CN101846529A - 基于dsp的星载绝对式光电轴角编码器译码电路 - Google Patents

基于dsp的星载绝对式光电轴角编码器译码电路 Download PDF

Info

Publication number
CN101846529A
CN101846529A CN 201010177476 CN201010177476A CN101846529A CN 101846529 A CN101846529 A CN 101846529A CN 201010177476 CN201010177476 CN 201010177476 CN 201010177476 A CN201010177476 A CN 201010177476A CN 101846529 A CN101846529 A CN 101846529A
Authority
CN
China
Prior art keywords
signal
smart
sign indicating
indicating number
code data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 201010177476
Other languages
English (en)
Inventor
刘杨
陈兴林
王岩
郑燕红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN 201010177476 priority Critical patent/CN101846529A/zh
Publication of CN101846529A publication Critical patent/CN101846529A/zh
Pending legal-status Critical Current

Links

Images

Abstract

基于DSP的星载绝对式光电轴角编码器译码电路,涉及一种译码电路,解决了由于空间环境温度变化引起光电轴角编码器输出的光电流改变造成译码结果出现跳码的问题。所述译码电路由采样模块、微处理器模块和模式选择模块组成,采样模块用于获得外部编码器的粗码信号、中精码信号和精码信号;在参数获取模式,微处理器模块通过运算获得译码算法参数;在译码模式,微处理器模块根据编码方式对粗码数据进行译码;利用获得的译码算法参数,计算获得ESIN、ECOS、GSIN、GCOS的值;采用查表法对中精码数据和精码数据进行细分,然后通过两次校正获得最终的位置数据信息。本发明适用于航天领域使用高精度位置传感器的场合。

