Chethan et al. | Graphene-based sensing devices for soil moisture analysis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120704 Termination date: 20150612 |
|
EXPY | Termination of patent right or utility model |