CN101846627B - 一种快速检测多环芳烃类污染物的光学传感器及其制备和应用 - Google Patents
一种快速检测多环芳烃类污染物的光学传感器及其制备和应用 Download PDFInfo
- Publication number
- CN101846627B CN101846627B CN2010101933489A CN201010193348A CN101846627B CN 101846627 B CN101846627 B CN 101846627B CN 2010101933489 A CN2010101933489 A CN 2010101933489A CN 201010193348 A CN201010193348 A CN 201010193348A CN 101846627 B CN101846627 B CN 101846627B
- Authority
- CN
- China
- Prior art keywords
- optical sensor
- nano
- aromatic hydrocarbon
- tube array
- tio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
一种快速检测多环芳烃类污染物的光学传感器,将表面和内部修饰有CdTe量子点的TiO2纳米管阵列用于作为检测多环芳烃类污染物的光学传感器;CdTe量子点尺寸为5~25nm。应用该复合材料作为敏感元件,实现了对多环芳烃类持久性有机污染物的检测,通过本发明的方法,发明人第一次成功的将CdTe量子点的荧光性能的应用扩展到低于450nm的范围。该敏感元件制作步骤简单、成本低廉、物化性能稳定,携带方便,因而可作为快速、高效、定量检测环境中的多环芳烃类污染物的光学传感器。
Description
技术领域
本发明涉及一种快速检测环境中多环芳烃类持久性有机污染物的光学传感器及其制备和应用。
背景技术
传感器是一种可以获取并处理信息的特殊装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。传感器种类众多,按敏感元件的不同,可以分为物理类、化学类和生物类传感器。在基础学科研究中,传感器具有突出的地位,很多基础科学的研究遇到的障碍,首先就在于对象信息的获取存在困难,而一些新机理和高灵敏度的检测传感器的出现,往往会导致该领域内的突破。一些传感器的发展,往往是一些边缘学科开发的先驱。
量子点(quantum dot,QD)又可称为半导体纳米微晶体(semiconductornanocrystal),是一种由II-VI族或III-V族元素组成的尺寸在100nm以下的纳米晶粒。目前研究较多的是CdS、CdSe、CdTe、ZnS等。近年来,由于其独特的荧光特性,半导体量子点作为荧光标记物被广泛地应用于生物体内各种蛋白质或者细胞间相互作用的监控。目前量子点的合成主要有两种方法:一种是在水相中合成,另一种是采用胶体化学的方法在有机相中合成。以上合成方法操作繁琐复杂,且只能合成在液相中稳定的量子点。
近来也有报道利用气相沉积或电化学方法将量子点/贵金属修到TiO2纳米阵列中,但其目的在于提高TiO2纳米阵列的光催化/降解活性。
多环芳烃(Polycyclic Aromatic Hydrocarbons,PAHs)是煤,石油,木材,烟草,有机高分子化合物等有机物不完全燃烧时产生的挥发性碳氢化合物,是重要的环境和食品污染物.常见的多环芳烃有萘,蒽,芘,苯并芘,荧蒽等,其中苯并芘是毒性最强的多环芳烃之一,有强致癌性。
至今已有不少经典的分析方法被用于检测多环芳烃类污染物,例如液质联用法,气质联用法,荧光光谱法,压电传感法,表面拉曼增强光谱法,以及与各种仪器联用的免疫检测法等。但是,从不同的角度评价,各种传统方法又都有所局限,例如:高效液相色谱法,液质联用和气质联用的前处理繁琐,耗时长并且仪器设备昂贵,不利于现场检测;表面拉曼增强光谱法和液相荧光光谱法因为有较高的检测限和大的背景干扰,其应用受到限制;而压电传感法受传感器本身稳定性和重复性的影响,检测限不能达到十分理想的值。因此,开发简便,快速,灵敏的检测多环芳烃污染物的方法是十分必要的。
目前国内外还没有将修饰了CdTe量子点的TiO2纳米管阵列应用于多环芳烃污染物光学传感检测的相关报道。
发明内容
本发明的目的旨在提供一种可以定量检测多环芳烃类污染物的光学传感器,及所需光学传感器的制备方法和应用。
本发明以TiO2纳米管阵列为基底,应用脉冲电沉积技术直接将CdTe量子点修饰到了TiO2纳米管阵列上,所合成的量子点均匀分散在TiO2纳米阵列中,其荧光发射光谱分布在在370~390nm范围。应用该复合材料作为敏感元件,实现了对多环芳烃类持久性有机污染物的检测,通过本发明的方法,发明人第一次成功的将CdTe量子点的荧光性能的应用扩展到低于450nm的范围。该敏感元件制作步骤简单、成本低廉、物化性能稳定,携带方便,因而可作为快速、高效、定量检测环境中的多环芳烃类污染物的光学传感器。
本发明的光学传感器是由TiO2纳米管阵列及其表面和内部修饰的CdTe量子点构成;CdTe量子点尺寸为5~25nm。
本发明的应用在于,将表面和内部修饰的CdTe量子点的TiO2纳米管阵列用于作为检测多环芳烃类污染物的光学传感器。
本发明传感器上的CdTe量子点稳定,其荧光光谱几乎不受周围环境(如溶剂、pH值、温度等)的影响,它可以经受反复多次激发;且本发明不再是液相中的量子点,是附着于固体纳米材料不定型TiO2纳米管阵列上所修饰的量子点。发明人选用的(无定型)TiO2纳米管阵列在电场中容易极化,电子在Ti3+-O-Ti4+→Ti4+-O-Ti3+上传递,增加了纳米管阵列的导电性能,所以采用脉冲电化学方法在TiO2纳米管阵列内修饰活性物质对其改性具有操作简单方便,得到的产品稳定的特点。所得到的TiO2纳米管阵列高度定向的生长特性,均匀的表面形貌,极大的比表面积和界面间快速的电子传输能力。
