CN101814228B - 一种水产品养殖水质无线监测系统及方法 - Google Patents

一种水产品养殖水质无线监测系统及方法 Download PDF

Info

Publication number
CN101814228B
CN101814228B CN2010101335521A CN201010133552A CN101814228B CN 101814228 B CN101814228 B CN 101814228B CN 2010101335521 A CN2010101335521 A CN 2010101335521A CN 201010133552 A CN201010133552 A CN 201010133552A CN 101814228 B CN101814228 B CN 101814228B
Authority
CN
China
Prior art keywords
sensor
data
early warning
microprocessor
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2010101335521A
Other languages
English (en)
Other versions
CN101814228A (zh
Inventor
李道亮
李飞飞
马道坤
丁启胜
赵霖林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Agricultural University
Original Assignee
China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Agricultural University filed Critical China Agricultural University
Priority to CN2010101335521A priority Critical patent/CN101814228B/zh
Publication of CN101814228A publication Critical patent/CN101814228A/zh
Application granted granted Critical
Publication of CN101814228B publication Critical patent/CN101814228B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02B60/50

Landscapes

  • Farming Of Fish And Shellfish (AREA)

Abstract

本发明涉及一种养殖水质无线采集装置,该装置包括传感器组、微处理器和无线通信模块。基于所述的无线采集装置,本发明还公开了一种养殖水质无线监测系统,该系统还包括数据存储模块、供电模块和浮漂。本发明的装置及系统采用太阳能供电;系统有在线和休眠两种状态,软硬件采用低功耗省电模式设计,可以采集、存储养殖水环境的pH值、电导率(EC)、水位、溶氧度(DO)、水温多个水质参数;可通过GPRS向数据监测中心发送采集的数据;还可对水中DO值进行预测,并通过手机短信的方式向集约化水产养殖管理者发送水质DO预警信息。