Description

基于DSP的星载绝对式光电轴角编码器译码电路
技术领域
本发明涉及一种译码电路。
背景技术
随着航天领域对控制系统的精度要求越来越高,绝对式光电轴角编码器作为一种集光、机、电一体化的测角装置在空间环境中的应用也越来越多。而光电轴角编码器的原始输出受环境温度的变化影响严重,导致传统的译码电路结果产生跳码,不适合在空间环境下应用。另外,机械装调和振动试验都会使编码器输出的光电流产生变化,而为了保证可靠性,航天用电路不允许反复焊接,这使得依靠调节变阻器的传统编码器译码电路无法满足航天标准。传统译码电路同时存在模拟元件太多,可靠性差的缺点。
发明内容
本发明的目的是解决由于空间环境温度变化引起光电轴角编码器输出的光电流改变,进而造成译码结果出现跳码的问题,提供了一种基于DSP的星载绝对式光电轴角编码器译码电路。
基于DSP的星载绝对式光电轴角编码器译码电路,它由采样模块、微处理器模块和模式选择模块组成,所述采样模块的信号输出端连接微处理器模块的采样信号输入端,模式选择模块的信号输出端连接微处理器模块的模式控制信号输入端;
所述采样模块,用于获得外部编码器的粗码信号、中精码信号和精码信号,并对所述粗码信号、中精码信号和精码信号进行模数转换,将转换后获得的粗码数据、中精码数据和精码数据输出给微处理器模块;
所述模式选择模块,用于输出两种工作模式的选定控制信号给微处理器模块,所述两种工作模式分别为参数获取模式和译码模式;在首次使用时,模式选择模块输出参数获取模式的选定控制信号;
在所述参数获取模式,微处理器模块对接收到的各种数据进行运算处理,获得译码算法参数;然后进入译码模式;
在所述译码模式,微处理器模块根据编码方式对粗码数据进行译码;利用获得的译码算法参数,计算获得ESIN、ECOS、GSIN、GCOS的值;根据获得的ESIN、ECOS、GSIN、GCOS的值、并采用查表法对中精码数据和精码数据进行细分,然后利用精码数据的最高位校正中精码数据的最低位,并将精码数据与校正后的中精码数据合并为细码数据,再用细码数据的最高位校正粗码数据的最低位,然后将细码数据和校正后的粗码数据合并成最终的位置数据信息。
本发明的积极效果:
本发明的译码电路采用全数字的译码方案,能够根据编码器光电流信号的变化自适应地调整译码所需的关键参数,消除空间环境温度变化对译码结果造成的影响。另外,本发明也能解决由机械装调和振动试验带来的需要反复调整译码电路参数的问题,使译码电路具有通用性。同时,本发明采用全数字译码方案,其可靠性更高,符合航天可靠性要求。
附图说明
图1为本发明的译码电路的结构示意图;图2为包含采样模块的具体结构组成的译码电路的结构示意图。
具体实施方式
 具体实施方式一:结合图1和图2说明本实施方式,本实施方式的基于DSP的星载绝对式光电轴角编码器译码电路,它由采样模块1、微处理器模块2和模式选择模块3组成,所述采样模块1的信号输出端连接微处理器模块2的采样信号输入端,模式选择模块3的信号输出端连接微处理器模块2的模式控制信号输入端;
所述采样模块1,用于获得外部编码器的粗码信号、中精码信号和精码信号,并对所述粗码信号、中精码信号和精码信号进行模数转换,将转换后获得的粗码数据、中精码数据和精码数据输出给微处理器模块2;
所述模式选择模块3,用于输出两种工作模式的选定控制信号给微处理器模块2,所述两种工作模式分别为参数获取模式和译码模式;在首次使用时,模式选择模块3输出参数获取模式的选定控制信号;
在所述参数获取模式,微处理器模块2对接收到的各种数据进行运算处理,获得译码算法参数;然后进入译码模式;
在所述译码模式,微处理器模块2根据编码方式对粗码数据进行译码;利用获得的译码算法参数,计算获得ESIN、ECOS、GSIN、GCOS的值;根据获得的ESIN、ECOS、GSIN、GCOS的值、并采用查表法对中精码数据和精码数据进行细分,然后利用精码数据的最高位校正中精码数据的最低位,并将精码数据与校正后的中精码数据合并为细码数据,再用细码数据的最高位校正粗码数据的最低位,然后将细码数据和校正后的粗码数据合并成最终的位置数据信息。所述校正及合并的方法可参见四川科学技术出版社于2003年4月出版的《光电位移精密测量技术》(叶盛祥)一书。其中E0、E180差分放大得到中精码ESin信号,E90、E270差分放大得到中精码ECos信号;G0、G180差分放大得到精码GSin信号,G90、G270差分放大得到精码GCos信号。
在所述译码模式,微处理器模块2每隔十分钟根据接收到的各种数据对译码算法参数进行刷新,以防止译码结果错误。因此,本发明能够根据编码器输出的光电流的变化,自适应地调整译码所需的关键参数。
参见图2,所述采样模块1可由采样电阻11、粗码采样AD单元12、中精码采样AD单元13和精码采样AD单元14组成;
