CN101827059B - Digital signal transmission method and system based on multi-carrier pseudo-random sequence - Google Patents
Digital signal transmission method and system based on multi-carrier pseudo-random sequence Download PDFInfo
- Publication number
- CN101827059B CN101827059B CN 201010129099 CN201010129099A CN101827059B CN 101827059 B CN101827059 B CN 101827059B CN 201010129099 CN201010129099 CN 201010129099 CN 201010129099 A CN201010129099 A CN 201010129099A CN 101827059 B CN101827059 B CN 101827059B
- Authority
- CN
- China
- Prior art keywords
- sequence
- investigated
- parameter
- carrier
- carrier pseudorandom
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 46
- 230000008054 signal transmission Effects 0.000 title claims abstract description 25
- 238000009432 framing Methods 0.000 claims abstract description 14
- 238000012545 processing Methods 0.000 claims abstract description 13
- 238000006243 chemical reaction Methods 0.000 claims abstract description 7
- 230000005540 biological transmission Effects 0.000 claims description 9
- 125000004122 cyclic group Chemical group 0.000 claims description 6
- 238000013507 mapping Methods 0.000 claims description 3
- 230000009466 transformation Effects 0.000 claims 8
- 230000000903 blocking effect Effects 0.000 claims 4
- 238000012163 sequencing technique Methods 0.000 claims 1
- 230000008685 targeting Effects 0.000 claims 1
- 238000010187 selection method Methods 0.000 description 15
- 238000012549 training Methods 0.000 description 7
- 238000004891 communication Methods 0.000 description 5
- 238000010276 construction Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000000737 periodic effect Effects 0.000 description 4
- 238000012805 post-processing Methods 0.000 description 4
- 230000010363 phase shift Effects 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Images
Landscapes
- Mobile Radio Communication Systems (AREA)
Abstract
本发明涉及一种基于多载波伪随机序列的数字信号传输方法及系统,该方法包括步骤:对待传输数据进行编码、调制处理,生成待传输数据块;将所述待传输数据块与选定的多载波伪随机序列组帧,得到待传输数据帧;对所述待传输数据帧进行数模转换、射频调制处理并发送。本发明的方法及系统可以用最少的时间获得的所需要的多载波伪随机序列作为数据辅助,为数字信号传输提供更准确、可靠的参数估计。
The present invention relates to a digital signal transmission method and system based on a multi-carrier pseudo-random sequence. The method includes the steps of: encoding and modulating the data to be transmitted to generate a data block to be transmitted; combining the data block to be transmitted with the selected Multi-carrier pseudo-random sequence framing to obtain a data frame to be transmitted; performing digital-to-analog conversion and radio frequency modulation processing on the data frame to be transmitted and sending it. The method and system of the invention can use the required multi-carrier pseudo-random sequence obtained in the least time as data assistance, and provide more accurate and reliable parameter estimation for digital signal transmission.
Description
技术领域 technical field
本发明涉及数字信息传输技术领域,尤其涉及一种基于多载波伪随机序列的数字信号传输方法及系统。 The invention relates to the technical field of digital information transmission, in particular to a digital signal transmission method and system based on a multi-carrier pseudo-random sequence. the
背景技术 Background technique
在数字通信系统中,准确可靠的参数估计对于数据恢复十分关键。常见的参数估计方法包括盲估计和数据辅助(Data Aided,DA)的参数估计。其中数据辅助的参数估计具有估计精确,迅速可靠,实现简单等优点,被广泛应用在数字通信系统中。 In digital communication systems, accurate and reliable parameter estimation is critical for data recovery. Common parameter estimation methods include blind estimation and data-aided (Data Aided, DA) parameter estimation. Among them, data-aided parameter estimation has the advantages of accurate estimation, fast reliability, and simple implementation, and is widely used in digital communication systems. the
训练序列(Training Sequence,TS)即为一种辅助数据,在发送信号中添加一段已知的序列,在接收端可借助该已知序列进行各种传输参数的估计。常见的训练序列有PN(Pseudo-Noise,伪随机噪声)序列,Golay序列,Legendre序列,CAZAC(Constant Amplitude ZeroAuto-Correlation,恒模零自相关)序列等等。这些序列通常具有良好的自相关性质,而且生成简单,因此得到广泛的应用。频域导频(Pilot)也是一种常见的辅助数据,在发送信号的频域按照一定的图案发送已知的数据,在接收端同样可以用来进行系统参数的估计。 The training sequence (Training Sequence, TS) is a kind of auxiliary data. A known sequence is added to the transmitted signal, and various transmission parameters can be estimated at the receiving end with the help of the known sequence. Common training sequences include PN (Pseudo-Noise, pseudo-random noise) sequence, Golay sequence, Legendre sequence, CAZAC (Constant Amplitude Zero Auto-Correlation, constant modulus zero autocorrelation) sequence and so on. These sequences usually have good autocorrelation properties and are easy to generate, so they are widely used. Frequency-domain pilot (Pilot) is also a common auxiliary data, which sends known data according to a certain pattern in the frequency domain of the transmitted signal, and can also be used to estimate system parameters at the receiving end. the
最大线性反馈移位寄存器序列(简称m序列)是伪随机序列的一种,具有许多优秀的性质(详见曹志刚、钱亚生《现代通信原理》,北京,清华大学出版社,1992年)。m序列的一个典型应用是TDS-OFDM(时域正交频分复用数字传输)技术,已经被中国地面数字电视国家标准采用(GB20600-2006,数字电视地面广播传输系统帧结构、信道编码和调制)。TDS-OFDM采用训练序列填充保护间隔,帧头由时域二值m序列及其循环扩展构成,可用来进行快速的同步和信道估计。 The maximum linear feedback shift register sequence (abbreviated as m-sequence) is a kind of pseudo-random sequence, which has many excellent properties (see Cao Zhigang, Qian Yasheng, "Modern Communication Principles", Beijing, Tsinghua University Press, 1992). A typical application of m-sequence is TDS-OFDM (time-domain orthogonal frequency division multiplexing digital transmission) technology, which has been adopted by China's national terrestrial digital TV standard (GB20600-2006, digital TV terrestrial broadcast transmission system frame structure, channel coding and modulation). TDS-OFDM uses the training sequence to fill the guard interval, and the frame header is composed of the time-domain binary m-sequence and its cyclic extension, which can be used for fast synchronization and channel estimation. the
相对于时域二值序列,频域二值序列(中国专利:基于二值全通序列保护间隔填充的频域信道估计方法,清华大学,公开号CN101102114)更易于用来进行信道估计。Fang Yang等人已经证明,频域恒模的序列可以获得最优的信道估计结果(详见“TrainingSequence Design for Low Complexity Channel Estimation in TransmitDiversity TDS-OFDM System”,IEICE Transactions on Communications,vol.E92-B,no.6,pp.230g-2311,June 2009)。由于在频域只有+1和-1,使得接收端不需要除法运算即可完成信道估计,从而大大降低了信道估计模块的复杂度。 Compared with the time-domain binary sequence, the frequency-domain binary sequence (Chinese Patent: Frequency Domain Channel Estimation Method Based on Binary Allpass Sequence Guard Interval Filling, Tsinghua University, Publication No. CN101102114) is easier to use for channel estimation. Fang Yang et al. have proved that the frequency domain constant modulus sequence can obtain the optimal channel estimation result (see "TrainingSequence Design for Low Complexity Channel Estimation in TransmitDiversity TDS-OFDM System", IEICE Transactions on Communications, vol.E92-B , no.6, pp.230g-2311, June 2009). Since there are only +1 and -1 in the frequency domain, the receiving end can complete the channel estimation without division operation, thus greatly reducing the complexity of the channel estimation module. the
将这种由频域序列经过离散傅立叶变换得到的序列称为多载波伪随机序列(Multi-Carrier Pseudo-Noise,PN-MC),多载波伪随机序列在离散傅里叶变换域为性质优良的二值序列,同时继承多载波通信的优点。在实际应用中通常希望多载波伪随机序列具有较好的功率峰均比性质和自相关性质等。如果通过遍历的方法搜索,长度为N的多载波伪随机序列共存在2N个可能的序列,搜索量为O(2N)。以长度为256的序列的为例,搜索量达到1077的量级,目前的计算机根本不可能实现。 The sequence obtained by the discrete Fourier transform of the frequency domain sequence is called a multi-carrier pseudo-random sequence (Multi-Carrier Pseudo-Noise, PN-MC), and the multi-carrier pseudo-random sequence has excellent properties in the discrete Fourier transform domain. Binary sequence, while inheriting the advantages of multi-carrier communication. In practical applications, it is usually hoped that the multi-carrier pseudo-random sequence has better power peak-to-average ratio properties and autocorrelation properties. If searched by traversal method, there are 2 N possible sequences of multi-carrier pseudo-random sequences with length N, and the search amount is O(2 N ). Taking the sequence with a length of 256 as an example, the search amount reaches the order of 10 77 , which is impossible to realize with the current computer.