Description

一种水产品养殖水质无线监测系统及方法
技术领域
本发明涉及一种水质监测系统,具体涉及水产品养殖水质的无线监测系统及方法。
背景技术
养殖水体是水产品的栖息场所,水质的好坏直接决定着水产品的生长状况。在良好的水质环境中,水产品生长迅速,疾病较少,品质较高。恶劣的水质将导致水产品生长发育缓慢,造成发育畸形,引起疾病蔓延甚至大面积死亡,给养殖者造成较大的经济损失。同时恶劣水环境下生产的水产品的品质较低。
水温、pH值、电导率(EC)、水位和溶氧度(DO)是水产品养殖过程中最重要的水质参数。不同的品种对上述水质参数的要求有所不同。以刺参为例,刺参是一种寒温带品种,生存的水温为-1.5~30℃,水温低于3℃时刺参摄食量减少,处于半休眠状态;水温在10~15℃时摄食量最大;17~19℃时摄食量又大大下降;超过20℃时进入夏眠。因此,刺参的适温范围在3~20℃之间,水温低于2℃或大于23℃时则停止生长。
pH值和EC值分别反映了水质的酸碱度和盐度,不适宜的酸碱度和盐度水质将影响水产品的各种生理活动,使得水产品生长缓慢,严重时可对其产生毒性影响,甚至导致死亡。例如,海参对pH的适应范围在7.8~8.4之间;刺参属狭盐生物,对盐度的较适范围为26‰~34‰,盐度低于20‰时便有大量的个体死亡、溃烂。
养殖池塘水位的高低影响着水体的温度分布、溶氧度分布,因此,养殖池的水位同样是非常重要的参数之一。
溶氧度(DO)是水产品赖以生存的生命线。水产品生活在水中,要进行新陈代谢,其前提就是水中溶解的氧应充足。池水溶氧度高可以促进水产品的食欲,提高饲料的利用率,加快生长发育,反之其摄食率就会受到不同程度的抑制。低浓度的DO不仅使水产品呼吸困难,同时使水中微生物的无氧呼吸作用增强,产生如CH4、H2S等有害物质,导致水产品疾病或死亡。
在集约化水产养殖过程中,水产品的养殖密度很大。尤其是部分水产品的生活区域主要是集中在养殖池的池底,与空气中的氧气交换较困难,当养殖池中的水产品密度达到一定数值后,特别是在天气闷热、气压低的条件下,往往由于水中溶氧的缺乏而造成大批水产品因缺氧而死亡。因此,水产品养殖过程中溶氧度的检测是水质监测中最重要的一环。
传统的水质监测设备只是对DO的浓度进行即时的检测,不能对DO进行预测,往往在DO浓度已经低于水产品生存所需氧的最低限时才开始实行增氧等补救措施,这将导致水产品由于长时间处于不利环境下生长受到影响,或者由于补救不及时造成经济损失。对DO进行准确的预测,提前发出警报,可为抢救措施争取时间。因此,对于DO进行预测并及时预警显得尤为重要,需求也十分迫切。
人工进行的养殖水质监测往往费时费力,且不同的操作人员由于主观差异还会造成测量结果不一致。因此需要一种能够对水产品养殖水体的水温、pH值、EC值、水位、DO进行自动检测并实时监控的装置与系统。
发明内容
本发明涉及一种养殖水质无线采集装置,该装置包括:
传感器组,其由pH传感器、DO传感器、温度传感器、EC传感器和水位传感器组成,用于采集相应的水质数据;
微处理器(MCU),用于处理所述传感器采集的数据;
无线通信模块,用于将微处理器处理后的数据发送到数据监测中心;优选地,所述无线模块中包含GPRS模块。
传感器组是本发明装置的一个重要组成部分,能在线采集水质的重要参数,包括pH、DO、水温、EC和水位。温度传感器附在DO传感器探头上,因此总共有4个水质传感器探头。传感器通过信号线向MCU发送水质数据,同时也依靠信号线悬挂在水中。
本发明采用防水四芯电缆作为传感器信号线,信号线一端连接传感器,另一端通过防水接头连接到微处理器。信号线主要有3个功能:1)为传感器输送电能,2)向MCU传送传感器检测的数据,3)作为传感器的悬挂线将传感器悬挂在水中。信号线的长度可以调整,因此在不同的应用要求下,可以根据需要测得不同深度的水质信息。
本发明还涉及一种基于上述养殖水质无线采集装置的养殖水质无线监测系统,该系统还包括数据存储模块;所述数据存储模块用于存储微处理器处理后的数据。
优选地,所述系统还包括供电模块,所述供电模块主要由太阳能电池板、充电控制模块和蓄电池组成;其中所述充电控制模块用于将太阳能电池板吸收的太阳能转化为电能,并储存在蓄电池中;所述蓄电池为所述系统提供电能。
优选地,所述系统还包括浮漂,所述浮漂由泡沫材料构成,呈圆盘形。
本发明的系统具有在线和休眠两种工作状态,这样可以降低能耗;系统在不进行水质测量或数据处理的时间段,可设置为休眠状态;在需要测量水质的时刻,系统自动变为在线状态,完成水质数据的采集和数据处理、发送等功能。在线/休眠的时间间隔预先集成在微处理器中,在线监测的时间可以是等间隔的,每隔几个小时,还可以根据DO的浓度,在DO含量比较低的时间段如凌晨进行密集监测。