所述采样电阻11,用于接收来自外部编码器的粗码光电流信号、中精码光电流信号和精码光电流信号,并将所述粗码光电流信号、中精码光电流信号和精码光电流信号分别转换为粗码电压信号、中精码电压信号和精码电压信号后输出;
所述粗码采样AD单元12,用于采集采样电阻11输出的粗码电压信号,并对所述粗码电压信号进行模-数转换,将转换后获得的粗码数据输出给微处理器模块2;
所述中精码采样AD单元13,用于采集采样电阻11输出的中精码电压信号,并对所述中精码电压信号进行模-数转换,将转换后获得的中精码数据输出给微处理器模块2;
所述精码采样AD单元14,用于采集采样电阻11输出的精码电压信号,并对所述精码电压信号进行模-数转换,将转换后获得的精码数据输出给微处理器模块2。
所述粗码光电流信号为12位粗码信号,中精码光电流信号为E0信号、E90信号、E180信号和E270信号,精码光电流信号为G0信号、G90信号、G180信号及G270信号。
所述译码算法参数具体包括粗码信号的整形比较电平、中精码信号所需的放大倍数、精码信号所需的放大倍数、中精码信号的直流偏移量和精码信号的直流偏移量。
微处理器模块2采用DSP芯片TMS320C2812实现。
下面提供一个具体实施例:
在本实施例中,绝对式光电编码器是23位的,它输出的光电流信号包括:12位粗码信号,中精码信号:E0、E90、E180、E270,以及精码信号:G0、G90、G180、G270。
采样模块1包括4个部分,分别为采样电阻11、粗码采样AD单元12、中精码采样AD单元13和精码采样AD单元14;
采样电阻11的阻值可根据所用编码器系列的光电流信号的统计值选取,以得到的电压最大值不超过各自AD单元的输入电压范围为准;
粗码采样AD单元12,由DSP芯片TMS320C2812自带的ADC模块实现,共使用12个AD采样通道,采取并发采样模式;
中精码采样AD单元13,由一片AD7864AS2芯片实现,使用硬件选择模式确定各采样通道的转换顺序;
精码采样AD单元14,由一片AD7864AS2芯片实现,使用硬件选择模式确定各采样通道的转换顺序。
模式选择模块3由DSP芯片的I/O端口实现,通过监测I/O端口的输入电平来切换参数获取模式和译码模式。模式选择模块3可通过拨码开关设置,也可接收来自其他设备的指令切换模式,如来自控制器的信号,在外设电平高于3.3V时,此模块前需增加电平转换芯片,如74ACS164245,用于将电平转化至DSP芯片的电压输入范围。
微处理器模块5,使用DSP芯片TMS320C2812实现,完成参数获取及译码所需的运算,并每隔一定时间自动更新一次译码关键参数。在首次使用本译码方法时,要先切换到参数获取模式。在所述参数获取模式,编码器以较慢的速度转动。译码所需的关键参数有:各路粗码信号的整形比较电平,在本实施例中,根据经验取各自电压峰峰值的1/3;中精码、精码各信号所需的放大倍数,以中精码的ECOS信号为例,说明参数计算及正常译码时的处理方法:
根据获得的E90信号的峰值信息可计算出它的峰峰幅值,将量化得到的信号幅值与设计值
Figure 44851DEST_PATH_IMAGE002
进行比较,得到所需的衰减或放大倍数
Figure 377743DEST_PATH_IMAGE003
。E90的直流偏移量即为获得的E90信号的电压最小值。将采集到的E90信号进行放大或衰减后,再减去相应的直流偏移量,就完成了该路信号的预处理工作。对E270信号进行同样的预处理后,切换到译码模式,然后将两路信号作差分,即得细分运算所需的ECOS信号,即上述计算过程可用以下公式描述:
在参数获取模式:
Figure 637747DEST_PATH_IMAGE005
Figure 91731DEST_PATH_IMAGE006
Figure DEST_PATH_IMAGE007
Figure 916729DEST_PATH_IMAGE008
在译码模式:
其中,
Figure 647925DEST_PATH_IMAGE010
为获得的E90信号的电压最大值,
Figure DEST_PATH_IMAGE011
为获得的E90信号的电压最小值,
Figure 264458DEST_PATH_IMAGE012
为获得的E270信号的电压最大值,
Figure DEST_PATH_IMAGE013
为获得的E270信号的电压最小值,
Figure 143421DEST_PATH_IMAGE003
为E90信号所需的衰减倍数或放大倍数,
Figure 568848DEST_PATH_IMAGE014
为E270信号所需的衰减倍数或放大倍数,为E90信号的AD采样值,
Figure 216867DEST_PATH_IMAGE016
为E270信号的AD采样值。
同理,ESIN信号的计算过程如下:
在参数获取模式:
Figure DEST_PATH_IMAGE017
Figure 207564DEST_PATH_IMAGE018
Figure 573823DEST_PATH_IMAGE020
