CN101819160B - 一种用啁啾光栅定位碳纤维复合材料横向裂纹的方法 - Google Patents

一种用啁啾光栅定位碳纤维复合材料横向裂纹的方法 Download PDF

Info

Publication number
CN101819160B
CN101819160B CN 200910010458 CN200910010458A CN101819160B CN 101819160 B CN101819160 B CN 101819160B CN 200910010458 CN200910010458 CN 200910010458 CN 200910010458 A CN200910010458 A CN 200910010458A CN 101819160 B CN101819160 B CN 101819160B
Authority
CN
China
Prior art keywords
chirp grating
composite material
optical fiber
carbon fiber
fiber composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 200910010458
Other languages
English (en)
Other versions
CN101819160A (zh
Inventor
卢少微
王柏臣
陈平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang Institute of Aeronautical Engineering
Original Assignee
Shenyang Institute of Aeronautical Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Institute of Aeronautical Engineering filed Critical Shenyang Institute of Aeronautical Engineering
Priority to CN 200910010458 priority Critical patent/CN101819160B/zh
Publication of CN101819160A publication Critical patent/CN101819160A/zh
Application granted granted Critical
Publication of CN101819160B publication Critical patent/CN101819160B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

一种用啁啾光栅定位碳纤维复合材料横向裂纹的方法,其步骤如下:(1)制作碳纤维复合材料正交层板,其铺层次序为[0°2/90°4/0°2],将啁啾光栅传感器埋入碳纤维复合材料正交层板的0°层内,与90°层相邻。(2)恒温条件下,碳纤维复合材料试件在准静态拉伸试验中,利用光纤传感分析仪监测啁啾光栅反射光谱。(3)在坐标系中调整啁啾光栅长度与埋入前的啁啾光栅反射光谱的带宽相一致,此时啁啾光栅反射光谱中,光强下降的点对应的波长位置及波长对应的光栅位置,就是复合材料90°层内横向裂纹产生的位置。本发明方法简单,成本低廉,可以实时检测出碳纤维复合材料中的横向裂纹。