本发明的无线监测系统中,所述充电控制模块的输入端与太阳能电池板相连接,输出端与蓄电池相连接;所述蓄电池与微处理器的电源输入端相连;所述微处理器的电源输出端通过信号线分别与充电控制模块、传感器、无线通信模块及数据存储模块相连;所述充电控制模块、蓄电池、微处理器、无线通信模块和数据存储模块安装于密封的电路盒内,其中所述微处理器、无线通信模块和数据存储模块集成在主电路板上,电路盒内放置的上述各电路模块是本发明系统的核心组成部分之一;所述电路盒固定在浮漂上,太阳能电池板固定在电路盒的顶部;所述传感器组通过信号线悬于浮漂下方。
优选地,所述主电路板中安装有天线,用于发送数据;
优选地,本发明的系统采用低功耗芯片:MSP 430MCU微处理器,采用2.7V单电源供电运放,以降低能耗,实现装置和系统的长期稳定工作。
微处理器、数据存储模块和无线通信模块具有对传感器检测的数据进行处理、存储、发送的功能,还可进行DO的预测,并在出现警情时,发出预警信息。
MCU微处理器的功能主要有:
(1)控制各模块的供电;
(2)控制传感器工作;
(3)控制无线模块数据发送,控制预警信息的发送;
(4)进行数据处理,集成了养殖水质DO的预警方法,设定检测DO的时间间隔,从数据存储模块调用检测的水质历史数据对DO进行预测,给出预警信息。
无线模块的功能是进行数据发送。无线模块将传感器检测到的数据以无线的方式发送到数据监测中心的水质信息系统中,无线模块中还包含一个GPRS模块,可将MCU计算的DO预警信息以手机短信的形式发送到管理者的手机上,使管理者能及时了解到DO警情。
数据存储模块能够对传感器检测的数据进行本地存储,为DO的预警提供原始历史数据。
浮漂作为载体携载所述系统浮于水面上,为其提供浮力;为了防水、防腐蚀,将充电控制模块、蓄电池、微处理器、数据存储模块和无线通信模块安装在一个密封的电路盒内,所述电路盒优选由泡沫材料构成,呈圆柱形,电路盒固定在浮漂上,传感器通过信号线悬挂于浮漂正下方的水中。
本发明还涉及一种养殖水质无线监测方法,该方法包括如下步骤:
1)用pH传感器、DO传感器、温度传感器、EC传感器和水位传感器分别采集水质的pH、DO、温度、EC和水位数据,通过信号线将所述数据发送到微处理器;
2)用微处理器处理传感器采集的pH、DO、温度、EC和水位数据;
3)根据DO传感器采集的DO数据,利用微处理器对DO进行预警,获得预警信息;
4)将步骤2)微处理器处理后的数据和步骤3)获得的预警信息存储到数据存储模块;
5)通过GPRS模块将存储的数据发送到数据监测中心;
6)通过GPRS模块发送预警信息。
其中,步骤3)所述预警包括如下步骤:
S11、根据养殖品种对DO的要求严格设定DO状态区间、预警警度和预警规则,并与自回归数学模型一起预先集成在微处理器中;其中,所述DO状态区间可分为良好、一般、差、恶劣四个等级;所述预警警度分为无警、轻警、中警、重警四级;所述预警规则是根据不同DO状态区间及其持续的时间来确定预警警度;
S12、从数据存储模块调取由DO传感器采集的DO数据,作为DO历史数据;
S13、根据存储的DO历史数据,采用自回归(AR)法对水质的DO进行计算,得到DO的预测值;
S14、将DO的预测值与DO状态区间的阈值进行比较,利用预警规则,确定预警警度,判断是否需要报警,如有必要,则通过GPRS模块以手机短信的形式向管理者发出DO预警信息。
其中,步骤S13中所述的自回归法包括如下步骤:
S21、将DO的历史检测时间构成时间序列模型,以时间序列{DOt}(t=1,2,…,N)代表DO时间序列,则DO时间序列的模型为:
Figure GSA00000068318300061
其中,DOt为待预测的下一个采集时刻点t的DO值;
φ1,φ2,…φn,σa 2为n+1个待估计的参数,且
σ a 2 = 1 N - n ∑ t = n + 1 N ( x t - ∑ i = 1 n φ i x t - i ) 2 ;
应用AIC准则对DO时间序列模型的1-10阶数进行分析,比较不同阶数模型的AIC准则函数,确定所述模型的阶数;
S22、采用最小二乘法对所述参数φ1,φ2,…φn,σa 2进行估计,建立AR模型;
令:
Y=[DOn+1DOn+2…DON]T
φ=[φ1φ2…φn]T
X = DO n DO n - 1 . . . DO 1 D O n + 1 DO n . . . DO 2 . . . . . . . . . DO N - 1 DO N - 2 . . . DO N - n
则:
φ=(XTX)-1XTY.
S23、将DO的历史数据输入步骤S22中所建立的AR模型,计算DO的预测值。
在步骤S21中,一般情况下,阶数越大,AIC的值越小。一个有效的模型,需要具备一个较小模型阶数n,且其对应的AIC值也较小。因此需综合考虑n的大小和AIC(n)的大小。若AIC(n)-AIC(n+1)>AIC(n-2)-AIC(n)(3≤n≤10),则确定n为模型阶数,若符合条件的n的个数不止一个,则取最小的那一个;若不存在符合此条件的n,则取n值为10。
本发明无线监测系统和方法的有益效果在于:
(1)在实际应用中,将本发明的系统以一定的密度布置在水面上,可同时对养殖池塘或湖泊的各个位置的5个水质参数pH、EC、水位、DO、水温进行采集和监测,以实现水产品养殖过程中水质的在线监测、数据发送和DO预警功能;
(2)通过GPRS将监测数据传送到数据监测中心,实现对历史数据的长期可靠存储,并方便数据的查看和处理;
(3)本发明的无线监测系统和方法适用于水产品的集约化水产养殖,系统的微处理器中集成了养殖水质DO的预警算法,根据检测的水质数据,结合水产品对DO浓度的要求,对DO进行预测、发出预警警报;DO的预警信息可以通过GPRS以手机短信的形式及时发送到管理者的手机上,为管理者调整DO浓度争取了时间,使管理者能及时采取补氧等措施,保证水产品处于较佳的DO浓度环境下,可以大幅度减少或消除因DO浓度降低引起的水产品养殖损失;
(4)本发明的系统采用太阳能电池供电,系统有在线和休眠两种状态,采用低功耗省电模式设计,可以节约能源;
(5)整个监测过程自动执行,无需人工控制。
附图说明
图1为本发明无线监测系统的示意图;
图2为电路盒结构的示意图;
图3为核心电路模块的结构图;
图4为无线监测系统对溶氧度的预警流程图。
图中:
1为太阳能电池板            2为电路盒
3为浮漂                    4为pH传感器探头
5为DO传感器探头            6为温度传感器
7为EC传感器探头            8为水位传感器探头
9为传感器信号线            10为充电控制模块
11为蓄电池                 12为导线
13为主电路板固定槽         14为主电路板
15为天线                   16为传感器接口
17为电路盒固定孔
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例1本发明的水产品养殖水质的无线采集装置
本发明的无线采集装置包括如下部分:
传感器组,其由pH传感器、DO传感器、温度传感器、EC传感器和水位传感器组成,用于采集相应的水质数据;其中,温度传感器附在DO传感器探头上,因此总共有4个水质传感器探头。传感器通过信号线向微处理器发送水质数据;
微处理器,用于处理所述传感器采集的数据;
无线通信模块,用于将微处理器处理后的数据发送到数据监测中心,该无线通信模块中包含GPRS模块;
实施例2本发明的水产品养殖水质的无线监测系统
本发明的无线监测系统包括如下部分:
实施例1所述的无线采集装置,其中的微处理器中集成了根据养殖品种对DO的要求严格设定的DO状态区间、预警警度和预警规则,以及DO状态区间的阈值和自回归数学模型;
数据存储模块;所述数据存储模块用于存储微处理器处理后的数据;
供电模块,其由太阳能电池板、充电控制模块和蓄电池组成;其中所述充电控制模块用于将太阳能电池板吸收的太阳能转化为电能,并储存在蓄电池中;所述蓄电池为所述系统提供电能;
浮漂,其由泡沫材料构成,呈圆盘形,为整个系统提供浮力。
所述系统存在在线和休眠两种工作状态,采用低功耗芯片:MSP430MCU,并采用2.7V单电源供电运放。
本发明的无线监测系统中,充电控制模块的输入端与太阳能电池板相连接,输出端与蓄电池相连接;蓄电池与微处理器的电源输入端相连;微处理器的电源输出端通过信号线分别与充电控制模块、传感器、无线通信模块及数据存储模块相连;充电控制模块、蓄电池、微处理器、无线通信模块和数据存储模块安装于密封的电路盒内,其中所述微处理器、无线通信模块和数据存储模块集成在主电路板上,主电路板中安装有天线,用于发送数据,电路盒内放置的上述各电路模块是本发明系统的核心组成部分之一;电路盒由泡沫材料构成,呈圆柱形,为了防水防腐蚀,电路盒接口处必须用生胶带或密封硅胶充分密封;电路盒的底部有四个传感器接口,传感器信号线通过这些接口与电路盒内电路通信,采用RS485通信接口;电路盒的底部还有固定孔,可利用绳索穿过固定孔将电路盒绑定在浮漂上;太阳能电池板固定在电路盒的顶部,用于吸收太阳能;本发明采用防水四芯电缆作为传感器信号线,信号线一端连接传感器,另一端通过防水接头连接到电路盒内的微处理器,信号线的长度可以根据待测水位深度进行调整。
整个系统在岸上进行组装,组装完成后直接放置到水面监测点位置上即可工作。若是首次使用,应先将太阳能电池充满电。为保证浮漂承载的整个系统不随水流漂移,使用时可在浮漂下系一个重锤,使浮漂固定在监测点位置。本发明系统的整体结构如图1所示,电路盒的内部结构如图2所示。
本发明核心电路模块的结构如图3所示。电路盒(虚框显示)内包括充电控制模块、蓄电池、GPRS模块、MCU微处理器和数据存储模块。其中充电控制模块与太阳能电池板、MCU、蓄电池连接,MCU对充电控制模块进行控制,蓄电池对由太阳能转化的电能进行存储同时为整个系统提供电能。