发明内容 Contents of the invention
(一)要解决的技术问题 (1) Technical problems to be solved
本发明要解决的技术问题是:以最少的时间获得所需要的多载波伪随机序列作为数据辅助,以为数字信号传输提供更准确、可靠的参数估计。 The technical problem to be solved by the present invention is to obtain the required multi-carrier pseudo-random sequence as data assistance in the least time, so as to provide more accurate and reliable parameter estimation for digital signal transmission. the
(二)技术方案 (2) Technical plan
为实现上述目的,本发明采用如下技术方案。 In order to achieve the above object, the present invention adopts the following technical solutions. the
本发明提供了一种基于多载波伪随机序列的数字信号传输方法,该方法包括步骤: The invention provides a digital signal transmission method based on a multi-carrier pseudo-random sequence, the method comprising steps:
S1.对待传输数据进行编码、调制处理,生成待传输数据块; S1. Perform encoding and modulation processing on the data to be transmitted, and generate data blocks to be transmitted;
S2.将所述待传输数据块与选定的多载波伪随机序列组帧,得到待传输数据帧; S2. Framing the data block to be transmitted with the selected multi-carrier pseudo-random sequence to obtain a data frame to be transmitted;
S3.对所述待传输数据帧进行数模转换、射频调制处理并发送。 S3. Perform digital-to-analog conversion and radio frequency modulation processing on the data frame to be transmitted, and send it. the
其中,步骤S2中的组帧方法包括:用至少一个所述多载波伪随机序列填充所述待传输数据块的保护间隔;或用至少一个所述多载波伪随机序列作为所述待传输数据块的前导序列。 Wherein, the framing method in step S2 includes: filling the guard interval of the data block to be transmitted with at least one said multi-carrier pseudo-random sequence; or using at least one said multi-carrier pseudo-random sequence as said data block to be transmitted the leading sequence. the
其中,所述多载波伪随机序列为由二值序列经过离散傅立叶逆变换得到的序列。 Wherein, the multi-carrier pseudo-random sequence is a sequence obtained by inverse discrete Fourier transform of a binary sequence. the
其中,所述多载波伪随机序列的选定方法包括步骤: Wherein, the selected method of the multi-carrier pseudo-random sequence comprises steps:
S2.1令多载波伪随机序列的离散傅立叶变换为序列C,将所述序列C分成K段,依次记做C1,C2,...,CK,初始化序列C的取值全为0,其中,多载波伪随机序列的长度为N,K为小于N的任意正整数; S2.1 Make the discrete Fourier transform of the multi-carrier pseudo-random sequence into a sequence C, divide the sequence C into K segments, and record them as C 1 , C 2 , ..., C K in turn, and the values of the initialization sequence C are all 0, wherein the length of the multi-carrier pseudo-random sequence is N, and K is any positive integer less than N;
S2.2令i=1,C1在{α1,α2}中取值,得到新的序列C′,将新的序列C′做N点离散傅立叶逆变换,得到多载波伪随机序列,根据最优序列选取准则计算该多载波伪随机序列的待考察参数,遍历所有可能的C1,获得所述待考察参数最优的多载波伪随机序列,记录对应的序列C1,其中,1≤i≤K,|α1|=|α2|; S2.2 Let i=1, C 1 takes a value in {α 1 , α 2 } to obtain a new sequence C′, and perform N-point discrete Fourier inverse transform on the new sequence C′ to obtain a multi-carrier pseudo-random sequence, Calculate the parameters to be investigated of the multi-carrier pseudo-random sequence according to the optimal sequence selection criterion, traverse all possible C 1 , obtain the multi-carrier pseudo-random sequence with the optimal parameter to be investigated, and record the corresponding sequence C 1 , where 1 ≤i≤K, |α 1 |=|α 2 |;
S2.3令i=i+1,固定序列C1,C2,...,Ci-1,Ci在{α1,α2}中取值,将C1,C2,...,Ci-1,Ci插入序列C构成新的序列C″,对所述新的序列C″做N点离散傅立叶逆变换得到多载波伪随机序列,根据最优序列选取准则计算该多载波伪随机序列的待考察参数,遍历所有可能的Ci,获得所述待考察参数最优的多载波伪随机序列,记录对应的Ci以及最优的待考察参数P0; S2.3 Let i=i+1, fixed sequence C 1 , C 2 , ..., C i-1 , C i take values in {α 1 , α 2 }, set C 1 , C 2 , .. ., C i-1 , C i is inserted into the sequence C to form a new sequence C", and the N-point discrete Fourier inverse transform is performed on the new sequence C" to obtain a multi-carrier pseudo-random sequence, and the multi-carrier pseudo-random sequence is calculated according to the optimal sequence selection criterion The parameter to be investigated of the carrier pseudo-random sequence, traversing all possible C i , obtaining the optimal multi-carrier pseudo-random sequence of the parameter to be investigated, recording the corresponding C i and the optimal parameter P 0 to be investigated;
S2.4依次重新遍历前i个序列,固定C1-Ci中除Cj之外的所有序列,遍历所有可能的Cj,若得到的最优的待考察参数优于P0,则更新最优的待考察参数以及对应的序列Cj,其中,1≤j≤i; S2.4 Re-traverse the first i sequences in turn, fix all sequences in C 1 -C i except C j , traverse all possible C j , if the obtained optimal parameter to be investigated is better than P 0 , then update The optimal parameters to be investigated and the corresponding sequence C j , where 1≤j≤i;
S2.5若i=K,则执行步骤S2.6,否则返回步骤S2.3; S2.5 If i=K, execute step S2.6, otherwise return to step S2.3;
S2.6将当前选定的C1,C2,...,CK拼接成长度为N的二值序列,对所述二值序列做N点离散傅立叶逆变换,将得到的多载波伪随机序列作为选定的多载波伪随机序列输出。 S2.6 Splice the currently selected C 1 , C 2 , ..., C K into a binary sequence of length N, perform N-point discrete Fourier inverse transform on the binary sequence, and convert the obtained multi-carrier pseudo The random sequence is output as a selected multi-carrier pseudo-random sequence.
其中,所述多载波伪随机序列为由m序列经扩展或截断,再经离散傅立叶逆变换得到的序列。 Wherein, the multi-carrier pseudo-random sequence is a sequence obtained by extending or truncating the m-sequence, and then performing inverse discrete Fourier transform. the
其中,所述扩展方法包括:循环扩展,将所述m序列的末尾若干位符号复制到所述m序列之前;或补零扩展,在所述m序列的前端和末尾分别补充若干零符号;或按照已知图案在序列中插入零符号扩展。 Wherein, the extension method includes: cyclic extension, copying several bit symbols at the end of the m-sequence before the m-sequence; or zero-padding extension, adding several zero symbols at the front and end of the m-sequence respectively; or Inserts zero sign extensions into the sequence according to a known pattern. the
其中,所述多载波伪随机序列的选定方法包括步骤: Wherein, the selected method of the multi-carrier pseudo-random sequence comprises steps:
S2.1′选定多载波伪随机序列的长度为N,确定m序列的阶数K,满足 或 其中, 和 分别表示向下取整和向上取整; S2.1' Select the length of the multi-carrier pseudo-random sequence to be N, determine the order K of the m-sequence, satisfy or in, and Indicates rounding down and rounding up, respectively;
S2.2′依次选定m序列的生成多项式和初始相位,生成一个m序列; S2.2' Select the generator polynomial and the initial phase of the m-sequence in turn to generate an m-sequence;
S2.3′将生成的m序列映射为二相相移键控符号,并经过扩展或截断,构成长度为N的符号序列; S2.3' maps the generated m-sequence to binary phase-shift keying symbols, and expands or truncates them to form a symbol sequence with a length of N;
S2.4′对所述符号序列做N点离散傅立叶逆变换,得到长度为N的多载波伪随机序列; S2.4' performs N-point discrete Fourier inverse transform on the symbol sequence to obtain a multi-carrier pseudo-random sequence with a length of N;
S2.5′根据最优序列选取准则,计算步骤S2.4′得到的多载波伪随机序列的待考察参数,记录所述多载波伪随机序列及所述待考察参数值; S2.5'according to the optimal sequence selection criterion, calculate the parameters to be investigated of the multi-carrier pseudo-random sequence obtained in step S2.4', and record the multi-carrier pseudo-random sequence and the value of the parameter to be investigated;
S2.6′判断是否已遍历所有生成多项式及所有初始相位,若已遍历,则执行步骤S2.7′,否则,返回执行步骤S2.2′; S2.6'judging whether all generator polynomials and all initial phases have been traversed, if so, execute step S2.7', otherwise, return to execute step S2.2';
S2.7′根据所述最优序列选取准则,从所有得到的待考察参数中选取最优的待考察参数,并将其对应的多载波伪随机序列作为选定的多载波伪随机序列输出。 S2.7' According to the optimal sequence selection criterion, select the optimal parameter to be investigated from all obtained parameters to be investigated, and output the corresponding multi-carrier pseudo-random sequence as the selected multi-carrier pseudo-random sequence. the
