CN101844857A - 一种微电场强化低碳脱氮新工艺 - Google Patents

一种微电场强化低碳脱氮新工艺 Download PDF

Info

Publication number
CN101844857A
CN101844857A CN 201010201152 CN201010201152A CN101844857A CN 101844857 A CN101844857 A CN 101844857A CN 201010201152 CN201010201152 CN 201010201152 CN 201010201152 A CN201010201152 A CN 201010201152A CN 101844857 A CN101844857 A CN 101844857A
Authority
CN
China
Prior art keywords
reactor
carbon
waste water
denitrification
autotrophic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201010201152
Other languages
English (en)
Other versions
CN101844857B (zh
Inventor
冯华军
冯小晏
钱钰洁
邓友华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Gongshang University
Original Assignee
Zhejiang Gongshang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Gongshang University filed Critical Zhejiang Gongshang University
Priority to CN201010201152XA priority Critical patent/CN101844857B/zh
Publication of CN101844857A publication Critical patent/CN101844857A/zh
Application granted granted Critical
Publication of CN101844857B publication Critical patent/CN101844857B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

本发明提供了一种微电场强化低碳脱氮新工艺,特别适用于高氨氮高有机物含量废水的处理。该工艺包括厌氧发酵反应和自养型同步硝化反硝化反应,待处理废水进入厌氧发酵反应器中经过厌氧发酵反应处理后,大部分有机物通过厌氧发酵转化成甲烷后可进行能源回收利用,避免直接转化成CO2排放。厌氧处理后的废水有机物含量较少,继而进入复三维电极一生物膜反应器,通过驯化附着在复三维电极一生物膜反应器中微粒电极上的碳自养型硝化菌和氢自养型反硝化细菌的作用,实现自养型同步硝化反硝化,最终达到将氨氮直接转化为氮气的脱氮目的,无需添加有机物,基本无CO2排放,是一种可控、高效、低耗、“低碳排”环保型绿色脱氮新工艺。

Description

一种微电场强化低碳脱氮新工艺
技术领域
本发明涉及废水处理工艺领域,尤其是涉及一种微电场强化低碳高效绿色脱氮新工艺,特别适用于高氨氮、高有机物含量废水的处理。
背景技术
传统的好氧-厌氧生物脱氮工艺把硝化和反硝化作为两个独立的阶段分别安排在不同的反应器中(空间上)或者利用间歇的好氧和厌氧条件(时间上)实现氮素的脱除,因此往往造成脱氮系统复杂,能耗较大,并且在脱氮的同时需要排放大量的CO2。随着低碳时代的到来,CO2已成为一种污染物,因此国内外的专家学者都急需寻找一种低耗高效且CO2排放量少的脱氮新工艺,用于解决水体富营养化污染问题。
同步硝化反硝化(SND)工艺是指在空间上没有明显缺氧和好氧分区或者在时间上没有缺氧/好氧交替的条件下,硝化和反硝化反应在空间和时间上同步进行的生物脱氮过程。与传统的生物脱氮相比,SND具有能缩短脱氮历程,节省碳源,降低动力消耗,提高处理能力,简化系统的设计和操作等优点,因而目前已成为一个研究热点。但是控制SND的关键因素为溶解氧(DO)、有机物含量以及生物膜传质特性,且这三个因素相互之间互有制约关系。在提高硝化、反硝化效率的同时还需要考虑两过程的动力学平衡,因此大大增加实际工程中对SND作用的调控难度,导致了在绝大多数的应用过程中SND的脱氮效率不高,一般仅为10%~20%左右,这也是SND脱氮功能虽然具有优越性能却无法广泛推广应用的主要原因。由此可见,要想提高SND效率,实现实时调控,就必须将这三个因素之间的制约关系简化,使调控具有可操作性。
电化学氢自养型反硝化工艺是一种近几年来迅速发展起来的有广阔应用前景的新型水处理技术,其基本思想是将电化学法与生物膜法相结合,采用在物理电极上进行微生物挂膜、微电流驯化等手段制得附有生物膜的电极,然后在电极间通以直流电进行电解,在电场作用下水合H+在阴极表面得到电子成为H原子,使得反硝化生物膜完成对硝酸盐的彻底还原。自1992年,梅勒等人在《Nature》上首次报道利用电极-生物反应器进行反硝化的实验研究以来(《利用催化酶去除水中的硝酸盐和亚硝酸盐》,1992,355:717-719.),该技术被广泛应用于地下水、饮用水以及有机物浓度不高的废水中NO3 -的处理,取得了较好的效果。
发明内容
本发明提供了一种反应时间短、能耗低、低碳排放、处理效果好、能将氨态氮直接转化成氮气的微电场强化低碳高效绿色脱氮新工艺。
一种微电场强化低碳脱氮新工艺,包括以下步骤:
1.厌氧发酵反应:待处理废水进入厌氧发酵反应器中进行厌氧发酵反应处理,废水中的大部分有机物通过厌氧发酵转化为甲烷,大大降低了厌氧发酵单元出水的碳氮比,减少了CO2的排放;厌氧发酵反应器出水C/N<2.0。
根据废水中的有机物含量可选择不同的厌氧发酵反应器类型:当废水COD超过1000mg/L时选用上流式厌氧污泥床反应器(UASB),当废水COD低于1000mg/L时选用填料式厌氧折流板反应器(CABR)。
2.自养型同步硝化反硝化脱氮反应:在处理来自厌氧发酵反应的出水前,先对复三维电极-生物膜反应器内的碳自养型硝化菌和氢自养型反硝化菌进行驯化,驯化过程为:在温度25~30℃、pH=7.2~7.8、DO=1.5~1.0mg/L、电流=10~30mA条件下,根据脱氮速率20g N2/m3/h、逐步减少外源碳的投加量和提高电流强度,使C/N比从6逐渐下降到2,碳自养型硝化菌和氢自养型反硝化细菌在微电极表面的混合附着固定。
该驯化过程利用改性涂膜活性炭颗粒作为载体,比表面积大、性能好、挂膜速度快,通过调控电流手段加速碳自养型硝化菌和氢自养反硝化菌在微电极上混匀附着挂膜,有利于实现硝化作用和反硝化作用在微电极上同步进行,提高电流利用率,加强脱氮效率。
当驯化阶段的废水C/N<2以后,正式进入运行阶段。如实际处理过程中废水C/N>2,则应先经过厌氧池厌氧发酵至C/N<2时,再进入复三维电极-生物膜反应器反应处理。
驯化完成后,向复三维电极-生物膜反应器内通入来自厌氧发酵反应的出水,进行自养型同步硝化反硝化脱氮反应。在复三维电极-生物膜反应器中通过直流电源装置对阴阳电极间通以直流电源,对厌氧发酵处理后的废水进行电解,反应器内填充有改性石墨颗粒微电极,在微电场作用下反应器内的微生物即固定碳自养型硝化菌和氢自养型反硝化菌定向移动并附着在改性石墨颗粒微电极。同时反应器池体内的阳极微电解水产生的原子氧和阴极表面释放出的原子氢为硝化菌、反硝化菌提供了充足的氧和电子供体,在底部用微孔曝气器进行曝气,使系统内形成限氧环境(-100mv<ORP<100mv),实现废水中氨态氮到硝态氮的转化,完成硝化过程;利用阴极表面产生的氢作为自养型反硝化作用的电子供体,即可完成反硝化过程,从而实现自养型同步硝化反硝化脱氮过程。并可通过电流强度来调节原子氢的供应速率,进而调控自养型同步硝化反硝化过程的协同速率,即硝化反应和反硝化反应速率相平衡时,整个反应器脱氮效能达到最高。
当经过厌氧发酵反应器处理后进入复三维电极-生物膜反应器的废水水质达到以下要求:有机物浓度COD<250mg/L,Cl-浓度<10.0mg/L,pH为6-8,C/N<2,可直接进入复三维电极-生物膜反应器,而无需进入厌氧发酵反应器预处理。
步骤1中厌氧发酵反应器发挥的作用体现为:(1)调节C/N比:经过厌氧发酵后,大部分有机物转化为甲烷,大大降低了厌氧发酵单元出水的C/N,有利于自养同步硝化反硝化的实现。(2)减少CO2的排放:大部分有机物通过厌氧发酵转化成甲烷后进行能源回收利用,避免转化成CO2排放。
自养型同步硝化反硝化脱氮工艺(Autotrophic simultaneousnitrifieation and denitrifieation,ASND)是发明人首次提出的,该工艺在继承同步硝化反硝化脱氮工艺(SND)能耗低、操作简单、碱度消耗少、基建费用低等优点的基础上,利用微电场产氢作为反硝化作用的电子供体以替代传统SND脱氮工艺中的有机碳源电子供体,并采取合理的调控策略(电流和溶解氧),使碳自养型硝化菌和氢自养反硝化菌在微电极上混匀附着固定,实现自养型硝化作用和自养型反硝化作用在同一反应器内同步进行,即实现氢自养型同步硝化反硝化作用,最终达到脱氮目的,解决了传统SND中脱氮工艺效率不高的瓶颈作用,且同时减少了脱氮过程中的CO2排放,是一种低碳高效绿色脱氮新工艺。
本发明的有益效果:将电化学法和生物膜法相结合,首次利用微电解产氢进行自养型同步硝化反硝化的关键技术,有效地解决传统SND中脱氮工艺效率不高的瓶颈作用,且同时较少了脱氮过程中的CO2排放,实现了低碳高效绿色脱氮。其优点:(1)废水首先进入厌氧发酵池进行处理,处理后废水中有机物含量减少60~70%,且产生的气体中约70%为甲烷,可对其进行回收利用,减少了CO2的排放约60~70%;自养型反硝化工艺无需添加有机物,利用微电场产氢作为反硝化作用的电子供体,替代传统脱氮工艺中的有机碳源作为电子供体,进行自养型同步硝化反硝化作用,避免了相应CO2的排放;相比于现有脱氮工艺,自养型反硝化脱除每g氮气可减少排放6.8gCO2,整个脱氮过程CO2排放量更小,属于一种“低碳”环保型的新工艺。(2)利用改性涂膜活性炭颗粒作为粒子电极,通过逐步减少碳源投加量和调控电流使碳自养型硝化菌和氢自养反硝化菌在微电极上混匀附着挂膜,比表面积大、性能好、挂膜速度快,且有利于硝化作用和反硝化作用在微电极上同步进行,电流利用率高、脱氮效果好。(3)利用微电场产氢作为反硝化作用的电子供体,采取合理的调控策略,使自养型硝化作用和自养型反硝化作用在同一反应器内同步进行,即实现氢自养型同步硝化反硝化,解决了传统SND中脱氮工艺效率不高的瓶颈作用,明显提高了脱氮效率,降低了运行费用,减少了脱氮过程中的CO2排放。
附图说明
图1为本发明微电场强化低碳脱氮新工艺的流程图。
图2为本发明不同驯化方式下容积脱氮效率情况示意图。
图3为本发明工艺中电流强度对容积脱氮效率的影响示意图。
图4为本发明工艺中DO浓度对容积脱氮效率的影响示意图。
图5为本发明工艺中温度对容积脱氮效率的影响示意图。
具体实施方式
利用复三维电极一生物膜反应器直接处理COD为45mg/L、氨氮为30mg/L的模拟废水。在温度25~30℃,pH为7.2~7.8的条件下,在六个反应器(1号、2号、3号、4号、5号、6号)中接种相同浓度的污泥。
然后,分别以表1所示的6种方式进行驯化,驯化20天。驯化过程中每天更换2/3培养液(以HRT=8h计算)。图2分别显示了20天后,6种驯化方式的容积脱氮效率情况。结果表明,随着电流的增加,其脱氮效率也随之提高;在驯化最终达到相同电流的条件下,通过逐步增加电流方式的容积脱氮效率均高于电流稳定不变的驯化方式。
表1  污泥驯化方式
Figure BSA00000143486500051
运行阶段,在HRT为8h的条件下,比较了运行时间为4h,20mA、25mA、30mA、40mA、50mA电流强度下,该反应器的容积脱氮效率。图3分别显示了不同电流强度所对应的容积脱氮效率情况。结果表明,随着电流强度的增加,容积脱氮效率先提高后降低。当电流强度为25mA时,体系有最大容积脱氮效率。
在HRT为8h、电流为25mA的条件下,比较了运行时间为4h,DO=0.5、0.8、1.0、1.2、1.5、1.8、2.0条件下,该反应器的容积脱氮效率。图4分别显示了不同DO浓度所对应的容积脱氮效率情况。由图4可知,容积脱氮效率随着DO浓度的增加先提高后降低。在DO=1.0~1.5mg/L范围内,具有较好的容积脱氮效率,该系统最适溶解氧浓度为1.2mg/L。
在HRT为8h、电流为25mA的条件下,比较了运行时间为4h,温度为5℃、10℃、15℃、20℃、25℃、30℃、35℃下,该反应器的容积脱氮效率。图5分别显示了不同温度所对应的容积脱氮效率情况。结果表明,在温度15~35℃范围内,该体系具有较好的容积脱氮效率。当温度小于15℃和大与于35℃时,容积脱氮效率迅速下降。

Claims (4)

1.一种微电场强化低碳脱氮新工艺,其特征在于:包括以下步骤:
1)厌氧发酵反应:待处理废水进入厌氧发酵反应器中进行厌氧发酵反应处理,使废水中的大部分有机物通过厌氧发酵转化为甲烷,厌氧发酵反应器出水C/N<2.0;
2)自养型同步硝化反硝化脱氮反应:在处理来自厌氧发酵反应的出水前,先对复三维电极-生物膜反应器内的碳自养型硝化菌和氢自养型反硝化菌进行驯化;驯化完成后,向复三维电极-生物膜反应器内通入来自厌氧发酵反应的出水,通过直流电源装置对复三维电极-生物膜反应器中的阴阳电极间通以直流电源,对厌氧发酵处理后的废水进行电解,反应器内填充有改性石墨颗粒微电极,在微电场作用下,反应器内的碳自养型硝化菌和氢自养型反硝化菌定向移动并附着在改性石墨颗粒微电极表面;反应器池体内的阳极微电解水产生的原子氧为硝化菌提供氧,反应器底部用微孔曝气器进行曝气,在系统内形成限氧环境,使废水中的氨态氮转化成硝态氮,完成硝化过程;阴极表面释放出的原子氢为反硝化菌提供电子供体,完成反硝化过程。
2.根据权利要求1所述的微电场强化低碳脱氮新工艺,其特征在于:所述的驯化过程为:在温度25~30℃、pH=7.2~7.8、DO=1.5~1.0mg/L、电流=10~30mA条件下,通过在复三维电极-生物膜反应器内逐步减少外源碳的投加和提高电流强度,使C/N比逐渐从6下降至2,碳自养型硝化菌和氢自养型反硝化细菌在微电极表面的混合附着固定。
3.根据权利要求1所述的微电场强化低碳脱氮新工艺,其特征在于:所述的硝化菌取自城市污水处理厂或其他污水处理设施的曝气池的活性污泥,氢自养型反硝化菌取自含有硝酸盐的河流、湖泊底泥或沉积物。
4.根据权利要求1所述的微电场强化低碳脱氮新工艺,其特征在于:所述的厌氧发酵反应器类型为:当废水COD超过1000mg/L时选用上流式厌氧污泥床反应器,当废水COD低于1000mg/L时选用填料式厌氧折流板反应器。
CN201010201152XA 2010-06-12 2010-06-12 一种微电场强化低碳脱氮工艺 Expired - Fee Related CN101844857B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201010201152XA CN101844857B (zh) 2010-06-12 2010-06-12 一种微电场强化低碳脱氮工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010201152XA CN101844857B (zh) 2010-06-12 2010-06-12 一种微电场强化低碳脱氮工艺

Publications (2)

Publication Number Publication Date
CN101844857A true CN101844857A (zh) 2010-09-29
CN101844857B CN101844857B (zh) 2012-04-25

Family

ID=42769693

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010201152XA Expired - Fee Related CN101844857B (zh) 2010-06-12 2010-06-12 一种微电场强化低碳脱氮工艺

Country Status (1)

Country Link
CN (1) CN101844857B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103145234A (zh) * 2013-03-22 2013-06-12 北京交通大学 好氧低碳氮比污水氨氮直接脱氮生物颗粒载体及制备方法
CN103663884A (zh) * 2013-12-30 2014-03-26 合肥工业大学 一种利用弱电势强化降解畜禽养殖废水中有机砷为五价砷的方法
CN104628132A (zh) * 2015-02-02 2015-05-20 北京交通大学 基于自养反硝化的一体化新型脱氮反应装置及工艺方法
CN108249551A (zh) * 2017-12-29 2018-07-06 海天水务集团股份公司 一种去除污水总氮的处理方法
CN108946917A (zh) * 2018-06-21 2018-12-07 南京大学 一种增强型硫自养反硝化污水深度脱氮装置及方法
CN111146484A (zh) * 2020-01-21 2020-05-12 河海大学 一种微生物燃料电池及促进其废水脱氮方法
CN111573830A (zh) * 2019-02-18 2020-08-25 桂林理工大学 厌氧氨氧化与氢自养反硝化耦合深度脱氮的装置与方法
CN112794553A (zh) * 2020-12-22 2021-05-14 哈尔滨工创环保科技有限公司 一种微电场耦合硫自养反硝化处理煤热解废水的装置及利用其处理煤热解废水的方法
CN113321289A (zh) * 2021-05-14 2021-08-31 哈尔滨工业大学 一种电场耦合Fe-C复合介体强化废水污泥厌氧消化产甲烷效能的方法
CN113800629A (zh) * 2020-06-15 2021-12-17 中国石油化工股份有限公司 一种有机废水的处理方法和应用
CN115286101A (zh) * 2022-09-01 2022-11-04 浙江大学 电活性生物膜驱动的厌氧mbr深度降碳装置及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《工业用水与废水》 20090228 刘晓等 电极生物膜反应器中同步硝化反硝化的研究 42-45 1-4 第40卷, 第1期 2 *
《水处理技术》 20071130 杨群等 电极-生物膜前后置条件下的反硝化脱氮性能比较 31-33、41 1-4 第33卷, 第11期 2 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103145234A (zh) * 2013-03-22 2013-06-12 北京交通大学 好氧低碳氮比污水氨氮直接脱氮生物颗粒载体及制备方法
CN103663884A (zh) * 2013-12-30 2014-03-26 合肥工业大学 一种利用弱电势强化降解畜禽养殖废水中有机砷为五价砷的方法
CN104628132A (zh) * 2015-02-02 2015-05-20 北京交通大学 基于自养反硝化的一体化新型脱氮反应装置及工艺方法
CN104628132B (zh) * 2015-02-02 2016-07-06 北京交通大学 基于自养反硝化的一体化脱氮反应装置及工艺方法
CN108249551A (zh) * 2017-12-29 2018-07-06 海天水务集团股份公司 一种去除污水总氮的处理方法
CN108946917B (zh) * 2018-06-21 2020-12-29 南京大学 一种增强型硫自养反硝化污水深度脱氮装置及方法
CN108946917A (zh) * 2018-06-21 2018-12-07 南京大学 一种增强型硫自养反硝化污水深度脱氮装置及方法
CN111573830A (zh) * 2019-02-18 2020-08-25 桂林理工大学 厌氧氨氧化与氢自养反硝化耦合深度脱氮的装置与方法
CN111146484A (zh) * 2020-01-21 2020-05-12 河海大学 一种微生物燃料电池及促进其废水脱氮方法
CN113800629A (zh) * 2020-06-15 2021-12-17 中国石油化工股份有限公司 一种有机废水的处理方法和应用
CN113800629B (zh) * 2020-06-15 2022-11-18 中国石油化工股份有限公司 一种有机废水的处理方法和应用
CN112794553A (zh) * 2020-12-22 2021-05-14 哈尔滨工创环保科技有限公司 一种微电场耦合硫自养反硝化处理煤热解废水的装置及利用其处理煤热解废水的方法
CN113321289A (zh) * 2021-05-14 2021-08-31 哈尔滨工业大学 一种电场耦合Fe-C复合介体强化废水污泥厌氧消化产甲烷效能的方法
CN113321289B (zh) * 2021-05-14 2022-10-14 哈尔滨工业大学 一种电场耦合Fe-C复合介体强化废水污泥厌氧消化产甲烷效能的方法
CN115286101A (zh) * 2022-09-01 2022-11-04 浙江大学 电活性生物膜驱动的厌氧mbr深度降碳装置及方法
CN115286101B (zh) * 2022-09-01 2023-08-25 浙江大学 电活性生物膜驱动的厌氧mbr深度降碳装置及方法

Also Published As

Publication number Publication date
CN101844857B (zh) 2012-04-25

Similar Documents

Publication Publication Date Title
CN101844857B (zh) 一种微电场强化低碳脱氮工艺
Nguyen et al. Insights on microbial fuel cells for sustainable biological nitrogen removal from wastewater: A review
CN105565494B (zh) 膜曝气生物膜与生物电化学耦合系统及其应用
CN107032479B (zh) 一种生物电化学厌氧/微电解共混耦合强化处理高浓度环丙沙星废水的方法
CN102344197B (zh) 一种快速启动厌氧氨氧化反应器的方法
CN104609660B (zh) 一种高效节能降耗及资源回收的污水处理方法
CN102723517B (zh) 分离膜生物阴极微生物燃料电池及污水处理方法
US20170066668A1 (en) Highly effective sewage treatment based on regulation and control of directed electron flow and apparatus thereof
CN103086508B (zh) 一种提高脱氮效果的微生物燃料电池废水处理系统
CN102674529A (zh) 一种微生物燃料电池与微藻培养相结合处理有机废水的方法及其专用装置
CN110228911B (zh) 一种多级串联式自养-异养反硝化耦合脱氮除磷方法及装置
CN106477822A (zh) 电解‑同步硝化反硝化脱氮改良工艺的装置
CN102249424A (zh) 无质子交换膜微生物燃料电池污水处理系统及其应用方法
CN112607864A (zh) 电化学性能强化的菌藻膜曝气生物膜反应器系统及其应用
CN105967455A (zh) 一种垃圾渗滤液自供电脱硝的装置及其方法
CN111573821A (zh) 一种基于自养短程反硝化-厌氧氨氧化模块电极脱氮系统
CN111115842B (zh) 一种高氯酸铵废水的处理方法
CN109912145B (zh) 一种好氧颗粒污泥产电装置
CN107840550A (zh) 一种垃圾渗沥液的处理方法
CN107010728A (zh) 一种渐变式全程自养脱氮系统及其处理方法
CN107381811B (zh) 微生物双源电化学污水反应器及对低c/n城市污水处理方法
CN204281413U (zh) 一种与a/o工艺相结合的双室mfc废水处理系统
Lu et al. Nitrogen removal performance and rapid start-up of anammox process in an electrolytic sequencing batch reactor (ESBR)
CN206359386U (zh) 电解‑同步硝化反硝化脱氮改良工艺的装置
CN203071172U (zh) 一种一体式硝化-反硝化微生物燃料电池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120425