另外,发明的CdTe量子点尺寸限定在5~25nm内,具有精确调谐的发射波长,所得到的量子点的不再是现有技术中荧光发射光谱分布在550nm左右或以上(若用作荧光共振能量转移中的能量供体,只能检测吸收光谱在500nm以上的物质),而是可以检测吸收峰在360~380nm范围的多环芳烃类有机污染物。
本发明不但创造性将表面和内部修饰CdTe量子点TiO2纳米管阵列作为光学传感器用于检测多环芳烃类有机污染物,并且通过将CdTe量子点尺寸限定在5~25nm内,从而可以充分的保证检测吸收峰在360~380nm范围的多环芳烃类有机污染物。
所述的光学传感器的制备方法,包括以下制备步骤:
(a)配制含0.02~0.06M CdSO4和0.01~0.03M NaTeO3的电镀液,用H2SO4调节pH至2~3;
(b)以TiO2纳米管阵列作为工作电极,铂片为对电极,饱和甘汞电极为参比电极,控制脉冲电压为-1~-4V,通断比为0.02~0.2s∶1~3s,沉积时间为600~1200个循环,沉积CdTe量子点。
本发明通过以上原料浓度、脉冲工艺参数条件的互相配合(如脉冲电压,通断比等),从而使得通过本发明的工艺方法制备出可稳定,高效检测多环芳烃的光学传感器。
本发明的光学传感器具体的制备过程如下:
(1)阳极氧化法制备TiO2纳米管阵列;
(a)将基底材料(钛片)表面打磨,清洗干净备用;
(b)配制无机电解液:电解液由含量为0.1~0.5M的NaF与0.2~1.5M的NaHSO4的水溶液组成;
(c)在10~25V直流电压下,以纯钛或钛合金为阳极,铂片为阴极,在电解液中电解制备纳米管;
(2)脉冲电镀法制备CdTe量子点掺杂的TiO2纳米管阵列;
(a)配制含0.02~0.06M CdSO4和0.01~0.03M NaTeO3的电镀液,用H2SO4调节pH至2~3;
(b)用以上制备的TiO2纳米管阵列作为工作电极,铂片为对电极,饱和甘汞电极为参比电极,控制脉冲电压为-1~-4V,通断比为0.02~0.2s∶1~3s,沉积时间为600~1200个循环s,沉积CdTe量子点。
应用本发明的CdTe/TiO2纳米阵列光学传感器对多环芳烃的快速检测过程如下:
(a)固定激发波长为270~300nm,扫描获取CdTe/TiO2纳米管阵列的固体荧光,材料在370~390nm处有一个显著的发射峰(图2,a);
(b)选取苯并芘作为代表分析物。取固定体积的苯并芘的溶液,滴加到CdTe/TiO2纳米管阵列表面,待溶剂挥发完全后,设定激发波长为270~300nm,再次检测固体荧光信号。可以发现,CdTe/TiO2纳米管阵列在370~390nm处的荧光峰有显著的降低,同时,在410~440nm处出现了苯并芘的荧光峰(图2,b)。即在CdTe量子点与苯并芘之间发生了能量转移,其中CdTe量子点作为能量供体,苯并芘作为能量受体。
附图说明
图1为CdTe/TiO2纳米管阵列的表征图。
图中(A)与(B)为放大的扫描电子显微镜截面图,其中(A)为正面图,(B)为截面图;从图中可看出,CdTe量子点尺寸为5~25nm,均匀的分散在TiO2纳米管阵列的表面和内部,(C)为EDS能谱图,CdTe量子点的原子比例为Cd∶Te=1∶1.33。
图2为荧光发射光谱图。
其中,a为CdTe/TiO2纳米管阵列的荧光发射光谱图,b为负载了苯并芘的CdTe/TiO2纳米管阵列的荧光发射光谱图。
图3为不同浓度的苯并芘与CdTe/TiO2纳米管阵列结合后的光谱图。
具体实施方式
以下实施例旨在说明本发明而不是对本发明的进一步限定。
实施例1
(1)阳极氧化法制备TiO2纳米管阵列;
(a)将基底材料(钛片)表面打磨,清洗干净备用;
(b)配制无机电解液:电解液由0.1M的NaF与0.5M的NaHSO4的水溶液组成;
(c)在20V直流电压下,以纯钛或钛合金为阳极,铂片为阴极,在电解液中电解制备纳米管;
(2)脉冲电镀法制备CdTe量子点掺杂的TiO2纳米管阵列;
(a)配制含0.05MCdSO4和0.02M NaTeO3的电镀液,用H2SO4调节pH至2;
(b)用以上制备的TiO2纳米管阵列作为工作电极,铂片为对电极,饱和甘汞电极为参比电极,控制脉冲电压为-2V,通断比为0.02s∶1s,沉积时间为800个循环,沉积CdTe量子点。
(3)CdTe/TiO2纳米阵列光学传感器对多环芳烃的快速检测;
(a)固定激发波长为270nm,扫描获取CdTe/TiO2纳米管阵列的固体荧光,材料在370~390nm处有一个显著的发射峰;
(b)将苯并芘配成一系列不同浓度的溶液,溶剂为甲醇。取固定体积的苯并芘的溶液,滴加到CdTe/TiO2纳米管阵列表面,待溶剂挥发完全后,设定激发波长为270nm,再次检测固体荧光信号。
图3为不同浓度的苯并芘与CdTe/TiO2纳米管阵列结合后的光谱图。
CdTe/TiO2纳米管阵列在370~390nm处的发射峰因被苯并芘吸收而降低,同时苯并芘的发射峰信号(410~440nm)得到显著放大。荧光信号变化随浓度的变化,呈现规则线形关系。用该光学传感器检测苯并芘,可将其检测限降低到pM级,对于环境中多环芳烃类污染物的检测具有重大意义。
Claims (2)
1.一种纳米材料的应用,其特征在于,将表面和内部修饰有CdTe量子点的TiO2纳米管阵列用于作为检测多环芳烃类污染物的光学传感器;CdTe量子点尺寸为5~25nm。
2.权利要求1所述的一种检测多环芳烃类污染物的光学传感器的制备方法,其特征在于,包括以下制备步骤:
(a)配制含0.02~0.06M CdSO4和0.01~0.03M NaTeO3的电镀液,用H2SO4调节pH至2~3;