其中,所述最优序列选取准则包括: Wherein, the optimal sequence selection criteria include:
功率峰均比最小准则,待考察参数为序列的功率峰均比PAPR,序列c(n)的所述功率峰均比PAPR为: The power peak-to-average ratio minimum criterion, the parameter to be investigated is the power peak-to-average ratio PAPR of the sequence, and the power peak-to-average ratio PAPR of the sequence c(n) is:
非周期自相关的部分品质因子最大准则,待考察参数为序列的非周期自相关的部分品质因子Fpart,序列c(n)的非周期自相关的部分品质因子Fpart,为: The maximum criterion of the partial quality factor of aperiodic autocorrelation, the parameter to be investigated is the partial quality factor F part of the aperiodic autocorrelation of the sequence, and the partial quality factor F part of the aperiodic autocorrelation of the sequence c(n), which is:
其中,R(n)是序列c(n)的非周期自相关,且 where R(n) is the aperiodic autocorrelation of the sequence c(n), and
离散傅立叶变换的非周期自相关品质因子最大准则,待考察参数为序列的非周期自相关的品质因子,序列c(n)的非周期自相关的品质因子MF为: The maximum criterion of the aperiodic autocorrelation quality factor of the discrete Fourier transform, the parameter to be investigated is the quality factor of the aperiodic autocorrelation of the sequence, and the quality factor MF of the aperiodic autocorrelation of the sequence c(n) is:
其中,R(n)是序列c(n)的非周期自相关;或 where R(n) is the aperiodic autocorrelation of the sequence c(n); or
非周期自相关部分品质因子与功率峰均比比值最大准则,待考察参数为:P=Fpart/PAPR;或 The maximum criterion for the ratio of the quality factor of the aperiodic autocorrelation part to the power peak-to-average ratio, the parameter to be investigated is: P=F part /PAPR; or
离散傅立叶变换的非周期自相关品质因子与功率峰均比比值最大准则,待考察参数为:P=MF/PAPR;或 The maximum criterion for the ratio of aperiodic autocorrelation quality factor and power peak-to-average ratio of discrete Fourier transform, the parameter to be investigated is: P=MF/PAPR; or
非周期自相关部分品质因子与离散傅立叶变换的非周期自相关品质因子乘积最大准则,待考察参数为:P=Fpart·MF;或 The maximum criterion for the product of the non-periodic autocorrelation part quality factor and the non-periodic autocorrelation quality factor of the discrete Fourier transform, the parameter to be investigated is: P=F part MF; or
功率峰均比、非周期自相关部分品质因子、以及离散傅立叶变换的非周期自相关品质因子折中准则,待考察参数为P=Fpart·MF/PAPR,选取P最大的多载波伪随机序列。 Power peak-to-average ratio, aperiodic autocorrelation partial quality factor, and discrete Fourier transform aperiodic autocorrelation quality factor compromise criterion, the parameter to be investigated is P=F part MF/PAPR, and the multi-carrier pseudo-random sequence with the largest P is selected .
本发明还提供了一种基于多载波伪随机序列的数字信号传输系统,该系统包括:编码调制模块,对待传输数据进行编码、调制处理,生成待传输数据块;序列生成模块,生成所需要的多载波伪随机序列;组帧模块,将所述待传输数据块与选定的多载波伪随机序列组帧,得到待传输数据帧;后端处理模块,对所述待传输数据帧进行数模转换、射频调制处理并发送。 The present invention also provides a digital signal transmission system based on a multi-carrier pseudo-random sequence, the system includes: a code modulation module, which encodes and modulates the data to be transmitted, and generates a data block to be transmitted; a sequence generation module, which generates the required Multi-carrier pseudo-random sequence; framing module, framing the data block to be transmitted and the selected multi-carrier pseudo-random sequence to obtain a data frame to be transmitted; the back-end processing module performs digital simulation on the data frame to be transmitted conversion, RF modulation processing and transmission. the
(三)有益效果 (3) Beneficial effects
本发明的方法和系统基于多载波伪随机序列,该序列具有良好的峰均比特性,在时域和离散傅立叶变换域均具有较好的自相关性质,可提供数字信号传输准确、可靠的信道估计;此外根据本发明方法中的最优序列选取方法,可以通过较少的搜索量快速获得实际需要性质最优的序列,搜索量仅为O(M·2N/M),M为序列分成的段数;依照本发明的方法可由二值m序列经过扩展或截断再经离散傅立叶逆变换构造多载波伪随机序列,在所有m序列集合中选取性质最优的序列,从而大大较少搜索量,亦可以得到性质较优的多载波伪随机序列,同时继承m序列的多种优点;使用本发明方法获得的多载波伪随机序列可应用到多种传输系统中作为训练序列,提供可靠精确的参数估计。 The method and system of the present invention are based on a multi-carrier pseudo-random sequence, which has good peak-to-average ratio characteristics, and has good autocorrelation properties in the time domain and discrete Fourier transform domain, and can provide accurate and reliable channels for digital signal transmission Estimate; In addition, according to the optimal sequence selection method in the method of the present invention, the sequence with the optimal nature of actual needs can be obtained quickly with less search amount, and the search amount is only O(M 2 N/M ), M is the sequence is divided into the number of segments; according to the method of the present invention, the binary m-sequence can be extended or truncated and then through discrete Fourier inverse transform to construct a multi-carrier pseudo-random sequence, and the sequence with the best properties can be selected in all m-sequence sets, thereby greatly reducing the amount of search. It is also possible to obtain a multi-carrier pseudo-random sequence with better properties, while inheriting the multiple advantages of the m-sequence; the multi-carrier pseudo-random sequence obtained using the method of the present invention can be applied to various transmission systems as a training sequence, providing reliable and accurate parameters estimate.
附图说明 Description of drawings
图1为依照本发明一种实施方式的基于多载波伪随机序列的数字信号传输方法流程图; Fig. 1 is a flow chart of a digital signal transmission method based on a multi-carrier pseudo-random sequence according to an embodiment of the present invention;
图2为依照本发明一种实施方式的基于多载波伪随机序列的数字信号传输方法中的多载波伪随机序列的分段最优选取方法流程图; Fig. 2 is according to the flow chart of the subsection optimal selection method of the multi-carrier pseudo-random sequence in the digital signal transmission method based on the multi-carrier pseudo-random sequence according to an embodiment of the present invention;
图3为依照本发明一种实施方式的基于多载波伪随机序列的数字信号传输方法中的基于m序列集的多载波伪随机序列构造及选取方法流程图; Fig. 3 is the flow chart of the multi-carrier pseudo-random sequence construction and selection method based on the m-sequence set in the digital signal transmission method based on the multi-carrier pseudo-random sequence according to an embodiment of the present invention;
图4为依照本发明一种实施方式的基于多载波伪随机序列的数字信号传输系统结构图; Fig. 4 is a structural diagram of a digital signal transmission system based on a multi-carrier pseudo-random sequence according to an embodiment of the present invention;
图5(a)为实施例1中分段最优选取方法得到的功率峰均比最优 准则下长度为256的PN-MC序列时域模值;
Fig. 5 (a) is the PN-MC sequence time domain modulus value that length is 256 under the power peak-to-average ratio optimal criterion that subsection optimal selection method obtains in
图5(b)为实施例1中分段最优选取方法得到的功率峰均比最优准则下长度为256的PN-MC序列非周期自相关结果;
Fig. 5 (b) is the PN-MC sequence aperiodic autocorrelation result of 256 lengths under the power peak-to-average ratio optimal criterion obtained by subsection optimal selection method in
图5(c)为实施例1中分段最优选取方法得到的功率峰均比最优准则下长度为256的PN-MC序列离散傅立叶变换的非周期自相关结果;
Fig. 5 (c) is the aperiodic autocorrelation result of the PN-MC sequence discrete Fourier transform of 256 lengths under the power peak-to-average ratio optimal criterion obtained by subsection optimal selection method in
图6为实施例1的信号帧结构示意图;
Fig. 6 is the signal frame structure schematic diagram of
图7(a)为实施例2中功率峰均比最优准则下长度为512的PN-MC序列时域模值;
Fig. 7 (a) is the PN-MC sequence time domain modulus value of length 512 under the optimal criterion of power peak-to-average ratio in