在译码模式:
Figure DEST_PATH_IMAGE021
其中,
Figure 475045DEST_PATH_IMAGE022
为获得的E0信号的电压最大值,
Figure DEST_PATH_IMAGE023
为获得的E0信号的电压最小值,
Figure 928636DEST_PATH_IMAGE024
为获得的E180信号的电压最大值,
Figure DEST_PATH_IMAGE025
为获得的E180信号的电压最小值,
Figure 388436DEST_PATH_IMAGE026
为E0信号的设计值,
Figure DEST_PATH_IMAGE027
为E180信号的设计值,
Figure 743456DEST_PATH_IMAGE028
为E0信号所需的衰减倍数或放大倍数,
Figure DEST_PATH_IMAGE029
为E180信号所需的衰减倍数或放大倍数,为E0信号的AD采样值,
Figure DEST_PATH_IMAGE031
为E180信号的AD采样值。E0信号的直流偏移量即为
Figure 5734DEST_PATH_IMAGE032
,E180信号的直流偏移量即为
Figure DEST_PATH_IMAGE033
GCOS信号的计算过程如下:
在参数获取模式:
Figure 902015DEST_PATH_IMAGE034
Figure DEST_PATH_IMAGE035
Figure DEST_PATH_IMAGE037
在译码模式:
Figure 485891DEST_PATH_IMAGE038
其中,
Figure DEST_PATH_IMAGE039
为获得的G90信号的电压最大值,
Figure 523861DEST_PATH_IMAGE040
为获得的G90信号的电压最小值,
Figure DEST_PATH_IMAGE041
为获得的G270信号的电压最大值,
Figure 591043DEST_PATH_IMAGE042
为获得的G270信号的电压最小值,
Figure DEST_PATH_IMAGE043
为G90信号的设计值,为G270信号的设计值,
Figure DEST_PATH_IMAGE045
为G90信号所需的衰减倍数或放大倍数,
Figure 13376DEST_PATH_IMAGE046
为G270信号所需的衰减倍数或放大倍数,
Figure DEST_PATH_IMAGE047
为G90信号的AD采样值,
Figure 610579DEST_PATH_IMAGE048
为G270信号的AD采样值。G90信号的直流偏移量即为
Figure DEST_PATH_IMAGE049
,G270信号的直流偏移量即为
Figure 432952DEST_PATH_IMAGE050
GSIN信号的计算过程如下:
在参数获取模式:
Figure DEST_PATH_IMAGE051
Figure 482817DEST_PATH_IMAGE052
Figure 333223DEST_PATH_IMAGE054
在译码模式:
Figure DEST_PATH_IMAGE055
其中,
Figure 332403DEST_PATH_IMAGE056
为获得的G0信号的电压最大值,
Figure DEST_PATH_IMAGE057
为获得的G0信号的电压最小值,
Figure 803705DEST_PATH_IMAGE058
为获得的G180信号的电压最大值,
Figure DEST_PATH_IMAGE059
为获得的G180信号的电压最小值,
Figure 839401DEST_PATH_IMAGE060
为G0信号的设计值,
Figure DEST_PATH_IMAGE061
为G180信号的设计值,
Figure 805083DEST_PATH_IMAGE062
为G0信号所需的衰减倍数或放大倍数,
Figure DEST_PATH_IMAGE063
为G180信号所需的衰减倍数或放大倍数,为G0信号的AD采样值,
Figure DEST_PATH_IMAGE065
为G180信号的AD采样值。G0信号的直流偏移量即为
Figure 989387DEST_PATH_IMAGE066
,G180信号的直流偏移量即为
以上过程也即在参数获取完毕后,切换到译码模式,根据获得的参数计算得到ESIN、ECOS、GSIN、GCOS的值(参见上述公式),根据粗码的编码方式将粗码信号转化为自然二进制信息,根据获得的ESIN、ECOS、GSIN、GCOS的值并使用查表法对中精码和精码进行软件细分,细分后获得自然二进制码信息,根据不同的编码器有所不同,在本实施例中,细分后获得4位中精码,10位精码;而后通过两次校正得到最终的编码器位置信息。在译码模式下,微处理模块每隔10分钟将会更新一次关键参数,以防止译码结果错误。在空间环境下,建议每次开机时先通过模式选择进行参数获取,而后再切换到正常模式下,这样可以消除环境温度变化引起的参数漂移。