(b)以TiO2纳米管阵列作为工作电极,铂片为对电极,饱和甘汞电极为参比电极,控制脉冲电压为-1~-4V,通断比为0.02~0.2s∶1~3s,沉积时间为600~1200个循环,沉积CdTe量子点。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010101933489A CN101846627B (zh) | 2010-06-07 | 2010-06-07 | 一种快速检测多环芳烃类污染物的光学传感器及其制备和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010101933489A CN101846627B (zh) | 2010-06-07 | 2010-06-07 | 一种快速检测多环芳烃类污染物的光学传感器及其制备和应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101846627A CN101846627A (zh) | 2010-09-29 |
CN101846627B true CN101846627B (zh) | 2012-08-29 |
Family
ID=42771317
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010101933489A Expired - Fee Related CN101846627B (zh) | 2010-06-07 | 2010-06-07 | 一种快速检测多环芳烃类污染物的光学传感器及其制备和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101846627B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101995402B (zh) * | 2010-10-15 | 2012-08-29 | 济南大学 | 检测痕量农药残留物的电致化学发光传感器的制备及应用 |
CN105158412B (zh) * | 2015-07-09 | 2016-06-22 | 济南大学 | 一种基于二硫化钼负载的双金属合金纳米复合材料构建的芳烃气体传感器的制备方法 |
CN105136977B (zh) * | 2015-07-09 | 2017-01-18 | 济南大学 | 一种二硫化钼基双金属纳米复合材料构建的气体传感器的制备方法 |
CN110327897A (zh) * | 2019-06-28 | 2019-10-15 | 桂林理工大学 | 一种钛酸纳米管spme涂层及其制备方法与应用 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008060697A2 (en) * | 2006-05-23 | 2008-05-22 | The University Of Akron | Dendron-tethered and templated quantum dots on carbon nanotubes |
CN1884430B (zh) * | 2006-06-30 | 2010-07-28 | 上海师范大学 | 一种荧光碳纳米管及其制备方法和应用 |
CN101109096A (zh) * | 2007-06-22 | 2008-01-23 | 湖南大学 | 钼钨掺杂阳极氧化法制备二氧化钛纳米管阵列的方法 |
KR100835059B1 (ko) * | 2007-07-06 | 2008-06-03 | 삼성전자주식회사 | 양자점 광소자 |
CN101393938A (zh) * | 2007-12-28 | 2009-03-25 | 北京大学 | 宽禁带半导体纳米管/线阵列膜及其制备方法、一种光电极 |
-
2010
- 2010-06-07 CN CN2010101933489A patent/CN101846627B/zh not_active Expired - Fee Related
Non-Patent Citations (2)
Title |
---|
Jason A. Seabold,et al..Photoelectrochemical Properties of Heterojunction CdTe/TiO2.《Chem. Mater.》.2008,第20卷5266-5273. * |
屈风阁等.环糊精协同CdTe量子点选择性识别多环芳烃.《分析试验室》.2007,第26卷264-265. * |
Also Published As
Publication number | Publication date |
---|---|
CN101846627A (zh) | 2010-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cobb et al. | Boron doped diamond: a designer electrode material for the twenty-first century | |
Xu et al. | Unusual electrochemical properties of low-doped boron-doped diamond electrodes containing sp2 carbon | |
Chen et al. | Super-resolution electrogenerated chemiluminescence microscopy for single-nanocatalyst imaging | |
Zhu et al. | Development of a gas sensor utilizing chemiluminescence on nanosized titanium dioxide | |
Comini et al. | Metal oxide nanoscience and nanotechnology for chemical sensors | |
Lakshmanakumar et al. | Principles and recent developments in optical and electrochemical sensing of dopamine: A comprehensive review | |
Dai et al. | Enhanced photoelectrochemical activity of a hierarchical-ordered TiO2 mesocrystal and its sensing application on a carbon nanohorn support scaffold | |
Jian et al. | Graphene quantum dots modified glassy carbon electrode via electrostatic self-assembly strategy and its application | |
Lin et al. | Simultaneous determination for toxic ractopamine and salbutamol in pork sample using hybrid carbon nanotubes | |
Kim et al. | Contributors to enhanced CO2 electroreduction activity and stability in a nanostructured Au electrocatalyst | |
Wan et al. | Graphene Nanoplatelets: Electrochemical Properties and Applications for Oxidation of Endocrine‐Disrupting Chemicals | |
CN101846627B (zh) | 一种快速检测多环芳烃类污染物的光学传感器及其制备和应用 | |
Fan et al. | Manipulating hot-electron injection in metal oxide heterojunction array for ultrasensitive surface-enhanced Raman scattering | |
CN103175875B (zh) | 一种原位分子印迹修饰电极对多环芳烃的光电化学分析方法 | |
Hadi et al. | Nanocrystalline graphite-like pyrolytic carbon film electrode for electrochemical sensing of hydrazine | |
Hui et al. | Improving the analytical performance of graphene oxide towards the assessment of polyphenols | |
Chen et al. | Photocurrent switching effect on BiVO 4 electrodes and its application in development of photoelectrochemical glucose sensor | |
Poppe et al. | Photoelectrochemical investigations of semiconductor nanoparticles and their application to solar cells | |
Lu et al. | Trace-level sensing of phosphate for natural soils by a nano-screen-printed electrode | |
Klini et al. | ZnO–PDMS nanohybrids: A novel optical sensing platform for ethanol vapor detection at room temperature | |
Li et al. | An enzyme-free photoelectrochemical sensing of concanavalin A based on graphene-supported TiO2 mesocrystal | |
Wang et al. | Voltammetric mapping of hydrogen evolution reaction on Pt locally via scanning electrochemical cell microscopy | |
Li et al. | Electrochemical detection of free glycerol in biodiesel using electrodes with single gold particles in highly ordered SiO2 cavities | |
Zarifi et al. | Distinguishing between deep trapping transients of electrons and holes in TiO2 nanotube arrays using planar microwave resonator sensor | |
Szunerits et al. | Raman imaging and Kelvin probe microscopy for the examination of the heterogeneity of doping in polycrystalline boron-doped diamond electrodes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120829 Termination date: 20140607 |
|
EXPY | Termination of patent right or utility model |