MCU与充电控制模块和蓄电池连接获得电能,然后为数据存储模块、传感器和GPRS模块供电。MCU和传感器通过信号线连接,信号线将传感器数据发送到MCU进行进一步处理。MCU处理后的水质数据存储到数据存储模块。水质数据通过GPRS模块发送到数据监测中心。MCU还能根据传感器检测的水质信息对DO进行预测、预警,预警信息也将通过GPRS模块以手机短信的形式及时发送到管理者的手机上。
本发明的系统包括在线和休眠两种工作状态,这样可以降低能耗;系统在不进行水质测量或数据处理的时间段,可设置为休眠状态,到需要测量水质的时刻,系统自动变为在线状态,完成水质数据的采集和数据处理、发送等功能。在线/休眠的时间间隔预先集成在微处理器中,在线检测的时间可以是等间隔的,每隔几个小时,还可以根据DO的浓度,在DO含量比较低的时间段如凌晨进行密集检测和预测。
实施例3本发明的水产品养殖水质的无线监测方法
本发明的无线监测系统对溶氧度的预警流程如图4所示,其工作步骤如下:
1)用pH传感器、DO传感器、温度传感器、EC传感器和水位传感器分别采集水质的pH、DO、温度、EC和水位数据,通过信号线将所述数据发送到微处理器;
2)用微处理器处理传感器采集的pH、DO、温度、EC和水位数据;
3)根据DO传感器采集的DO数据,利用微处理器对DO进行预警,获得预警信息;
4)将步骤2)微处理器处理后的数据和步骤3)获得的预警信息存储到数据存储模块;
5)通过GPRS模块将存储的数据发送到数据监测中心;
6)通过GPRS模块发送预警信息。
其中,步骤3)中预警的方法包括如下步骤:
S11、根据养殖品种对DO的要求设定DO状态区间、预警警度和预警规则,并与自回归数学模型一起预先集成在微处理器中;其中,所述DO状态区间可分为良好、一般、差、恶劣四个等级;所述预警警度分为无警、轻警、中警、重警四级;所述预警规则是根据不同DO状态区间及其持续的时间来确定预警警度;
S12、从数据存储模块调取由DO传感器采集的DO数据,作为DO历史数据;
S13、根据存储的DO历史数据,采用自回归法对水质的DO进行计算,得到DO的预测值;
S14、将DO的预测值与DO状态区间的阈值进行比较,利用预警规则,确定预警警度,通过GPRS模块以手机短信的形式向管理者发出DO预警信息。
其中,步骤S13中自回归法包括如下步骤:
S21、将DO的历史检测时间构成时间序列模型,应用AIC准则对DO时间序列模型的1-10阶数进行分析,比较不同阶数模型的AIC准则函数,确定所述模型的阶数;
S22、采用最小二乘法对参数进行估计,建立自回归模型;
S23、将DO的历史数据输入步骤S22中所建立的自回归模型,计算DO的预测值。
下面以海参为例,具体说明DO状态区间、预警警度和预警规则的设定方法,分别见表1、表2和表3:
表1DO状态区间的划分
  DO状态区间   DO浓度范围   描述
  良好   5mg/L以上   最适宜海参生存的DO条件
  一般   5mg/L~3.6mg/L   在此DO条件下海参能够生存,但生理活动较弱,生长较慢
  差   3.6mg/L~3mg/L   在此DO条件下海参开始出现缺氧反应,身体萎缩、僵直
  恶劣   3mg/L以下   此DO条件容易造成海参死亡
表2预警警度级别
  预警警度级别   描述
  无警   海参处于最适宜的DO环境,无警情
  轻警   海参能够生存,但是DO值达到适宜下限并持续一定时间,需要引起关注
  中警   海参能够生存,但是DO值已经接近或达到海参生存的下限并持续一定时间,可能会引起海参的死亡
  重警   DO值超过海参的生存极限,需要立即采取措施,否则会造成海参的死亡
表3预警规则
  DO状态区间  持续时间   预警警度级别
  良好   无警
  一般  1小时   轻警
  一般  2小时   中警
  一般  2小时以上   重警
  差  1小时   中警
  差  1小时以上   重警
  恶劣  1小时以上   重警
在DO预警方法中,预警分为预测结果处理和警情的确认两个阶段。
预测结果处理:将DO预测值与DO状态区间的阈值进行比较,确定预测值所在的DO状态区间。应用既定的预警规则,确定警情级别。
警情的警度划分为无警、轻警、中警、重警四级。当出现中警和重警时向管理者发出警报,出现轻警时调整传感器测量的时间间隔和预测时间间隔,即对水质进行时间上更密集的检测和预测。
本发明的养殖水质无线监测方法通过程序设定一个采样间隔时间,每个间隔时间内传感器采样一次。MCU只在传感器采样工作的短时间内给传感器供电,其他时间断电,这样可以节省能量。传感器采样数据通过传感器信号线传送到MCU进行处理,处理后的数据通过发送GPRS模块传送到数据监测中心。同时,数据也会被送到本发明无线监测系统的数据存储模块进行本地存储。MCU还可调用存储模块中的历史数据对DO进行预测、预警,预警信息将会通过GPRS模块以短信的形式发送到设定的手机上,提醒管理者。