以长春光机所制造的23位绝对式光电轴角编码器为例,由于所用AD采样芯片是12位的,因此设定
Figure 13844DEST_PATH_IMAGE068
在参数获取模式下测得:
Figure DEST_PATH_IMAGE069
Figure 517638DEST_PATH_IMAGE070
,计算得出E0=1023,
Figure DEST_PATH_IMAGE071
=4;
Figure 442475DEST_PATH_IMAGE072
Figure DEST_PATH_IMAGE073
,计算得出E180=1078,
Figure 990000DEST_PATH_IMAGE074
=3.8;
Figure DEST_PATH_IMAGE075
Figure 3218DEST_PATH_IMAGE076
,计算得出E90=975,
Figure DEST_PATH_IMAGE077
=4.2;
Figure DEST_PATH_IMAGE079
,计算得出E270=1138,
Figure 388248DEST_PATH_IMAGE080
=3.6;
Figure DEST_PATH_IMAGE081
Figure 808472DEST_PATH_IMAGE082
,计算得出G0=1862,
Figure DEST_PATH_IMAGE083
=2.2;
Figure 354991DEST_PATH_IMAGE084
,计算得出G180=2047,=2;
Figure DEST_PATH_IMAGE087
Figure 352214DEST_PATH_IMAGE088
,计算得出G90=1706,
Figure DEST_PATH_IMAGE089
=2.4;
Figure 257853DEST_PATH_IMAGE090
,计算得出G270=2047,
Figure 540936DEST_PATH_IMAGE092
=2;
在绝对位置处于30度时,测得:
Figure DEST_PATH_IMAGE093
795,
Figure 875709DEST_PATH_IMAGE094
305,算得ESIN=2048;
Figure DEST_PATH_IMAGE095
96,1098,算得ECOS=-3548;
Figure DEST_PATH_IMAGE097
1420,
Figure 942071DEST_PATH_IMAGE098
522,算得GSIN=2048;
Figure DEST_PATH_IMAGE099
136,
Figure 213914DEST_PATH_IMAGE100
1929,算得GCOS=-3548;
查表细分得到中精码E=1(十进制)精码G=85(十进制),根据校正原理,采用下述程序实现精码对中精码的校正:
intfuntestbit(unsignedintx,unsignedinty)//校正用判别条件
{intz;
 if((x&y)==0)
 z=0;
 elsez=1;
 return(z);
}
if((768<=G)&&(G<=1023)&&(funtestbit(E,1)==0))
 {
  E=E-1;
 }
 if((0<=G)&&(G<=255)&&(funtestbit(E,1)==1))
 {
 E=E+1;
 }
校正后的中精码E=E+1=2,然后将中精码和精码合并,利用下述语句实现:
F=(E<<9)+G;
F=F&0x1FFF;
合并后得到细码F=1109(十进制)。
此时,粗码译码结果ABCD=341(十进制),根据校正原理,采用下述程序实现细码对细码对粗码的校正:
if((0<=F)&&(F<=2047)&&(funtestbit(ABCD,B0)==1))                                                                            {
 ABCD=ABCD+1;
 }
 if((6144<=F)&&(F<=8191)&&(funtestbit(ABCD,B0)==0))
 {
 ABCD=ABCD-1; 
 }
校正后的粗码ABCD=342(十进制),然后利用下述语句实现细码和粗码的合并:
ABCD32=(unsignedlong)ABCD;
RESULT=(ABCD32<<12)+F;
最终译码结果RESULT=1401947(十进制)。
本发明采用全数字的译码方案,能够根据编码器光电流信号的变化自适应地调整译码所需的关键参数,消除空间环境温度变化对译码结果造成的影响。另外,本发明也能解决由机械装调和振动试验带来的需要反复调整译码电路参数的问题,使译码电路具有通用性。同时,本发明采用全数字译码方案,其可靠性更高,符合航天可靠性要求。