Description

一种用啁啾光栅定位碳纤维复合材料横向裂纹的方法
技术领域
本发明涉及一种无损检测方法,尤其是一种用啁啾光栅定位碳纤维复合材料横向裂纹的方法,属于材料科学领域。
背景技术
碳纤维复合材料在服役过程中易产生裂纹、纤维断裂、分层等多形式的损伤,其中非轴向层的横向裂纹是最易发生的一种损伤模式,当横向裂纹密度增加到一定程度会诱发分层等其他损伤模式的产生,最终导致结构失效。为保证结构安全,需要一种有效的结构健康监测技术,使裂纹累计在尚未达到威胁结构安全之前就能够实时监测复合材料结构的裂纹产生及扩展情况,保证其安全运行。传统复合材料无损监测方法成本较高、设备复杂且难以实现在线监测。
光纤FBG光栅因其具有直径小、柔韧易弯曲、抗电磁干扰、优良的可埋入性、波分时分复用和分布式传感等优点,成为智能材料与结构的首选传感方式。FBG光栅传感器是一种通过布拉格反射波长的移动来感应外界微小应变变化的敏感元件,具有对结构应力、应变进行高精度绝对测量和准分布式数字测量的优点。
线形啁啾光栅是非均匀光纤光栅的一种,其栅格周期沿纤芯轴向单调、连续、线性变化。一根线性啁啾光栅可看作是栅格周期各不相同的多个光栅微元相连而成,各光栅微元对不同波长的光进行选择性反射。整个光栅的反射谱可以看作各个微元反射作用的总和,表现为其反射谱具有一定的宽度。其反射谱波长与光栅位置是一一对应的,所以当光栅所处位置的应变场发生变化时,啁啾光栅反射光谱变化与光栅位置是一一对应的,啁啾光栅反射光谱可表示为沿光栅位置的函数。所以复合材料裂纹的位置和扩展可通过与啁啾光栅相对应的波长处反射光谱局部光强的下降来进行确定的。
发明内容
针对上述现有技术的不足,本发明在复合材料应力集中部位埋入啁啾光栅传感器,通过实时监测光栅反射光谱的变化情况,实现对复合材料内部裂纹的准确定位监测,从而为复合材料结构的疲劳评估和安全使用奠定了基础。
为实现上述目的,本发明采用的技术方案是:一种用啁啾光栅定位碳纤维复合材料横向裂纹的方法,其步骤如下:
(1)制作碳纤维复合材料正交层板,其铺层次序为[0°2/90°4/0°2],啁啾光栅传感器被埋入碳纤维复合材料正交层板2的0°层内,与90°层相邻。
(2)啁啾光栅传感器通过光纤和耦合器相连,然后耦合器通过光纤和宽带光源相连,耦合器通过光纤和光纤传感分析仪相连,光纤传感分析仪通过普通数据线和计算机分析系统相连。
(3)恒温条件下,碳纤维复合材料正交层板的试件在准静态拉伸试验中,利用光纤传感分析仪监测啁啾光栅反射光谱,然后输入计算机分析系统。
(4)在坐标系中调整啁啾光栅长度与埋入前的啁啾光栅反射光谱的FWQM(带宽)相一致,此时啁啾光栅反射光谱中,光强(反射率)下降的点对应的波长位置及波长对应的光栅位置,就是复合材料90°层内横向裂纹产生的位置。
本发明方法简单,成本低廉,可以实时检测出碳纤维复合材料中的横向裂纹。
附图说明
图1为本发明的工作原理简图。
具体实施方式
在图1中,符号1代表啁啾光栅传感器;符号2代表复合材料正交层板;符号3代表耦合器;符号4代表光纤;符合5代表宽带光源;符号6代表光纤传感分析仪;符号7代表计算机分析系统。
如图1所示:一种用啁啾光栅定位碳纤维复合材料横向裂纹的方法,其步骤如下:
(1)制作碳纤维复合材料正交层板2,其铺层次序为[0°2/90°4/0°2],啁啾光栅传感器1被埋入碳纤维复合材料正交层板2的0°层内,与90°层相邻。
(2)啁啾光栅传感器1通过光纤4和耦合器3相连,然后耦合器3通过光纤4和宽带光源5相连,耦合器3通过光纤4和光纤传感分析仪6相连,光纤传感分析仪6通过普通数据线和计算机分析系统7相连。
(3)恒温条件下,碳纤维复合材料正交层板2的试件在准静态拉伸试验中,利用光纤传感分析仪6监测啁啾光栅反射光谱,然后输入计算机分析系统7。
(4)在坐标系中调整啁啾光栅长度与埋入前的啁啾光栅反射光谱的FWQM(带宽)相一致,此时啁啾光栅反射光谱中,光强(反射率)下降的点对应的波长位置及波长对应的光栅位置,就是复合材料90°层内横向裂纹产生的位置。
工作原理:通过光栅位置与光栅反射光谱光强之间的对应关系,确定横向裂纹的位置。分为两个步骤:(1)首先确定光栅波长与光栅位置的函数关系。(2)从反射光谱确定波长光强的对应关系,从而确定光谱光强与光栅位置的对应关系。
光栅的反射波长为λ(z)=2Λ(z)n(z)
其中轴向应变εz,光栅周期分布Λ和平均反射指数n可由下式确定:
Λ(z)=Λ0(z)[1+εz(z)]
n ( z ) = n 0 - n 0 3 2 p 12 - v f ( p 11 + p 22 ) } ϵ z ( z )
Λ0和n0分别为埋入前光栅的起始光栅周期和起始平均反射指数。
Λ0可表示为
Λ0=Λc+ΔΛ(z-Lg/2)
Λc是光栅中心的光栅周期,ΔΛ是沿光栅长度方向的周期线性变化,Lg是光栅长度,z是沿光栅的位置。
本发明采用的啁啾光栅传感器可为标准直径(外径250μm),也可为细径52μm,光栅长度可选择15mm、30mm、45mm、60mm,反射光谱的带宽为20-40nm。
碳纤维复合材料增强体可为T300或T700,基体可为环氧、双马和聚酯树脂,其成型工艺可采用手糊成型和模压成型工艺
光纤光谱分析仪采用美国Micro optics inc生产的SI720光纤传感分析仪。它是一款大功率、高精度、高分辨率的仪器,它不仅可给出光纤光栅中心波长的变化,还可以提供光纤光栅在1520nm-1570nm范围内的反射光谱。测量功率为5HZ,测量精度为0.2pm。

Claims (1)

1.一种用啁啾光栅定位碳纤维复合材料横向裂纹的方法,其特征在于:具体步骤如下:
(1)制作碳纤维复合材料正交层板,其铺层次序为[0°2/90°4/0°2],啁啾光栅传感器被埋入碳纤维复合材料正交层板的0°层内,与90°层相邻;
(2)啁啾光栅传感器通过光纤和耦合器相连,然后耦合器通过光纤和宽带光源相连,耦合器通过光纤和光纤传感分析仪相连,光纤传感分析仪通过普通数据线和计算机分析系统相连;
(3)恒温条件下,碳纤维复合材料正交层板在准静态拉伸试验中,利用光纤传感分析仪监测啁啾光栅反射光谱,然后输入计算机分析系统;
(4)在坐标系中调整啁啾光栅长度与埋入前的啁啾光栅反射光谱的带宽相一致,此时啁啾光栅反射光谱中,光强下降的点对应的波长位置得到对应的光栅位置,该光栅位置就是碳纤维复合材料90°层内横向裂纹产生的位置。
CN 200910010458 2009-02-26 2009-02-26 一种用啁啾光栅定位碳纤维复合材料横向裂纹的方法 Expired - Fee Related CN101819160B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200910010458 CN101819160B (zh) 2009-02-26 2009-02-26 一种用啁啾光栅定位碳纤维复合材料横向裂纹的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200910010458 CN101819160B (zh) 2009-02-26 2009-02-26 一种用啁啾光栅定位碳纤维复合材料横向裂纹的方法

Publications (2)

Publication Number Publication Date
CN101819160A CN101819160A (zh) 2010-09-01
CN101819160B true CN101819160B (zh) 2012-03-21

Family

ID=42654335

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200910010458 Expired - Fee Related CN101819160B (zh) 2009-02-26 2009-02-26 一种用啁啾光栅定位碳纤维复合材料横向裂纹的方法

Country Status (1)

Country Link
CN (1) CN101819160B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109490220A (zh) * 2018-11-07 2019-03-19 河南工业大学 一种基于长啁啾光纤光栅的大型连杆断裂损伤在线检测系统及检测方法
CN114965007B (zh) * 2022-07-31 2023-01-03 西北工业大学 裂纹尖端塑性区监测装置及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1091204A (zh) * 1993-02-16 1994-08-24 西北工业大学 复合材料结构件损伤检测方法及系统
CN1134548A (zh) * 1995-10-24 1996-10-30 南京航空航天大学 二维光损伤探测显示方法及装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1091204A (zh) * 1993-02-16 1994-08-24 西北工业大学 复合材料结构件损伤检测方法及系统
CN1134548A (zh) * 1995-10-24 1996-10-30 南京航空航天大学 二维光损伤探测显示方法及装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JP特开平10-319265A 1998.12.04
JP特开平8-201609A 1996.08.09
徐迈.集成光学波导光栅研究进展.《发光学报》.2005,第26卷(第4期),415-425. *
郭团等.光纤光栅啁啾化传感研究.《光学学报》.2008,第28 卷(第5 期),828-834. *

Also Published As

Publication number Publication date
CN101819160A (zh) 2010-09-01

Similar Documents

Publication Publication Date Title
Schubel et al. Review of structural health and cure monitoring techniques for large wind turbine blades
Fan et al. Review of fiber optic sensors for corrosion monitoring in reinforced concrete
CN107036543A (zh) 一种光纤光栅应变传感器标定与疲劳检测系统
Du et al. Fundamentals and applications of optical fiber Bragg grating sensors to textile structural composites
Büyüköztürk et al. Overview of fiber optic sensors for NDT applications
DE102009025989A1 (de) Faseroptisches Mehrfachparametermesssystem und- Verfahren für ein Turbomaschinensystem
KR101465156B1 (ko) 최대 변형률 측정을 위한 fbg 센서, 제조방법 및 사용방법
Igawa et al. Distributed measurements with a long gauge FBG sensor using optical frequency domain reflectometry (1st report, system investigation using optical simulation model)
Wei et al. High pressure sensor based on fiber Bragg grating and carbon fiber laminated composite
CN101819160B (zh) 一种用啁啾光栅定位碳纤维复合材料横向裂纹的方法
CN204269265U (zh) 用于高温高压环境下的光纤光栅压力传感器
Rao et al. Structural health monitoring (SHM) using strain gauges, PVDF film and fiber bragg grating (FBG) sensors: A comparative study
Lawrence et al. Measurement of process-induced strains in composite materials using embedded fiber optic sensors
WO2009126991A1 (en) Method and system for monitoring strain in a structure using an optical fibre
US20150160082A1 (en) System and method for measuring torque
CN105547178A (zh) 一种测量混凝土结构内部变形量的fbg传感器
Juraszek Application of fiber optic FBG techniques in analysis of strain in engineering machines
Eum et al. Process/health monitoring for wind turbine blade by using FBG sensors with multiplexing techniques
CN101819166B (zh) 复合材料胶结接头脱粘扩展的啁啾光栅监测方法
US20180136017A1 (en) Integration of fiber optic sensors into sleeve
CN104777132A (zh) 基于薄包层长周期光纤光栅偏振特性的环境折射率测量方法
Zhan et al. An all-fibre multi-parameter sensor for composite structures based on a chirped fibre Bragg grating
Crossley et al. Smart Patches: Self-monitoring composite patches for the repair of aircraft
CN217059861U (zh) 一种同时监测钢筋应力与腐蚀速率的光纤传感器
Osei Monitoring of structural integrity of composite structures by embedded optical fiber sensors

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120321

Termination date: 20150226

EXPY Termination of patent right or utility model