Claims (7)

1.一种养殖水质无线监测系统,其特征在于,包括养殖水质无线采集装置、数据存储模块、供电模块和浮漂;
所述养殖水质无线采集装置包括传感器组、微处理器和无线通信模块;所述传感器组由pH传感器、DO传感器、温度传感器、EC传感器和水位传感器组成,用于采集相应的水质数据;所述微处理器用于处理所述传感器采集的数据和根据DO传感器采集的DO数据进行DO的预测,并在出现警情时,发出预警信息;所述无线通信模块用于将微处理器处理后的数据发送到数据监测中心;
所述数据存储模块用于存储微处理器处理后的数据;
所述供电模块主要由太阳能电池板、充电控制模块和蓄电池组成;其中所述充电控制模块用于将太阳能电池板吸收的太阳能转化为电能,并储存在蓄电池中;所述蓄电池为所述系统提供电能;
所述充电控制模块、蓄电池、微处理器、无线通信模块和数据存储模块安装在密封的电路盒内,其中所述微处理器、无线通信模块和数据存储模块集成在主电路板上;所述电路盒固定在浮漂上,太阳能电池板固定在电路盒的顶部;所述传感器组通过信号线悬于浮漂下方。
2.根据权利要求1所述的养殖水质无线监测系统,其特征在于,所述无线通信模块中包含GPRS模块。
3.根据权利要求1所述的养殖水质无线监测系统,其特征在于,所述浮漂由泡沫材料构成,呈圆盘形。
4.根据权利要求3所述的养殖水质无线监测系统,其特征在于,所述无线监测系统具有在线和休眠两种工作状态。
5.根据权利要求4所述的养殖水质无线监测系统,其特征在于,所述充电控制模块的输入端与太阳能电池板相连接,输出端与蓄电池相连接;所述蓄电池与微处理器的电源输入端相连;所述微处理器的电源输出端通过信号线分别与充电控制模块、传感器、无线通信模块及数据存储模块相连。
6.一种养殖水质无线监测方法,其特征在于,该方法包括如下步骤:
1)用pH传感器、DO传感器、温度传感器、EC传感器和水位传感器分别采集水质的pH、DO、温度、EC和水位数据,通过信号线将所述数据发送到微处理器;其中,所述pH传感器、DO传感器、温度传感器、EC传感器和水位传感器通过信号线悬于浮漂下方;
2)用微处理器处理传感器采集的pH、DO、温度、EC和水位数据;
3)根据DO传感器采集的DO数据,利用微处理器对DO进行预警,获得预警信息;
4)将步骤2)微处理器处理后的数据和步骤3)获得的预警信息存储到数据存储模块;
5)通过GPRS模块将存储的数据发送到数据监测中心;
6)通过GPRS模块发送预警信息;
其中,步骤3)所述预警包括如下步骤:
S11、根据养殖品种对DO的要求设定DO状态区间、预警警度和预警规则,并与自回归数学模型一起预先集成在微处理器中;其中,所述预警警度分为无警、轻警、中警、重警四级,所述预警规则是根据不同DO状态区间及其持续的时间来确定预警警度;
S12、从数据存储模块调取由DO传感器采集的DO数据,作为DO历史数据;
S13、根据存储的DO历史数据,采用自回归法对水质的DO进行计算,得到DO的预测值;
S14、将DO的预测值与DO状态区间的阈值进行比较,利用预警规则,确定预警警度,通过GPRS模块以手机短信的形式向管理者发出DO预警信息。
7.根据权利要求6所述的养殖水质无线监测方法,其特征在于,步骤S13所述自回归法包括如下步骤:
S21、将DO的历史检测时间构成时间序列模型,应用AIC准则对DO时间序列模型的1-10阶数进行分析,比较不同阶数模型的AIC准则函数,确定所述模型的阶数;
S22、采用最小二乘法对参数进行估计,建立自回归模型;
S23、将DO的历史数据输入步骤S22中建立的所述自回归模型,计算DO的预测值。
CN2010101335521A 2010-03-25 2010-03-25 一种水产品养殖水质无线监测系统及方法 Active CN101814228B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010101335521A CN101814228B (zh) 2010-03-25 2010-03-25 一种水产品养殖水质无线监测系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010101335521A CN101814228B (zh) 2010-03-25 2010-03-25 一种水产品养殖水质无线监测系统及方法