图7(b)为实施例2中功率峰均比最优准则下长度为512的PN-MC序列非周期自相关结果;
Fig. 7 (b) is the aperiodic autocorrelation result of the PN-MC sequence that length is 512 under the optimum criterion of power peak-to-average ratio in
图7(c)为实施例2中功率峰均比最优准则下长度为512的PN-MC序列离散傅立叶变换的非周期自相关结果;
Fig. 7 (c) is the aperiodic autocorrelation result of the PN-MC sequence discrete Fourier transform of length 512 under the power peak-to-average ratio optimal criterion in
图8(a)为实施例2中自相关品质部分因子最优准则下长度为128的PN-MC序列时域模值;
Fig. 8 (a) is the PN-MC sequence time domain modulus value that length is 128 under the autocorrelation quality partial factor optimal criterion in
图8(b)为实施例2中自相关品质部分因子最优准则下长度为128的PN-MC序列非周期自相关结果;
Fig. 8 (b) is the PN-MC sequence aperiodic autocorrelation result that length is 128 under the optimal criterion of autocorrelation quality partial factor in
图8(c)为实施例2中自相关品质部分因子最优准则下长度为128的PN-MC序列离散傅立叶变换的非周期自相关结果;
Fig. 8 (c) is the aperiodic autocorrelation result of the PN-MC sequence discrete Fourier transform that length is 128 under the optimum criterion of autocorrelation quality partial factor in
图8(d)为图8(b)的PN-MC序列非周期自相关结果相关峰附近局部放大的结果; Figure 8(d) is the result of local amplification near the correlation peak of the PN-MC sequence aperiodic autocorrelation result of Figure 8(b);
图9为实施例2的信号帧结构示意图;
Fig. 9 is the signal frame structure schematic diagram of
图10为实施例3的信号帧结构示意图。 FIG. 10 is a schematic diagram of a signal frame structure in Embodiment 3. the
具体实施方式 Detailed ways
本发明提出的基于多载波伪随机序列(PN-MC序列)的数字信号传输方法及系统,结合附图和实施例详细说明如下。 The digital signal transmission method and system based on the multi-carrier pseudo-random sequence (PN-MC sequence) proposed by the present invention will be described in detail in conjunction with the accompanying drawings and embodiments as follows. the
如图1所示,依照本发明一种实施方式的基于多载波伪随机序列 的数字信号传输方法,该方法包括步骤: As shown in Figure 1, according to a digital signal transmission method based on a multi-carrier pseudo-random sequence according to an embodiment of the present invention, the method includes steps:
S1.对待传输数据进行编码、调制等处理,生成待传输数据块; S1. Perform encoding, modulation and other processing on the data to be transmitted to generate data blocks to be transmitted;
待传输数据块可以是单载波数据块、多载波数据块、以及广义的数据块,即单载波数据块或多载波数据块及其保护间隔构成的数据块,还可以是一个或多个数据块的组合。 The data blocks to be transmitted can be single-carrier data blocks, multi-carrier data blocks, and generalized data blocks, that is, data blocks composed of single-carrier data blocks or multi-carrier data blocks and their guard intervals, or one or more data blocks The combination. the
S2.将待传输数据块与选定的PN-MC序列组帧,得到待传输数据帧; S2. framing the data block to be transmitted and the selected PN-MC sequence to obtain a data frame to be transmitted;
组帧的方法包括但不限于:用一个或多个PN-MC序列填充待传输数据块的保护间隔;用一个或多个PN-MC序列作为待传输数据块的前导序列。 The framing method includes but not limited to: using one or more PN-MC sequences to fill the guard interval of the data block to be transmitted; using one or more PN-MC sequences as the preamble sequence of the data block to be transmitted. the
S3.对待传输数据帧进行数模转换、射频调制等后端处理并发送。 S3. Perform back-end processing such as digital-to-analog conversion and radio frequency modulation on the data frame to be transmitted and send it. the
其中,所述的PN-MC序列为任意二值序列经过离散傅立叶逆变换得到的序列。为了通过较少的搜索量获得性质最优的PN-MC序列,如图2所示,PN-MC序列的选定方法包括步骤: Wherein, the PN-MC sequence is a sequence obtained by inverse discrete Fourier transform of any binary sequence. In order to obtain the optimal PN-MC sequence with less search volume, as shown in Figure 2, the selection method of PN-MC sequence includes steps:
S2.1令选定的PN-MC序列的长度为N,将其离散傅立叶变换分段并初始化,具体为:记PN-MC序列的离散傅立叶变换为序列C,将长度为N的序列C分成K段,依次记做C1,C2,...,CK,初始化C序列的取值全为0,优选地,C1,C2,...,CK-1长度均为L, CK长度为N-(K-1)L, 表示向下取整; S2.1 Let the length of the selected PN-MC sequence be N, segment and initialize its discrete Fourier transform, specifically: record the discrete Fourier transform of the PN-MC sequence as sequence C, and divide the sequence C of length N into The K section is denoted as C 1 , C 2 , ..., C K in turn, and the values of the initialized C sequence are all 0. Preferably, the lengths of C 1 , C 2 , ..., C K-1 are all L , The length of C K is N-(K-1)L, Indicates rounding down;
S2.2记i=1,遍历第一段序列,根据最有序列选取准则,获得待考察参数最优的第一段序列;具体为:令序列C1在{α1,α2}中取值,得到新的序列C′,将新的序列C′做N点离散傅立叶逆变换,得到PN-MC序列,根据最优序列选取准则计算该序列的待考察参数,遍历所有可能的C1,获得待考察参数最优的PN-MC序列,记录对应的序列C1,其中,1≤i≤K,|α1|=|α2|; S2.2 Record i=1, traverse the first sequence, and obtain the first sequence with the best parameters to be investigated according to the selection criterion of the most sequence; specifically: let the sequence C 1 be selected in {α 1 , α 2 } value, get a new sequence C′, and perform N-point discrete Fourier inverse transform on the new sequence C′ to obtain a PN-MC sequence, calculate the parameters to be investigated of the sequence according to the optimal sequence selection criterion, and traverse all possible C 1 , Obtain the PN-MC sequence with the optimal parameter to be investigated, and record the corresponding sequence C 1 , where, 1≤i≤K, |α 1 |=|α 2 |;
S2.3记i=i+1,对于i>1,固定前i-1段序列,遍历第i段序列, 获得待考察参数最优的第i端序列,并记录最优的待考察参数值;具体为:对于第i(i>1)段序列Ci,固定序列C1,C2,...,Ci-1,令Ci在{α1,α2}中取值,将C1,C2,...,Ci-1,Ci插入序列C构成新的序列C″,对新的序列C″做N点离散傅立叶逆变换得到PN-MC序列,根据最优序列选取准则计算该序列的待考察参数,遍历所有可能的Ci,获得待考察参数最优的PN-MC序列,记录对应的Ci以及最优的待考察参数P0; S2.3 Record i=i+1, for i>1, fix the previous i-1 segment sequence, traverse the i-th segment sequence, obtain the i-th end sequence with the optimal parameter to be investigated, and record the optimal parameter value to be investigated ; Specifically: for the i-th (i>1) segment sequence C i , fixed sequence C 1 , C 2 , ..., C i-1 , let C i take values in {α 1 , α 2 }, set C 1 , C 2 ,..., C i-1 , C i are inserted into the sequence C to form a new sequence C″, and N-point discrete Fourier inverse transform is performed on the new sequence C″ to obtain the PN-MC sequence. According to the optimal sequence Select the criteria to calculate the parameters to be investigated of the sequence, traverse all possible C i , obtain the PN-MC sequence with the optimal parameters to be investigated, and record the corresponding C i and the optimal parameter P 0 to be investigated;
S2.4依次重新遍历前i个序列并更新最优的待考察参数和对应的序列;具体为:固定C1-Ci中除Cj之外的所有序列,遍历所有可能的Cj,若得到的最优的待考察参数优于P0,则更新对应的序列Cj以及最优的待考察参数,其中,1≤j≤i; S2.4 Re-traverse the first i sequences in turn and update the optimal parameters to be investigated and the corresponding sequences; specifically: fix all sequences in C 1 -C i except C j , and traverse all possible C j , if The obtained optimal parameter to be investigated is better than P 0 , then update the corresponding sequence C j and the optimal parameter to be investigated, where 1≤j≤i;
S2.5若i=K,则执行步骤S2.6,否则返回步骤S2.3; S2.5 If i=K, execute step S2.6, otherwise return to step S2.3;
S2.6结束搜索,将当前选定的C1,C2,...,CK拼接成长度为N的二值序列,对该二值序列做N点离散傅立叶逆变换,将得到的PN-MC序列作为选定的PN-MC序列输出。 S2.6 End the search, splice the currently selected C 1 , C 2 , ..., C K into a binary sequence of length N, perform N-point discrete Fourier inverse transform on the binary sequence, and obtain the PN The -MC sequence is output as the selected PN-MC sequence.