Claims (6)

1. 基于DSP的星载绝对式光电轴角编码器译码电路,其特征在于它由采样模块(1)、微处理器模块(2)和模式选择模块(3)组成,所述采样模块(1)的信号输出端连接微处理器模块(2)的采样信号输入端,模式选择模块(3)的信号输出端连接微处理器模块(2)的模式控制信号输入端;
所述采样模块(1),用于获得外部编码器的粗码信号、中精码信号和精码信号,并对所述粗码信号、中精码信号和精码信号进行模数转换,将转换后获得的粗码数据、中精码数据和精码数据输出给微处理器模块(2);
所述模式选择模块(3),用于输出两种工作模式的选定控制信号给微处理器模块(2),所述两种工作模式分别为参数获取模式和译码模式;在首次使用时,模式选择模块(3)输出参数获取模式的选定控制信号;
在所述参数获取模式,微处理器模块(2)对接收到的各种数据进行运算处理,获得译码算法参数;然后进入译码模式;
在所述译码模式,微处理器模块(2)根据编码方式对粗码数据进行译码;利用获得的译码算法参数,计算获得ESIN、ECOS、GSIN、GCOS的值;根据获得的ESIN、ECOS、GSIN、GCOS的值、并采用查表法对中精码数据和精码数据进行细分,然后利用精码数据的最高位校正中精码数据的最低位,并将精码数据与校正后的中精码数据合并为细码数据,再用细码数据的最高位校正粗码数据的最低位,然后将细码数据和校正后的粗码数据合并成最终的位置数据信息。
2.根据权利要求1所述的基于DSP的星载绝对式光电轴角编码器译码电路,其特征在于在所述译码模式,微处理器模块(2)每隔十分钟根据接收到的各种数据对译码算法参数进行刷新。
3.根据权利要求1所述的基于DSP的星载绝对式光电轴角编码器译码电路,其特征在于所述采样模块(1)由采样电阻(11)、粗码采样AD单元(12)、中精码采样AD单元(13)和精码采样AD单元(14)组成;
所述采样电阻(11),用于接收来自外部编码器的粗码光电流信号、中精码光电流信号和精码光电流信号,并将所述粗码光电流信号、中精码光电流信号和精码光电流信号分别转换为粗码电压信号、中精码电压信号和精码电压信号后输出;
所述粗码采样AD单元(12),用于采集采样电阻(11)输出的粗码电压信号,并对所述粗码电压信号进行模-数转换,将转换后获得的粗码数据输出给微处理器模块(2);
所述中精码采样AD单元(13),用于采集采样电阻(11)输出的中精码电压信号,并对所述中精码电压信号进行模-数转换,将转换后获得的中精码数据输出给微处理器模块(2);
所述精码采样AD单元(14),用于采集采样电阻(11)输出的精码电压信号,并对所述精码电压信号进行模-数转换,将转换后获得的精码数据输出给微处理器模块(2)。
4.根据权利要求3所述的基于DSP的星载绝对式光电轴角编码器译码电路,其特征在于:粗码光电流信号为12位粗码信号,中精码光电流信号为E0信号、E90信号、E180信号和E270信号,精码光电流信号为G0信号、G90信号、G180信号及G270信号。
5.根据权利要求1所述的基于DSP的星载绝对式光电轴角编码器译码电路,其特征在于所述译码算法参数具体包括粗码信号的整形比较电平、中精码信号所需的放大倍数、精码信号所需的放大倍数、中精码信号的直流偏移量和精码信号的直流偏移量。
6.根据权利要求1所述的基于DSP的星载绝对式光电轴角编码器译码电路,其特征在于微处理器模块(2)采用DSP芯片TMS320C2812实现。
CN 201010177476 2010-05-20 2010-05-20 基于dsp的星载绝对式光电轴角编码器译码电路 Pending CN101846529A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010177476 CN101846529A (zh) 2010-05-20 2010-05-20 基于dsp的星载绝对式光电轴角编码器译码电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010177476 CN101846529A (zh) 2010-05-20 2010-05-20 基于dsp的星载绝对式光电轴角编码器译码电路