Publications (2)

Publication Number Publication Date
CN101814228A CN101814228A (zh) 2010-08-25
CN101814228B true CN101814228B (zh) 2012-12-12

Family

ID=42621470

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010101335521A Active CN101814228B (zh) 2010-03-25 2010-03-25 一种水产品养殖水质无线监测系统及方法

Country Status (1)

Country Link
CN (1) CN101814228B (zh)

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102113468B (zh) * 2010-11-29 2013-12-25 大连海洋大学 海水池塘养殖病害的预报方法
CN102183621B (zh) * 2011-02-28 2013-11-27 中国农业大学 水产养殖溶解氧浓度在线预测方法及系统
CN102306231A (zh) * 2011-06-03 2012-01-04 中国科学院计算技术研究所 一种基于海计算的水环境参数预测装置及方法
CN102902240B (zh) * 2011-07-30 2017-07-07 温卓明 一种基于物联网的水产智能监控系统
TW201318556A (zh) * 2011-11-02 2013-05-16 Applied Technology Solution Inc 養殖魚塭水質即時監控通報系統及方法
CN102621285B (zh) * 2012-03-16 2015-02-04 常州轻工职业技术学院 具有led 显示装置的水质参数采集系统
CN103542879A (zh) * 2012-07-10 2014-01-29 慈溪市水产技术推广中心 一种环境数据实时采集装置
CN103542882B (zh) * 2012-07-10 2016-08-10 慈溪市水产技术推广中心 一种环境数据实时分析系统
CN103105474A (zh) * 2012-11-06 2013-05-15 苏州聚阳环保科技有限公司 一种远程反控水质在线监测系统
CN103267832A (zh) * 2013-05-13 2013-08-28 安徽工程大学 地表水在线水质监测系统
US10190980B2 (en) 2013-06-03 2019-01-29 Blue-I Water Technologies Ltd. System and method for simultaneous measurement of turbidity, color and chlorine content of a sample of a liquid
CN103425097B (zh) * 2013-06-13 2015-12-23 杭州电子科技大学 多功能在线数据监测系统
CN103430901A (zh) * 2013-09-04 2013-12-11 南京农业大学 一种智能增氧系统的溶氧检测与自清洁机构
CN103645684A (zh) * 2013-11-20 2014-03-19 江苏大学 一种基于gprs传输的远程监控系统与操作方法
CN103728911A (zh) * 2013-12-25 2014-04-16 力合科技(湖南)股份有限公司 用于数据监测的预警处理方法及装置
CN104792954A (zh) * 2014-01-18 2015-07-22 西安天衡计量仪表有限公司 一种污水报警装置
CN103792330A (zh) * 2014-01-25 2014-05-14 安徽理工大学 无线传感水质监测预警系统
CN103910424B (zh) * 2014-03-28 2015-06-17 上海电力学院 太阳能可移动式水生态维护机器人
CN104121998B (zh) * 2014-06-24 2017-09-26 中国农业大学 一种日光温室环境智能监控系统中的温度预警方法
CN104165977A (zh) * 2014-07-21 2014-11-26 小米科技有限责任公司 水质提醒方法和装置、用水装置
CN104122378B (zh) * 2014-07-29 2017-02-15 中国水产科学研究院渔业机械仪器研究所 一种用于大型水产养殖的节点式水质检测系统
CN104111315A (zh) * 2014-07-30 2014-10-22 全峰正 太阳能渔场溶解氧检测仪
CN104501905A (zh) * 2014-12-15 2015-04-08 集美大学 城市智能街道积水应急警报处理系统
CN104932563A (zh) * 2015-05-21 2015-09-23 中国农业大学 一种水产海水育苗溶解氧自动控制装置及方法
CN105067788A (zh) * 2015-07-25 2015-11-18 合肥智凯电子科技有限公司 一种水质检测系统
CN105222834A (zh) * 2015-10-28 2016-01-06 常州市金坛区水产技术指导站 一种河蟹养殖水质指标互联网在线监测、处理管控系统
CN105403677A (zh) * 2015-10-28 2016-03-16 常州市金坛区水产技术指导站 水产养殖物联网在线监测系统中浮动式水质检测装置
CN105300909A (zh) * 2015-12-02 2016-02-03 重庆大学 基于直接光谱法的全天候长流域水质监测与预警系统
CN105510547A (zh) * 2016-01-05 2016-04-20 中国水产科学研究院南海水产研究所 一种近海养殖水域环境监测和预警方法
CN105548517A (zh) * 2016-01-05 2016-05-04 中国水产科学研究院南海水产研究所 一种近海环境调查水质连续监测方法
CN105911239A (zh) * 2016-04-15 2016-08-31 中环清新人工环境工程技术(北京)有限责任公司 一种带有无线通讯功能的ph检测装置
CN105819524B (zh) * 2016-05-13 2018-02-16 句容市万福达工艺品厂 一种用于污水处理的浮标式水质监测装置
CN105823862B (zh) * 2016-05-26 2018-02-13 句容市万福达工艺品厂 一种基于太阳能与波浪能发电装置的水上监测装置
CN106153678A (zh) * 2016-06-22 2016-11-23 天津大学 一种利用太阳能供电的自清洁ph计装置
CN106198632A (zh) * 2016-06-22 2016-12-07 天津大学 一种利用太阳能供电的环保型海洋水质集成传感器装置
CN105994083A (zh) * 2016-07-06 2016-10-12 江苏智慧农业技术有限公司 一种水产养殖用传感器连接装置
CN106093154A (zh) * 2016-08-04 2016-11-09 重庆和航科技股份有限公司 水质ph值在线远程监测系统及方法
CN106338535A (zh) * 2016-08-19 2017-01-18 北海市蕴芯电子科技有限公司 水产养殖ph值智能网络监控数据系统
CN106205081A (zh) * 2016-09-14 2016-12-07 湖北民族学院 一种水霉病预警系统及方法
CN108227536A (zh) * 2016-12-13 2018-06-29 乐山加兴科技有限公司 一种水产养殖环境监控系统
CN106872658B (zh) * 2017-01-22 2019-06-18 华南理工大学 一种基于向量时间序列模型的污水cod负荷预测的方法
CN107037189B (zh) * 2017-04-10 2019-06-21 重庆文理学院 随机式河底污水、淤泥监控分析系统及方法
GB2561838A (en) * 2017-04-24 2018-10-31 Blue I Water Tech Apparatus and method for low power measurement of a liquid-quality parameter
US10132749B1 (en) 2017-05-12 2018-11-20 Blue-I Water Technologies Ltd System and method for simultaneous measurement of turbidity and chlorine content of a sample of a liquid
CN107545713A (zh) * 2017-07-04 2018-01-05 芜湖凯尔电气科技有限公司 可调节监测位置的水环境监测装置
CN107884014A (zh) * 2017-12-05 2018-04-06 重庆多邦科技股份有限公司 一种五参数地下水质分析仪
TWI658273B (zh) * 2018-02-07 2019-05-01 謝金原 水質監測系統及其監測方法
CN108651369A (zh) * 2018-04-27 2018-10-16 宿松富民水产养殖有限公司 一种基于多增氧机的泥鳅养殖环境改善系统
CN109115277A (zh) * 2018-10-17 2019-01-01 兴化市忠伟电子仪表有限公司 一种基于2g网络的水位水质测量系统
CN109324165A (zh) * 2018-10-31 2019-02-12 中天海洋系统有限公司 水质在线监测装置及系统
CN109520567A (zh) * 2018-11-27 2019-03-26 深圳先进技术研究院 一种海水养殖水质预警方法
CN112880735B (zh) * 2021-01-08 2023-12-05 上海海洋大学 一种将水质与水面声学联合监测装置用于对虾养殖池塘的监测方法
CN112906569A (zh) * 2021-02-20 2021-06-04 东营市阔海水产科技有限公司 氧气补充方法、终端装置及可读存储介质
CN113009099A (zh) * 2021-03-01 2021-06-22 智科云创(北京)科技有限公司 一种水质实时智慧监测装置及其使用方法
CN113040088A (zh) * 2021-03-19 2021-06-29 东营市阔海水产科技有限公司 水产养殖精准增氧方法、终端设备及可读存储介质
CN114002400A (zh) * 2021-09-30 2022-02-01 卢莹 一种工程地质勘察水质分析系统
CN114924052A (zh) * 2022-05-27 2022-08-19 浙江科新藻业科技有限公司 基于深度传感器的水质监测频率控制方法及系统
CN117581815A (zh) * 2023-12-28 2024-02-23 佛山市南海区杰大饲料有限公司 一种工厂化养殖鱼类生长状况判断方法及装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101339179A (zh) * 2008-08-14 2009-01-07 中国农业大学 一种用于水产养殖的水质远程动态监测系统及方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101339179A (zh) * 2008-08-14 2009-01-07 中国农业大学 一种用于水产养殖的水质远程动态监测系统及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
于承先 等.集约化水产养殖水质预警系统的设计与实现.《计算机工程》.2009,第35卷(第17期),268页第1栏-270页第1栏. *
刘卉 等.基于无线传感器网络的农田土壤温湿度监测系统的设计与开发.《吉林大学学报( 工学版)》.2008,第38卷(第3期),图2. *