此外,PN-MC序列还可为由m序列经扩展或截断,再经离散傅立叶逆变换得到的序列。此时,为了得到性质最优的PN-MC序列,如图3所示,PN-MC序列的选定方法包括步骤: In addition, the PN-MC sequence can also be a sequence obtained by extending or truncating the m-sequence, and then undergoing inverse discrete Fourier transform. At this time, in order to obtain the PN-MC sequence with the best properties, as shown in Figure 3, the selection method of the PN-MC sequence includes steps:
S2.1′选定PN-MC序列的长度为N,确定m序列的阶数K,满足 或 其中, 和 分别表示向下取整和向上取整; S2.1' Select the length of the PN-MC sequence as N, determine the order K of the m sequence, satisfy or in, and Indicates rounding down and rounding up, respectively;
S2.2′依次选定m序列的生成多项式和初始相位,生成一个m序列; S2.2' Select the generator polynomial and the initial phase of the m-sequence in turn to generate an m-sequence;
S2.3′将生成的m序列映射为二相相移键控符号,并经过扩展或截断,构成长度为N的符号序列; S2.3' maps the generated m-sequence to binary phase-shift keying symbols, and expands or truncates them to form a symbol sequence with a length of N;
扩展包括但不限于:循环扩展,即将序列的末尾若干位符号复制到序列之前;或补零扩展,即在序列的前端和末尾分别补充若干个零符号;或按照已知图案在序列中插入零符号实现扩展。 Extensions include, but are not limited to: cyclic extension, that is, copying a number of bit symbols at the end of the sequence to the front of the sequence; or zero-padding extension, that is, adding several zero symbols at the front and end of the sequence; or inserting zeros into the sequence according to a known pattern Symbol implementation extension. the
S2.4′对该符号序列做N点离散傅立叶逆变换,得到长度为N的PN-MC序列; S2.4'does N-point discrete Fourier inverse transform to the symbol sequence to obtain a PN-MC sequence with a length of N;
S2.5′根据最优序列选取准则,计算步骤S2.4′得到的PN-MC序列的待考察参数,记录PN-MC序列及待考察参数值; S2.5'according to the optimal sequence selection criterion, calculate the parameters to be investigated of the PN-MC sequence obtained in step S2.4', record the PN-MC sequence and the parameter value to be investigated;
S2.6′判断是否已遍历所有生成多项式及所有初始相位,若已遍历,则执行步骤S2.7′,否则,返回执行步骤S2.2′; S2.6'judging whether all generator polynomials and all initial phases have been traversed, if so, execute step S2.7', otherwise, return to execute step S2.2';
S2.7′结束搜索,根据最优序列选取准则,从所有得到的待考察参数中选取最优的待考察参数,并将其对应的多载波伪随机序列作为选定的多载波伪随机序列输出。 S2.7'End the search, select the optimal parameter to be investigated from all obtained parameters to be investigated according to the optimal sequence selection criterion, and output the corresponding multi-carrier pseudo-random sequence as the selected multi-carrier pseudo-random sequence . the
上述两种PN-MC序列选定方法中所提及的最优序列选取准则包括但不限于: The optimal sequence selection criteria mentioned in the above two PN-MC sequence selection methods include but are not limited to:
功率峰均比最小准则,待考察参数为序列的功率峰均比(Peak-to-Average Power Ratio,PAPR),序列c(n)的功率峰均比PAPR为: The power peak-to-average ratio minimum criterion, the parameter to be investigated is the peak-to-average power ratio (Peak-to-Average Power Ratio, PAPR) of the sequence, and the power peak-to-average ratio PAPR of the sequence c(n) is:
非周期自相关的部分品质因子最大准则,待考察参数为序列的非周期自相关的部分品质因子(Partial Merit Factor)Fpart,序列c(n)的非周期自相关的部分品质因子Fpart,为: The maximum criterion of the partial merit factor of aperiodic autocorrelation, the parameter to be investigated is the partial merit factor (Partial Merit Factor) F part of the aperiodic autocorrelation of the sequence, the partial merit factor F part of the aperiodic autocorrelation of the sequence c(n), for:
其中,R(n)是序列c(n)的非周期自相关,且 where R(n) is the aperiodic autocorrelation of the sequence c(n), and
离散傅立叶变换的非周期自相关品质因子最大准则,待考察参数为序列的非周期自相关的品质因子,序列c(n)的非周期自相关的品质因子MF为: The maximum criterion of the aperiodic autocorrelation quality factor of the discrete Fourier transform, the parameter to be investigated is the quality factor of the aperiodic autocorrelation of the sequence, and the quality factor MF of the aperiodic autocorrelation of the sequence c(n) is:
其中,R(n)是序列c(n)的非周期自相关; Among them, R(n) is the aperiodic autocorrelation of sequence c(n);
或是兼顾上述三种准则,在功率峰均比、自相关部分品质因子、离散傅立叶变换自相关品质因子三个参数中折中: Or take into account the above three criteria, and compromise among the three parameters of power peak-to-average ratio, autocorrelation part quality factor, and discrete Fourier transform autocorrelation quality factor:
非周期自相关部分品质因子与功率峰均比比值最大准则,待考察参数为:P=Fpart/PAPR;或 Aperiodic autocorrelation partial quality factor and power peak-to-average ratio maximum criterion, the parameter to be investigated is: P=F part /PAPR; or
离散傅立叶变换的非周期自相关品质因子与功率峰均比比值最大准则,待考察参数为:P=MF/PAPR;或 The maximum criterion of the aperiodic autocorrelation quality factor and power peak-to-average ratio of discrete Fourier transform, the parameters to be investigated are: P=MF/PAPR; or
非周期自相关部分品质因子与离散傅立叶变换的非周期自相关品质因子乘积最大准则,待考察参数为:P=Fpart·MF;或 The maximum criterion for the product of the non-periodic autocorrelation part quality factor and the non-periodic autocorrelation quality factor of the discrete Fourier transform, the parameters to be investigated are: P=F part MF; or
功率峰均比、非周期自相关部分品质因子、以及离散傅立叶变换的非周期自相关品质因子折中准则,待考察参数为P=Fpart·MF/PAPR,选取P最大的多载波伪随机序列。 Power peak-to-average ratio, aperiodic autocorrelation partial quality factor, and discrete Fourier transform aperiodic autocorrelation quality factor compromise criterion, the parameter to be investigated is P=F part MF/PAPR, and the multi-carrier pseudo-random sequence with the largest P is selected .
如图4所示,依照本发明一种实施方式的基于多载波伪随机序列的数字信号传输系统,该系统包括:编码调制模块,对待传输数据进行编码、调制等处理,生成待传输数据块;序列生成模块,生成所需要的多载波伪随机序列;组帧模块,将待传输数据块与选定的PN-MC序列组帧,得到待传输数据帧;后处理模块,对待传输数据帧进行数模转换、射频调制等后端处理并发送。 As shown in Figure 4, according to a digital signal transmission system based on a multi-carrier pseudo-random sequence according to an embodiment of the present invention, the system includes: a coding and modulation module, which performs coding, modulation and other processing on the data to be transmitted to generate a data block to be transmitted; The sequence generation module generates the required multi-carrier pseudo-random sequence; the framing module frames the data block to be transmitted with the selected PN-MC sequence to obtain the data frame to be transmitted; the post-processing module performs data processing on the data frame to be transmitted Analog conversion, radio frequency modulation and other back-end processing and transmission. the
实施例1 Example 1
本实施例以长度为256的PN-MC为例,具体说明本发明方法中PN-MC序列的选定方法,以及基于最优PN-MC序列的数字信号传输方法。该PN-MC序列由取值为{±1}的任意二值序列经过离散傅立叶逆变换得到,以时域功率峰均比准则作为最优序列选取准则,具体步骤为: This embodiment takes the PN-MC with a length of 256 as an example to specifically describe the selection method of the PN-MC sequence in the method of the present invention and the digital signal transmission method based on the optimal PN-MC sequence. The PN-MC sequence is obtained by inverse discrete Fourier transform of any binary sequence whose value is {±1}, and the time-domain power peak-to-average ratio criterion is used as the optimal sequence selection criterion. The specific steps are as follows:
S101.选定PN-MC序列长度N=256,将PN-MC的离散傅里叶变换C分成相等的16段,记做C1,C2,......,C16,每段长度L=16,初始化C序列的所有元素取值为0; S101. Select PN-MC sequence length N=256, divide the discrete Fourier transform C of PN-MC into 16 equal segments, denote as C 1 , C 2 ,..., C 16 , each segment Length L=16, initialize all elements of the C sequence to be 0;
S102.记i=1,令序列C1在{±1}中取值,得到新的序列C′,将序列C′做256点离散傅立叶逆变换,得到PN-MC序列,计算该PN-MC序列的功率峰均比,遍历所有可能的C1,寻找到功率峰均比最小的PN-MC序列,记录对应的序列C1; S102. Note i=1, let the sequence C 1 take a value in {±1}, obtain a new sequence C', perform 256-point discrete Fourier inverse transform on the sequence C', obtain a PN-MC sequence, and calculate the PN-MC The power peak-to-average ratio of the sequence, traverse all possible C 1 , find the PN-MC sequence with the smallest power peak-to-average ratio, and record the corresponding sequence C 1 ;
S103.对于i>1,对于第i段序列Ci,固定序列C1,...,Ci-1,令序列Ci在{±1}中取值,将C1,...,Ci-1,Ci插入C构成新的序列C″,再经过256点离散傅立叶逆变换得到PN-MC序列,计算该PN-MC序列的功率峰均比,遍历所有可能的Ci,搜索到功率峰均比最小的PN-MC序列,记录对应的序列Ci和最小功率峰均比PAPR0; S103. For i>1, for the i-th sequence C i , fix the sequence C 1 , ..., C i-1 , let the sequence C i take a value in {±1}, set C 1 , ..., C i-1 , C i is inserted into C to form a new sequence C″, and then the PN-MC sequence is obtained through 256-point discrete Fourier inverse transform, and the peak-to-average power ratio of the PN-MC sequence is calculated, and all possible C i are traversed to search To the PN-MC sequence with the smallest power peak-to-average ratio, record the corresponding sequence C i and the smallest power peak-to-average ratio PAPR 0 ;
S104.依次重新遍历前i个序列并更新。固定C1~Ci中除Cj(1≤j≤i)之外的所有序列,遍历Cj所有可能的取值,如果得到的最优参数值优于P0,则更新对应的序列Cj和最优参数值P0; S104. Re-traverse and update the previous i sequences in sequence. Fix all sequences except C j (1≤j≤i) in C 1 ~C i , traverse all possible values of C j , if the obtained optimal parameter value is better than P 0 , update the corresponding sequence C j and the optimal parameter value P 0 ;
S105.如果i=16,则执行步骤S106,否则令i=i+1返回步骤S103; S105. If i=16, then execute step S106, otherwise make i=i+1 return to step S103;
S106.结束搜索,输出最佳PN-MC序列。将当前搜索到的C1,C2,......,CK拼接成长度为256的二值序列,做256点离散傅立叶逆变换,作为最佳PN-MC序列输出。 S106. End the search and output the best PN-MC sequence. Concatenate the currently searched C 1 , C 2 ,..., C K into a binary sequence with a length of 256, perform 256-point discrete Fourier inverse transform, and output it as the optimal PN-MC sequence.
通过上述分段最优选取法得到的长度为256的PN-MC序列如表1所示,其时域模值如图5(a)所示,非周期自相关结果如图5(b)所示,离散傅立叶变换的非周期自相关结果如图5(c)所示。利用同样的方法可以得到长度为128和192的PN-MC序列,其结果一并列在表1中。 The PN-MC sequence with a length of 256 obtained by the above segmental optimal selection method is shown in Table 1, its time domain modulus is shown in Figure 5(a), and the aperiodic autocorrelation result is shown in Figure 5(b) , the aperiodic autocorrelation result of discrete Fourier transform is shown in Fig. 5(c). Using the same method, PN-MC sequences with lengths of 128 and 192 can be obtained, and the results are listed in Table 1 together. the
表1分段最优选取法得到的功率峰均比最低的PN-MC序列 Table 1 The PN-MC sequence with the lowest power peak-to-average ratio obtained by the subsection optimal selection method
[0118] [0118]
应用上述功率峰均比最优的PN-MC序列的数字信号传输方法,具体步骤为: Apply the digital signal transmission method of the PN-MC sequence with the optimal power peak-to-average ratio above, and the specific steps are:
S1.将待传输数据经过编码,星座映射,生成单载波数据块; S1. Encode the data to be transmitted, map the constellation, and generate a single carrier data block;
S2.使用1个长度为512的功率峰均比最优的PN-MC序列插入单载波数据块的保护间隔,形成训练序列填充保护间隔的信号帧,信号帧结构如图6所示; S2. Use a PN-MC sequence with the optimal power peak-to-average ratio of 512 in length to insert the guard interval of the single-carrier data block to form a signal frame in which the training sequence fills the guard interval. The signal frame structure is shown in Figure 6;
S3.将步骤S2中的信号帧进行后处理并发送出去。 S3. Post-processing the signal frame in step S2 and sending it out. the
实施例2 Example 2
此实施例以长度为256的PN-MC序列为例,具体说明离散傅立叶变换的自相关品质因子最优准则下的PN-MC序列的构造及选定方法,以及基于离散傅立叶变换的自相关品质因子最优PN-MC序列的数字信号传输方法。离散傅立叶变换的自相关品质因子最优准则下的PN-MC选定方法具体步骤为: This embodiment takes the PN-MC sequence with a length of 256 as an example to specifically illustrate the construction and selection method of the PN-MC sequence under the optimal criterion of the autocorrelation quality factor of the discrete Fourier transform, and the autocorrelation quality based on the discrete Fourier transform A digital signal transmission method for factor-optimal PN-MC sequences. The specific steps of the PN-MC selection method under the optimal criterion of the autocorrelation quality factor of the discrete Fourier transform are as follows:
S201.选定PN-MC序列的长度为256,m序列的阶数为8; S201. The length of the selected PN-MC sequence is 256, and the order of the m sequence is 8;
S202.选定8阶m序列生的成多项式和初始相位,8阶m序列共有16种生成多项式和255种初始相位,根据生成多项式和初始相位构造长度为255的m序列{PN(k)}0 254; S202. Select the generator polynomial and initial phase generated by the 8th-order m-sequence. There are 16 generator polynomials and 255 initial phases in the 8th-order m-sequence. According to the generator polynomial and the initial phase, construct an m-sequence {PN(k)} with a length of 255 0 254 ;
S203.m序列经过二相相移键控调制(BPSK),并经过1位循环扩展构成长度为256的序列{C(k)}0 255; S203.m sequence undergoes binary phase shift keying modulation (BPSK), and forms a sequence {C(k)} 0 255 with a length of 256 through 1-bit cyclic extension;
S204.{C(k)}0 255经过256点离散傅立叶逆变换得到序列PN-MC序 列{C(n)}0 255; S204.{C(k)} 0 255 obtains the sequence PN-MC sequence {C(n)} 0 255 through 256 discrete Fourier inverse transforms;
c(n)=IDFT256(C(k)),n=0,1,...,255 c(n)=IDFT 256 (C(k)), n=0,1,...,255
其中IDFT256(·)表示256点离散傅立叶逆变换。 Among them, IDFT 256 (·) represents the 256-point discrete inverse Fourier transform.
S105.计算PN-MC序列的离散傅立叶变换c(n)的非周期自相关; S105. Calculate the aperiodic autocorrelation of the discrete Fourier transform c (n) of the PN-MC sequence;
由R(n)可计算序列c(n)的自相关品质因子, The autocorrelation quality factor of sequence c(n) can be calculated from R(n),
S206.判断当前是否已经遍历所有生成多项式下及所有初始相位,如果没有遍历,则返回S202,如果已经遍历,则跳到S207; S206. Judging whether all generating polynomials and all initial phases have been traversed currently, if not traversed, return to S202, if traversed, then skip to S207;
S207.选取离散傅立叶变换的自相关品质因子最大的PN-MC序列,作为离散傅立叶变换的自相关品质因子最优准则下的最佳序列并输出。 S207. Selecting the PN-MC sequence with the largest autocorrelation quality factor of the discrete Fourier transform as an optimal sequence under the optimal criterion of the autocorrelation quality factor of the discrete Fourier transform and outputting it. the
按照上述步骤选定的长度为256的最佳PN-MC序列对应m序列有两个,如表2所示。表2离散傅立叶变换自相关品质因子最优的PN-MC序列 According to the above steps, there are two optimal PN-MC sequences with a length of 256 corresponding to m sequences, as shown in Table 2. Table 2 PN-MC sequence with optimal quality factor of discrete Fourier transform autocorrelation
表3功率峰均比最优的PN-MC序列 Table 3 PN-MC sequence with optimal power peak-to-average ratio
表4自相关部分品质因子最优的PN-MC序列 Table 4 PN-MC sequence with optimal quality factor of autocorrelation part
对比表1和表3可知,局限于m序列搜索的结果比在所有可能的序列中搜索得到的结果要差一些,但是搜索量更小,同时可以继承m序列的一些优良性质。 Comparing Table 1 and Table 3, it can be seen that the search results limited to m-sequences are worse than those obtained in all possible sequences, but the search volume is smaller, and some excellent properties of m-sequences can be inherited. the
其中,表3中长度为512的最佳PN-MC序列时域模值,非周期自相关和离散傅立叶变换的非周期自相关分别如图7(a)-7(c)所示。 Among them, the optimal PN-MC sequence time-domain modulus with a length of 512 in Table 3, the aperiodic autocorrelation and the aperiodic autocorrelation of the discrete Fourier transform are shown in Figure 7(a)-7(c) respectively. the
表4中长度为128的最佳PN-MC序列时域模值,非周期自相关,离散傅立叶变换的非周期自相关,以及非周期自相关结果相关峰附近局部放大的结果分别如图8(a)-8(c)所示。 The best PN-MC sequence time-domain modulus, aperiodic autocorrelation, discrete Fourier transform aperiodic autocorrelation, and aperiodic autocorrelation results of local amplification near the peak of the aperiodic autocorrelation results are shown in Figure 8 ( a)-8(c). the
应用上述离散傅立叶变换的自相关品质因子最优的PN-MC的数字信号传输方法具体步骤为: The specific steps of the digital signal transmission method of the PN-MC with the optimal autocorrelation quality factor of the above-mentioned discrete Fourier transform are as follows:
S1.将待传输数据经过编码,星座映射,OFDM调制,生成OFDM 数据块; S1. Coding the data to be transmitted, constellation mapping, OFDM modulation, and generating OFDM data blocks;
S2.使用2个相同的长度为256的最佳PN-MC序列插入OFDM数据块的保护间隔,形成训练序列填充保护间隔的信号帧,信号帧结构如图9所示;
S2.
S3.将S2中的信号帧进行后处理并发送出去。 S3. Post-processing the signal frame in S2 and sending it out. the
实施例3 Example 3
此实施例以长度为420的PN-MC为例,具体说明说明多个准则联合考虑时的最佳序列选定方法。比如希望PN-MC序列时域功率峰均比低且离散傅立叶变换的自相关性好,可以定义待考察参数A=MF/PAPR,选取A最大的PN-MC作为最佳序列;或者希望PN-MC序列在时域和离散傅立叶变换域都具有良好的自相关性,可以定义待考察参数B=MF·Fpart,选取B最大的PN-MC序列作为最佳序列。下面以时域功率峰均比低且离散傅立叶变换自相关性好作为最佳序列选取准则,由m序列补零扩展构建长度为420的PN-MC序列,步骤具体为: In this embodiment, the PN-MC with a length of 420 is taken as an example to specifically illustrate the optimal sequence selection method when multiple criteria are jointly considered. For example, it is hoped that the time-domain power peak-to-average ratio of the PN-MC sequence is low and the autocorrelation of the discrete Fourier transform is good. You can define the parameter to be investigated A=MF/PAPR, and select the PN-MC with the largest A as the optimal sequence; or hope that the PN- The MC sequence has good autocorrelation in both the time domain and the discrete Fourier transform domain. The parameter to be investigated can be defined as B=MF·F part , and the PN-MC sequence with the largest B is selected as the optimal sequence. In the following, low peak-to-average ratio of time-domain power and good autocorrelation of discrete Fourier transform are used as the optimal sequence selection criterion, and a PN-MC sequence with a length of 420 is constructed by m-sequence zero-padded expansion. The steps are as follows:
S301.选定PN-MC序列的长度为420,选择m序列的阶数为8; S301. The length of the selected PN-MC sequence is 420, and the order of the selected m sequence is 8;
S302.依次选定m序列的生成多项式和初始相位;根据生成多项式和初始相位构造长度为255的m序列{PN(k)}0 254; S302. select generator polynomial and initial phase of m sequence successively; According to generator polynomial and initial phase construction length is the m sequence {PN(k)} 0 254 of 255;
S303.m序列经过BPSK调制,再在前端和末尾分别补充82和83个0符号,得到长度为420的序列{C(k)}0 419; The S303.m sequence is modulated by BPSK, and then 82 and 83 0 symbols are supplemented at the front end and the end respectively to obtain a sequence {C(k)} 0 419 with a length of 420;
S304.{C(k)}0 419经过420点离散傅立叶逆变换得到序列{C(n)}0 419; S304. {C(k)} 0 419 obtains the sequence {C(n)} 0 419 through 420 inverse discrete Fourier transforms;
c(n)=IDFT420(C(k)),n=0,1,...,419 c(n)=IDFT 420 (C(k)), n=0, 1, . . . , 419
其中IDFT420(·)表示420点离散傅立叶逆变换。 Wherein IDFT 420 (·) represents 420-point discrete Fourier inverse transform.
S305.计算序列c(n)的功率峰均比PAPR和序列C(k)的非周期自相关的品质因子MF,定义A=MF/PAPR,计算PN-MC的A值; S305. Calculate the power peak-to-average ratio PAPR of sequence c (n) and the quality factor MF of the aperiodic autocorrelation of sequence C (k), define A=MF/PAPR, calculate the A value of PN-MC;
S306.判断当前是否已经遍历8阶m序列的所有生成多项式及所有初始相位,如果已经遍历,则跳到步骤307,否则返回步骤302; S306. Judging whether all generator polynomials and all initial phases of the 8th-order m-sequence have been traversed at present, if traversed, then jump to step 307, otherwise return to step 302;
S307.选取参数A最大的PN-MC序列,作为本实施最优准则下的最佳序列并输出。 S307. Select the PN-MC sequence with the largest parameter A as the optimal sequence under the optimal criterion of this implementation and output it. the
按照上述步骤搜索到的长度为420的最佳PN-MC序列共有两个,对应m序列的生成多项式和初始相位分别为x7+x4+x2+1,11101001,x7+x6+x4+x2,11111000,其功率峰均比为2.6797,离散傅立叶变换的自相关品质因子为3.5685。 According to the above steps, there are two optimal PN-MC sequences with a length of 420, and the generator polynomials and initial phases corresponding to the m sequences are x 7 +x 4 +x 2 +1, 11101001, x 7 +x 6 + x 4 +x 2 , 11111000, its power peak-to-average ratio is 2.6797, and the autocorrelation quality factor of discrete Fourier transform is 3.5685.
应用上述最优的PN-MC的数字信号传输方法具体步骤为: The specific steps of the digital signal transmission method using the above-mentioned optimal PN-MC are as follows:
S1.将待传输数据经过编码,星座映射,OFDM调制,生成OFDM数据块,并将OFDM数据块的最后L个符号复制到数据块之前,构成CP-OFDM(循环前缀OFDM)数据块; S1. The data to be transmitted is encoded, constellation mapped, and OFDM modulated to generate an OFDM data block, and the last L symbols of the OFDM data block are copied before the data block to form a CP-OFDM (cyclic prefix OFDM) data block;
S2.使用4个相同的长度为420的自相关部分品质最优的PN-MC序列插入M个CP-OFDM数据块之前,作为信号帧的前导序列,信号帧结构如图10所示; S2. Use 4 identical PN-MC sequences with the best quality of the autocorrelation part whose length is 420 to be inserted before M CP-OFDM data blocks, as the preamble sequence of the signal frame, and the signal frame structure is as shown in Figure 10;
S3.将步骤S2中的信号帧进行后处理并发送出去。 S3. Post-processing the signal frame in step S2 and sending it out. the
实施例4 Example 4
此实施例以m序列截断的方式构造长度为420的PN-MC,以时域功率峰均比低,非周期自相关部分品质因子大,且离散傅立叶变换的非周期自相关品质因子大作为最佳序列选取准则,其步骤具体为: In this embodiment, a PN-MC with a length of 420 is constructed by m-sequence truncation, and the time-domain power peak-to-average ratio is low, the quality factor of the aperiodic autocorrelation part is large, and the aperiodic autocorrelation quality factor of the discrete Fourier transform is large as the optimal The best sequence selection criteria, the steps are as follows:
S401.选定PN-MC序列的长度为420,选择m序列的阶数为9; S401. The length of the selected PN-MC sequence is 420, and the order of the selected m sequence is 9;
S402.依次选定m序列的生成多项式和初始相位;根据生成多项式和初始相位构造长度为511的m序列{PN(k)}0 510; S402. select generator polynomial and initial phase of m sequence successively; According to generator polynomial and initial phase construction length is the m sequence {PN(k)} 0 510 of 511;
S403.m序列经过BPSK调制,截取前420个符号,得到长度为420的序列{C(k)}0 419; S403.m sequence undergoes BPSK modulation, intercepts the first 420 symbols, and obtains a sequence {C(k)} 0 419 with a length of 420;
S404.{C(k)}0 419经过420点离散傅立叶逆变换得到序列{C(n)}0 419; S404. {C(k)} 0 419 obtains the sequence {C(n)} 0 419 through 420 inverse discrete Fourier transforms;
c(n)=IDFT420(C(k)),n=0,1,...,419 c(n)=IDFT 420 (C(k)), n=0, 1, . . . , 419
其中IDFT420(·)表示420点离散傅立叶逆变换。 Wherein IDFT 420 (·) represents 420-point discrete Fourier inverse transform.
S405.计算序列c(n)的功率峰均比PAPR、非周期自相关的部分品 质因子Fpart,以及C(k)的非周期自相关的品质因子MF,定义参数A=MF·Fpart/PAPR,计算PN-MC的参数A值; S405. Calculate the power peak-to-average ratio PAPR of the sequence c(n), the partial quality factor F part of the aperiodic autocorrelation, and the quality factor MF of the aperiodic autocorrelation of C(k), define the parameter A=MF·F part / PAPR, calculate the parameter A value of PN-MC;
S406.判断当前是否已经遍历9阶m序列的所有生成多项式及所有初始相位,如果已经遍历,则跳到S407,否则返回S402; S406. Judging whether all generator polynomials and all initial phases of the 9th-order m-sequence have been traversed at present, if traversed, then skip to S407, otherwise return to S402;
S407.选取参数A最大的PN-MC序列,作为本实施最优准则下的最佳序列并输出。 S407. Select the PN-MC sequence with the largest parameter A as the optimal sequence under the optimal criterion of this implementation and output it. the
按照上述步骤搜索到的长度为420的最佳PN-MC序列对应m序列的生成多项式为x8+x7+x5+x4+x2+x1,初始相位为100100001,其功率峰均比为2.3525,自相关部分品质因子为996.2265,离散傅立叶变换的自相关品质因子为2.6164。 The generator polynomial corresponding to the m-sequence of the optimal PN-MC sequence with a length of 420 searched according to the above steps is x 8 +x 7 +x 5 +x 4 +x 2 +x 1 , the initial phase is 100100001, and its peak-average power The ratio is 2.3525, the quality factor of autocorrelation part is 996.2265, and the quality factor of autocorrelation of discrete Fourier transform is 2.6164.
实施例5 Example 5
此实施例以在m序列中按照已知图案填充零符号的扩展方式构造长度为420的PN-MC,以时域功率峰均比最低作为最佳序列选取准则,其步骤具体为: In this embodiment, a PN-MC with a length of 420 is constructed by filling zero symbols in the m-sequence according to a known pattern, and the minimum peak-to-average power ratio in the time domain is used as the optimal sequence selection criterion. The steps are as follows:
S501.选定PN-MC序列的长度为420,选择m序列的阶数为8; S501. The length of the selected PN-MC sequence is 420, and the order of the selected m sequence is 8;
S502.依次选定m序列的生成多项式和初始相位,根据生成多项式和初始相位构造长度为255的m序列{PN(k)}0 254; S502. Select the generator polynomial and initial phase of m sequence successively, according to generator polynomial and initial phase construction length be the m sequence {PN (k)} 0 254 of 255;
S503.m序列经过BPSK调制,取定一个已知图案,将BPSK调制后的m序列中插入到长度为420的空符号中,得到长度为420的序列{C(k)}0 419,即 S503. After the m sequence is BPSK modulated, a known pattern is selected, and the m sequence after BPSK modulation is inserted into the empty symbol with a length of 420 to obtain a sequence {C(k)} 0 419 with a length of 420, namely
其中S为m序列插入到空符号的下标集合,记S-1(k)=n满足k=S(n)。 Wherein S is a set of subscripts inserted into an empty symbol by the m sequence, and S −1 (k)=n satisfies k=S(n).
S504.{C(k)}0 419经过420点离散傅立叶逆变换得到序列{c(n)}0 419; S504. {C(k)} 0 419 obtains the sequence {c(n)} 0 419 through 420 inverse discrete Fourier transforms;
c(n)=IDFT420(C(k)),n=0,1,...,419 c(n)=IDFT 420 (C(k)), n=0, 1, . . . , 419
其中IDFT420(·)表示420点离散傅立叶逆变换。 Wherein IDFT 420 (·) represents 420-point discrete Fourier inverse transform.
S505.计算序列c(n)的功率峰均比PAPR,记录下c(n)和对应的 PAPR; S505. Calculate the power peak-to-average ratio PAPR of the sequence c(n), record c(n) and the corresponding PAPR;
S506.判断当前是否已经遍历8阶m序列的所有生成多项式及所有初始相位,如果已经遍历,则跳到步骤607,否则返回步骤602; S506. Judging whether all generator polynomials and all initial phases of the 8th-order m-sequence have been traversed at present, if traversed, then jump to step 607, otherwise return to step 602;
S507.选取PAPR最小的PN-MC序列,作为本实施最优准则下的最佳序列并输出。 S507. Select the PN-MC sequence with the smallest PAPR as the optimal sequence under the optimal criterion of this implementation and output it. the
以上实施方式仅用于说明本发明,而并非对本发明的限制,有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型,因此所有等同的技术方案也属于本发明的范畴,本发明的专利保护范围应由权利要求限定。 The above embodiments are only used to illustrate the present invention, but not to limit the present invention. Those of ordinary skill in the relevant technical field can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, all Equivalent technical solutions also belong to the category of the present invention, and the scope of patent protection of the present invention should be defined by the claims. the
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010129099 CN101827059B (en) | 2010-03-18 | 2010-03-18 | Digital signal transmission method and system based on multi-carrier pseudo-random sequence |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010129099 CN101827059B (en) | 2010-03-18 | 2010-03-18 | Digital signal transmission method and system based on multi-carrier pseudo-random sequence |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101827059A CN101827059A (en) | 2010-09-08 |
CN101827059B true CN101827059B (en) | 2013-01-30 |
Family
ID=42690772
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201010129099 Expired - Fee Related CN101827059B (en) | 2010-03-18 | 2010-03-18 | Digital signal transmission method and system based on multi-carrier pseudo-random sequence |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101827059B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103763084A (en) * | 2014-01-13 | 2014-04-30 | 宁波大学 | Anti-fading wireless signal transmission method for digital broadcast single frequency network |
EP3282606B1 (en) * | 2015-04-09 | 2020-08-19 | Mitsubishi Electric Corporation | Transmitter and receiver |
CN107846376B (en) * | 2017-12-20 | 2020-05-15 | 四川九洲电器集团有限责任公司 | Wireless communication frame synchronization method and system based on pseudo-random sequence |
CN115378771A (en) * | 2021-05-21 | 2022-11-22 | 中兴通讯股份有限公司 | Data transmission method and device, electronic equipment and storage medium |
CN113315542B (en) * | 2021-06-10 | 2022-07-22 | 恒盟海外科技有限公司 | Pseudo-random phase sequence spread spectrum communication physical layer system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1599002A1 (en) * | 2000-04-26 | 2005-11-23 | Alcatel | Method to generate a pseudo random sequence of multi carrier data symbols, and related transmitter and receiver |
CN101272368A (en) * | 2007-03-19 | 2008-09-24 | 中兴通讯股份有限公司 | Method and device for stacking pseudorandom sequence on OFDM signal |
CN101364831A (en) * | 2007-08-09 | 2009-02-11 | 清华大学 | Channel Estimation Method |
CN101527596A (en) * | 2008-03-07 | 2009-09-09 | 索尼株式会社 | Wireless system of novel front synchronization code using emergency frames |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7860146B2 (en) * | 2006-07-06 | 2010-12-28 | Gigle Networks, Inc. | Adaptative multi-carrier code division multiple access |
-
2010
- 2010-03-18 CN CN 201010129099 patent/CN101827059B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1599002A1 (en) * | 2000-04-26 | 2005-11-23 | Alcatel | Method to generate a pseudo random sequence of multi carrier data symbols, and related transmitter and receiver |
CN101272368A (en) * | 2007-03-19 | 2008-09-24 | 中兴通讯股份有限公司 | Method and device for stacking pseudorandom sequence on OFDM signal |
CN101364831A (en) * | 2007-08-09 | 2009-02-11 | 清华大学 | Channel Estimation Method |
CN101527596A (en) * | 2008-03-07 | 2009-09-09 | 索尼株式会社 | Wireless system of novel front synchronization code using emergency frames |
Also Published As
Publication number | Publication date |
---|---|
CN101827059A (en) | 2010-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11190379B2 (en) | Data modulation schemes based on the Zak transform | |
JP4832525B2 (en) | Apparatus and method for transferring data using a plurality of carrier waves | |
KR102196222B1 (en) | Method for generating preamble symbol, method for receiving preamble symbol, method for generating frequency domain symbol, and apparatuses | |
CN101641925B (en) | Method for setting cyclic shift considering frequency offset | |
KR101640595B1 (en) | Method and Apparatus for Generating a Preamble for Use in Cable Transmission Systems | |
KR101618125B1 (en) | Method and apparatus of generating signals for initial ranging in ofdma system | |
TWI339037B (en) | ||
US11075681B2 (en) | Communication system and method using layered construction of arbitrary unitary matrices | |
CN101827059B (en) | Digital signal transmission method and system based on multi-carrier pseudo-random sequence | |
JP3527652B2 (en) | Information encoding method | |
US7948866B2 (en) | Low complexity design of primary synchronization sequence for OFDMA | |
TW200414731A (en) | System and method of protecting and transmitting side information for multicarrier communication systems with reduced peak-to-average power ratio | |
US8611440B2 (en) | Systems and methods for generating sequences that are nearest to a set of sequences with minimum average cross-correlation | |
CN101682364A (en) | Systems and methods for designing a sequence for code modulation of data and channel estimation | |
US9407401B2 (en) | Method for generating a superset of quasi-orthogonal sets of sequences | |
CN105516045B (en) | A kind of OFDM training sequence structures and synchronous method | |
EP2202933B1 (en) | Technique for generating an sc-fdma signal | |
CN105024963A (en) | Frequency domain OFDM symbol generation method and preamble symbol generation method | |
CN101110809A (en) | A method for multi-carrier data transmission | |
CN101005471A (en) | Method, device and use for distributing pilot frequency channel time frequency source of multiple carrier communication system | |
CN107682296B (en) | MMSE (minimum mean square error) receiving method and device suitable for GFDM (ground fault frequency division multiplexing) system of FSC (frequency selective modulation) | |
CN101505293A (en) | Processing method and apparatus for uplink control channel data | |
CN101141801A (en) | Channel resource block mapping method and device | |
CN104253782A (en) | Residual carrier deviation and sampling deviation estimation method and compensation method | |
CN102710404A (en) | Transmission method for low transmitting power and single carrier-frequency division multiplexing access system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130130 |