Publications (1)

Publication Number Publication Date
CN101846529A true CN101846529A (zh) 2010-09-29

Family

ID=42771222

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010177476 Pending CN101846529A (zh) 2010-05-20 2010-05-20 基于dsp的星载绝对式光电轴角编码器译码电路

Country Status (1)

Country Link
CN (1) CN101846529A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104236600A (zh) * 2014-09-26 2014-12-24 哈尔滨工业大学 自我调整比较电压的绝对式光电编码器
CN104596550A (zh) * 2015-01-28 2015-05-06 哈尔滨工业大学 星载绝对式光电码盘粗码译码电路及采用该电路实现的自适应采样法
CN104748701A (zh) * 2015-04-09 2015-07-01 哈尔滨工业大学 绝对式光电编码器粗码译码电路及其粗码自适应采样的译码方法
CN108981765A (zh) * 2018-07-27 2018-12-11 上海航天控制技术研究所 一种绝对式光电编码器测量通道容错设计方法
CN109520550A (zh) * 2018-12-31 2019-03-26 中国电子科技集团公司第三十九研究所 一种适用于多极旋变的高精度编码器跳码评估方法
CN114279366A (zh) * 2021-12-17 2022-04-05 中国科学院长春光学精密机械与物理研究所 一种光电编码器的粗码精码的校正方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10160485A (ja) * 1996-11-28 1998-06-19 Sumitomo Electric Ind Ltd 道路位置検出システム
DE10244923A1 (de) * 2002-09-25 2004-04-01 Dr. Johannes Heidenhain Gmbh Positionsmesseinrichtung und Verfahren zur Positionsbestimmung
CN1517676A (zh) * 2003-01-17 2004-08-04 中国科学院长春光学精密机械与物理研 一种绝对式矩阵编码器粗码译码校正的方法及其电路
JP2005106777A (ja) * 2003-10-02 2005-04-21 Hitachi Ulsi Systems Co Ltd 信号処理装置
CN2735301Y (zh) * 2004-05-20 2005-10-19 中国科学院长春光学精密机械与物理研究所 基于可编程逻辑阵列绝对式光电轴角编码器译码电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10160485A (ja) * 1996-11-28 1998-06-19 Sumitomo Electric Ind Ltd 道路位置検出システム
DE10244923A1 (de) * 2002-09-25 2004-04-01 Dr. Johannes Heidenhain Gmbh Positionsmesseinrichtung und Verfahren zur Positionsbestimmung
CN1517676A (zh) * 2003-01-17 2004-08-04 中国科学院长春光学精密机械与物理研 一种绝对式矩阵编码器粗码译码校正的方法及其电路
JP2005106777A (ja) * 2003-10-02 2005-04-21 Hitachi Ulsi Systems Co Ltd 信号処理装置
CN2735301Y (zh) * 2004-05-20 2005-10-19 中国科学院长春光学精密机械与物理研究所 基于可编程逻辑阵列绝对式光电轴角编码器译码电路

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
《传感器与微系统》 20100228 陈兴林,等 一种新型光电轴角编码器译码方法研究 第29卷, 第2期 2 *
《光学学报》 19881031 叶盛祥 高精度绝对式光电轴角编码器 第8卷, 第10期 2 *
《光学机械》 19900430 熊经武,等 二十三位绝对式光电轴角编码器 , 第2期 2 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104236600A (zh) * 2014-09-26 2014-12-24 哈尔滨工业大学 自我调整比较电压的绝对式光电编码器
CN104596550A (zh) * 2015-01-28 2015-05-06 哈尔滨工业大学 星载绝对式光电码盘粗码译码电路及采用该电路实现的自适应采样法
CN104596550B (zh) * 2015-01-28 2017-05-03 哈尔滨工业大学 星载绝对式光电码盘粗码译码电路及采用该电路实现的自适应采样法
CN104748701A (zh) * 2015-04-09 2015-07-01 哈尔滨工业大学 绝对式光电编码器粗码译码电路及其粗码自适应采样的译码方法
CN108981765A (zh) * 2018-07-27 2018-12-11 上海航天控制技术研究所 一种绝对式光电编码器测量通道容错设计方法
CN109520550A (zh) * 2018-12-31 2019-03-26 中国电子科技集团公司第三十九研究所 一种适用于多极旋变的高精度编码器跳码评估方法
CN109520550B (zh) * 2018-12-31 2022-09-20 中国电子科技集团公司第三十九研究所 一种适用于多极旋变的高精度编码器跳码评估方法
CN114279366A (zh) * 2021-12-17 2022-04-05 中国科学院长春光学精密机械与物理研究所 一种光电编码器的粗码精码的校正方法和装置
CN114279366B (zh) * 2021-12-17 2022-11-01 中国科学院长春光学精密机械与物理研究所 一种光电编码器的粗码精码的校正方法和装置

Similar Documents

Publication Publication Date Title
CN101846529A (zh) 基于dsp的星载绝对式光电轴角编码器译码电路
CN101210821A (zh) 一种双通道轴角转换和测量中粗精耦合的方法
CN106482669B (zh) 一种采用双线阵图像探测器的角位移测量系统
CN204831337U (zh) 一种大空心轴窄圆环超薄型高精度多圈绝对式光电编码器
CN104677394A (zh) 一种位置或角位置传感的编码及装置
CN110207596B (zh) 一种图像编码方法、光栅尺测量装置和测量方法
CN204831336U (zh) 一种与运动控制系统融为一体的绝对式光电编码器
CN107091655B (zh) 一种绝对式光电编码器码盘及绝对式光电编码器
Das et al. A simple approach to design a binary coded absolute shaft encoder
Bahn et al. Digital optoelectrical pulse method for Vernier-type rotary encoders
EP3308107B1 (en) Positional encoder
CN104634367A (zh) 一种大中心孔结构的磁电式绝对位置传感器及测量绝对位置的方法
CN203964930U (zh) 一种光磁编码器
CN112117079B (zh) 编码器磁体结构、编码器、电机、电气设备及车辆
CN103983291A (zh) 一种光磁编码器及其编码方法
CN102829714A (zh) 一种基于圆感应同步器实现绝对式测角的方法
WO2015013705A1 (en) Sensing system for absolute angular position
CN101408774B (zh) 兼容多种编码器接口的交流伺服驱动器
CN111366177A (zh) 一种游标绝对式光电编码器单圈绝对位置读取装置及方法
CN104655156B (zh) 一种矩阵式编码方式的绝对式码盘的误差补偿方法
CN111765913B (zh) 基于数字电位计的绝对式测圈光电编码器
CN111289015A (zh) 一种多分辨率绝对式位置测量装置
TWI425187B (zh) 角度解析裝置
CN215893647U (zh) 编码器、电机及自动化设备
CN210625594U (zh) 一种准绝对式m码分体式光电编码器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20100929