Also Published As

Publication number Publication date
CN101814228A (zh) 2010-08-25

Similar Documents

Publication Publication Date Title
CN101814228B (zh) 一种水产品养殖水质无线监测系统及方法
CN202904356U (zh) 一种水产养殖智能测控系统
CN102645927A (zh) 基于无线传感器网络的淡水鱼养殖环境监控系统
CN108639237B (zh) 一种侧体可上浮下潜的太阳能近海渔业功能三体无人艇
CN110870472A (zh) 一种人工智能化养殖小龙虾集成装置
CN103713601A (zh) 养虾水质自动监控系统
CN207051727U (zh) 一种水产养殖监控装置
CN101295176A (zh) 基于无线传感网的水产养殖浮头监控自动报警系统及方法
CN203324785U (zh) 基于物联网的对虾工厂化育苗环境远程在线监控系统
CN112325942A (zh) 一种基于物联网的鱼塘监测与控制系统
Ramson et al. Sensor Networks based Water Quality Monitoring Systems for Intensive Fish Culture-A Review
CN206517988U (zh) 一种应用于水产养殖的投饵增氧一体装置
CN102524125A (zh) 海参养殖场自动监控系统及实现方法
CN110618718A (zh) 一种基于水产养殖的智能控制装置
CN110764557A (zh) 一种基于物联网技术的鱼塘养殖监测控制系统
CN212629591U (zh) 一种一体式智慧水产养殖系统
CN206353039U (zh) 一种水产养殖环境立体监测装置
CN206248135U (zh) 一种小水产养殖业养殖水域水质实时在线监测系统
CN214677167U (zh) 一种智能水产养殖系统
TWI743903B (zh) 養殖水域環境監測系統
CN107991977A (zh) 一种水产养殖智能监控系统及其监控方法
Mubarak et al. Implementation of microcontroller based water quality monitoring system for fish pond using solar power and bluetooth technology
CN208766545U (zh) 一种人工智能化养殖小龙虾集成装置
CN113678783B (zh) 一种基于多点pH统计的鱼池水质检测和调节系统
CN202102295U (zh) 一种单路水质在线监控仪

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant