CN101813693A - Cell in-situ active deformation measurement method - Google Patents
Cell in-situ active deformation measurement method Download PDFInfo
- Publication number
- CN101813693A CN101813693A CN 201010170691 CN201010170691A CN101813693A CN 101813693 A CN101813693 A CN 101813693A CN 201010170691 CN201010170691 CN 201010170691 CN 201010170691 A CN201010170691 A CN 201010170691A CN 101813693 A CN101813693 A CN 101813693A
- Authority
- CN
- China
- Prior art keywords
- beta
- alpha
- sigma
- image
- deformation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000011065 in-situ storage Methods 0.000 title claims abstract description 11
- 238000000691 measurement method Methods 0.000 title claims abstract description 10
- 238000000034 method Methods 0.000 claims abstract description 37
- 239000011159 matrix material Substances 0.000 claims abstract description 36
- 238000005070 sampling Methods 0.000 claims abstract description 35
- 238000006073 displacement reaction Methods 0.000 claims abstract description 32
- 230000005489 elastic deformation Effects 0.000 claims description 4
- 238000004422 calculation algorithm Methods 0.000 claims description 3
- 238000005259 measurement Methods 0.000 abstract description 8
- 230000008901 benefit Effects 0.000 abstract description 2
- 238000010606 normalization Methods 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 27
- 238000004364 calculation method Methods 0.000 description 15
- 239000000758 substrate Substances 0.000 description 14
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 6
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 6
- 210000002744 extracellular matrix Anatomy 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 5
- 239000002245 particle Substances 0.000 description 4
- 229920002401 polyacrylamide Polymers 0.000 description 4
- 230000003993 interaction Effects 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 210000002469 basement membrane Anatomy 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000002073 fluorescence micrograph Methods 0.000 description 2
- 238000003909 pattern recognition Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000741 silica gel Substances 0.000 description 2
- 229910002027 silica gel Inorganic materials 0.000 description 2
- 241001270131 Agaricus moelleri Species 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000009287 biochemical signal transduction Effects 0.000 description 1
- 230000004791 biological behavior Effects 0.000 description 1
- 230000021164 cell adhesion Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 230000007646 directional migration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 210000001723 extracellular space Anatomy 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 230000019305 fibroblast migration Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 210000004379 membrane Anatomy 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000010399 physical interaction Effects 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Images
Landscapes
- Image Analysis (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种细胞显微变形测量方法,特别是关于一种用于定量分析细胞与细胞外基质(弹性基底)之间物理相互作用的细胞原位主动变形测量方法。The invention relates to a method for measuring cell microscopic deformation, in particular to a method for measuring the active deformation of cells in situ for quantitative analysis of the physical interaction between cells and extracellular matrix (elastic substrate).
背景技术Background technique
细胞是研究生命科学的基础,也是现代生命科学发展的重要支柱。一般来说,动物组织中的细胞不仅与相邻细胞接触和作用,同时也与由分泌蛋白和多糖组成的充满胞外空间的复杂网络结构,即细胞外基质相互接触和作用。细胞与细胞外基质等物理环境相互作用涉及许多复杂的生化信号转导通路,定量研究这种相互作用行为具有重要的生理病理意义。研究细胞与胞外基质相互作用的一类常用方法是采用弹性硅胶基底膜来模拟细胞外基质微环境,把细胞培养在其上面,通过牵拉硅胶膜的方式促使细胞发生被动变形,以此研究胞外基质环境变化对与细胞粘附、铺展及生长、分化等生物学行为的影响。1999年,Dembo(丹博)和王毓立等人通过把细胞培养在表面掺有荧光颗粒的聚丙烯酰胺薄膜弹性基底上,观察到了由细胞主动变形(包括细胞的周期性收缩和迁移)所导致的基底膜微纳尺度形变,以此为基础研究细胞的自主收缩、定向迁移规律,探索单细胞对外界环境的感知机理(Dembo M,Wang YL.Stresses at the cell-to-substrate interface duringlocomotion of fibroblasts.Biophysical Journal,1999;76:2307-2316.丹博,王毓立,成纤维细胞迁移过程中细胞-基底界面应力表征,生物物理,1999,76:2307-2316)。Cells are the basis of life science research and an important pillar for the development of modern life science. In general, cells in animal tissues not only contact and interact with adjacent cells, but also interact with a complex network structure filled with extracellular space, that is, the extracellular matrix, composed of secreted proteins and polysaccharides. The interaction between cells and the physical environment such as the extracellular matrix involves many complex biochemical signal transduction pathways, and the quantitative study of this interaction behavior has important physiological and pathological significance. A commonly used method to study the interaction between cells and extracellular matrix is to use elastic silica gel basement membrane to simulate the microenvironment of extracellular matrix, culture cells on it, and promote the passive deformation of cells by pulling the silica gel membrane, so as to study The influence of changes in the extracellular matrix environment on biological behaviors such as cell adhesion, spreading, growth, and differentiation. In 1999, Dembo (Danbo) and Wang Yuli and others observed the active deformation of cells (including periodic contraction and migration of cells) by culturing cells on the elastic substrate of polyacrylamide film doped with fluorescent particles. Based on the micro-nano-scale deformation of the basement membrane, the self-contraction and directional migration of cells are studied, and the mechanism of single cells' perception of the external environment is explored (Dembo M, Wang YL. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophysical Journal, 1999; 76: 2307-2316. Danbo, Wang Yuli, Characterization of cell-substrate interface stress during fibroblast migration, Biophysics, 1999, 76: 2307-2316).
目前,定量测量这种薄膜变形的方法主要有基于光流的区域特征匹配方法(Marganski WA,Dembo M,Wang YL.Measurements of cell-generated deformationson flexible substrata using correlation-based optical flow.Methods Enzymol.2003;361:197-211.马甘斯基,丹博,王毓立,运用基于相关的光流方法测量细胞导致的软基底变形,酶学方法,2003;361:197-211.)以及基于模式识别的荧光粒子点跟踪方法(Yang ZC,Lin JS,Chen JX,Wang J.Determining substrate displacement andcell traction fields-a new approach.J.Theor.Biol.2006;242:607-616.杨兆春,林津尚,陈建新,王慧聪,确定细胞牵引力场——一种新的方法,理论生物学,2006;242:607-616)。然而,基于光流的区域特征匹配方法搜索计算量大,计算速度很难满足要求;基于模式识别的荧光粒子点跟踪方法计算速度稍快,但由于单个的荧光粒子光斑几何光学特征相同,实际处理过程中极易出现错误跟踪,计算结果的准确性很难保证。At present, the methods for quantitatively measuring the deformation of such thin films mainly include optical flow-based regional feature matching methods (Marganski WA, Dembo M, Wang YL. Measurements of cell-generated deformation on flexible substrate using correlation-based optical flow. Methods Enzymol.2003; 361:197-211. Magansky, Danbo, Wang Yuli, Measuring cell-induced deformation of soft substrates using correlation-based optical flow methods, Methods in Enzymology, 2003; 361:197-211.) and fluorescence based on pattern recognition Particle point tracking method (Yang ZC, Lin JS, Chen JX, Wang J. Determining substrate displacement and cell traction fields-a new approach. J. Theor. Biol. 2006; 242: 607-616. Yang Zhaochun, Lin Jinshang, Chen Jianxin, Wang Huicong, Determining the cell traction force field—a new method, Theoretical Biology, 2006;242:607-616). However, the area feature matching method based on optical flow has a large amount of search calculation, and the calculation speed is difficult to meet the requirements; the calculation speed of the fluorescent particle point tracking method based on pattern recognition is slightly faster, but due to the same geometric and optical characteristics of a single fluorescent particle spot, the actual processing Error tracking is very easy to occur in the process, and the accuracy of calculation results is difficult to guarantee.
发明内容Contents of the invention
针对上述问题,本发明的目的是提供一种具有较高的准确率、效率及高时间-空间分辨率的细胞原位主动变形测量方法。In view of the above problems, the object of the present invention is to provide a method for measuring active deformation of cells in situ with high accuracy, efficiency and high time-space resolution.
为实现上述目的,本发明采取以下技术方案:一种细胞原位主动变形测量方法,其包括以下步骤:(1)分别在未发生弹性变形及发生弹性变形的细胞基底荧光图的参考图像F(x,y)和变形图像G(x,y)上,以设定的采样间距S为边长划分方形采样网格,单位为像素;(2)分别以各采样点(α,β)为中心,在参考图像F(x,y)上设定边长为(2N+1)的方形相关子区fα,β(x,y),在变形图像G(x,y)上选择边长为(2M+1)的方形搜索区域Gα,β(x,y),其中N的取值范围为15~30之间的整数,M的取值范围为20~80之间的整数,单位均为像素,且M>N;(3)根据参考图像F(x,y)和变形图像G(x,y)的数字图像灰度分布结构表f(x,y)和g(x,y),利用递推方法分别建立图像灰度全局求和结构表Sf、Sg及图像能量全局求和结构表 (4)根据数字图像灰度分布结构表f(x,y)和g(x,y),计算以采样点(α,β)为中心的相关子区fα,β(x,y)与相应的搜索区域Gα,β(x,y)之间的互相关系数矩阵Pα,β,得到其快速递推关系式为:Pα+S,β(u,v)=Pα,β(u,v)-Iα-D,β(u,v)+Iα,β(u,v),其中,令(u,v)表示参考图像的相关子区fα,β(x,y)中采样点(α,β)在变形图像的搜索区域Gα,β(x,y)中的位移;D是相关子区fα,β(x,y)的边长,D=2N+1;(5)根据所述步骤(3)、(4)的结果,计算参考图像的相关子区fα,β(x,y)与相应变形图像的搜索区域Gα,β(x,y)的变形子区gα,β(x,y)之间的零均值归一化互相关系数矩阵Gα,β(u,v);(6)采用基于梯度的亚像素位移定位算法,在零均值归一化互相关系数矩阵的最大峰值所在位置附近进行亚像素插值运算,求得参考图像中采样点(α,β)在变形图像中的准确位置为:式中,(Uα,β,Vα,β)表示采样点(α,β)在变形图像中的总位移大小,(uα,β,vα,β)是由所述零均值归一化相关系数矩阵Cα,β(u,v)中最大元素所确定的整像素位移,(Δuα,β,Δvα,β)是(uα,β,vα,β)相应的亚像素位移;(7)重复所述步骤(4)~步骤(6),计算所有采样点在变形图像中的准确位置,进而得到整张变形图像位移场。In order to achieve the above object, the present invention adopts the following technical solutions: a method for measuring the active deformation of cells in situ, which includes the following steps: (1) the reference images F( x, y) and the deformed image G(x, y), divide the square sampling grid with the set sampling interval S as the side length, and the unit is pixel; (2) take each sampling point (α, β) as the center , on the reference image F(x, y), set a square related sub-region f α, β (x, y) with a side length of (2N+1), on the deformed image G(x, y), select a side length of (2M+1) square search area G α, β (x, y), where the value range of N is an integer between 15 and 30, the value of M is an integer between 20 and 80, and the unit is is a pixel, and M>N; (3) According to the digital image grayscale distribution structure table f(x, y) and g(x, y) of the reference image F(x, y) and the deformed image G(x, y) , use the recursive method to establish the global summation structure table of image gray level S f , S g and the global summation structure table of image energy (4) According to the digital image gray scale distribution structure table f(x, y) and g(x, y), calculate the relevant sub-area f α, β (x, y) and The cross-correlation coefficient matrix P α, β between the corresponding search area G α, β (x, y), and its fast recurrence relation is obtained: P α+S, β (u, v)=P α, β (u, v)-I α-D, β (u, v)+I α, β (u, v), where, let (u, v) represents the displacement of the sampling point (α, β) in the relevant sub-region f α, β (x, y) of the reference image in the search area G α, β (x, y) of the deformed image; D is Correlation subregion f α, the side length of β (x, y), D=2N+1; (5) according to the result of described step (3), (4), calculate the correlation subregion f α of reference image, β The zero-mean normalized cross-correlation coefficient matrix G α,β between (x,y) and the deformed sub-region g α,β (x,y) of the search region G α,β(x,y) of the corresponding deformed image (u, v); (6) Using a gradient-based sub-pixel displacement positioning algorithm, sub-pixel interpolation is performed near the position of the maximum peak of the zero-mean normalized cross-correlation coefficient matrix to obtain the sampling point (α , β) The exact position in the deformed image is: In the formula, (U α, β , V α, β ) represents the total displacement of the sampling point (α, β) in the deformed image, and (u α, β , v α, β ) is normalized by the zero-mean The integer pixel displacement determined by the largest element in the correlation coefficient matrix C α, β (u, v), (Δu α, β , Δv α, β ) is the corresponding sub-pixel of (u α, β , v α, β ) Displacement; (7) Repeat steps (4) to (6) to calculate the exact positions of all sampling points in the deformed image, and then obtain the displacement field of the entire deformed image.
所述步骤(4)中,所述互相关系数矩阵Pα,β快速递推关系式由以下步骤得到:①对于采样点(α,β),令相关子区fα,β(x,y)与相应的搜索区域Gα,β(x,y)之间构成互相关系数矩阵为Pα,β;②与采样点(α,β)相邻的采样点(α+S,β),其对应的相关子区fα+S,β(x,y)与相应的搜索区域Gα+S,β(x,y)之间的互相关系数矩阵为Pα+S,β;③将两个互相关系数矩阵Pα,β和Pα+S,β对比得到:Pα+S,β(u,v)=Pα,β(u,v)-Jα,β(u,v)+Iα,β(u,v),其中,令得到Jα,β(u,v)=Iα-D,β(u,v),D是相关子区fα,β(x,y)的边长,D=2N+1;④由所述步骤①~③中各式能建立快速递推关系为:Pα+S,β(u,v)=Pα,β(u,v)-Iα-D,β(u,v)+Iα,β(u,v)。In the step (4), the correlation coefficient matrix P α, β fast recursive relation is obtained by the following steps: 1. For the sampling point (α, β), make the correlation sub-area f α, β (x, y ) and the corresponding search area G α, β (x, y) form a cross-correlation coefficient matrix P α, β ; ② The sampling point (α+S, β) adjacent to the sampling point (α, β), The correlation coefficient matrix between its corresponding correlation sub-area f α+S, β (x, y) and the corresponding search area G α+S, β (x, y) is P α+S, β ; Two cross-correlation coefficient matrices P α, β and P α+S, β are compared to get: P α+S, β (u, v) = P α, β (u, v)-J α, β (u, v )+I α, β (u, v), where, let Obtain J α, β (u, v)=I α-D, β (u, v), D is the side length of relevant sub-area f α, β (x, y), D=2N+1; ④ by the The various formulas in the
所述步骤(5)中,所述零均值归一化互相关系数矩阵Cα,β(u,v)为:
本发明由于采取以上技术方案,其具有以下优点:1、本发明由于采用了基于快速递推关系式和快速查询四个图像灰度、图像能量全局求和结构表的方式,快速计算零均值归一化相关系数矩阵,并根据该矩阵的峰值位置确定采样点的整像素位移大小,进而得到采样点的位移,因此实现了测量精确高效、高时间-空间分辨率的效果。2、本发明由于采用了快速查表方式和快速递推方法进行计算,因此可以有效地降低采样点位移计算的复杂性,特别是在高时间空间位移采样以及较大搜索区域尺寸情况下,能显著的提高细胞-基底位移场求解效率。3、本发明由于采用了快速递推方式进行计算,这种方法比传统数字图像相关方法的计算效率大约提高了10到50倍,特别是当采样网格边长减小时,计算效率尤为突出。因此,本发明可以应用于高时空分辨率的细胞原位主动变形测量中。Because the present invention adopts the above technical scheme, it has the following advantages: 1. The present invention quickly calculates the zero-mean return value due to the use of fast recursive relational formulas and fast query of four image grayscales and the mode of global summation structure table of image energy. The correlation coefficient matrix is normalized, and the integer pixel displacement of the sampling point is determined according to the peak position of the matrix, and then the displacement of the sampling point is obtained, thus realizing the effect of accurate and efficient measurement and high time-space resolution. 2. The present invention can effectively reduce the complexity of sampling point displacement calculation due to the adoption of fast table lookup method and fast recursive method for calculation, especially in the case of high time and space displacement sampling and large search area size. Significantly improve the efficiency of solving the cell-substrate displacement field. 3. Since the present invention uses a fast recursive method for calculation, the calculation efficiency of this method is about 10 to 50 times higher than that of the traditional digital image correlation method, especially when the side length of the sampling grid is reduced, the calculation efficiency is particularly prominent. Therefore, the present invention can be applied to in situ active deformation measurement of cells with high spatiotemporal resolution.
附图说明Description of drawings
图1是本发明的整体流程示意图Fig. 1 is the overall schematic flow chart of the present invention
图2是本发明采样点网格划分的相关子区、搜索区域示意图Fig. 2 is a schematic diagram of relevant sub-areas and search areas of sampling point grid division in the present invention
图3是本发明的实施例一中单细胞粘附在聚丙烯酰胺弹性基底上的相差图Figure 3 is a phase contrast diagram of single cells adhered to a polyacrylamide elastic substrate in Example 1 of the present invention
图4是本发明的实施例一中聚丙烯酰胺基底的变形前参考图像Fig. 4 is the reference image before deformation of the polyacrylamide substrate in
图5是本发明的实施例一中聚丙烯酰胺基底的变形图像Fig. 5 is the deformed image of the polyacrylamide substrate in
图6是本发明的实施例一中基于本发明测量方法计算得到的荧光基底位移场Fig. 6 is the fluorescent substrate displacement field calculated based on the measurement method of the present invention in
具体实施方式Detailed ways
下面结合附图和实施例对本发明进行详细的描述。The present invention will be described in detail below in conjunction with the accompanying drawings and embodiments.
如图1所示,本发明是基于零均值归一化互相关系数在细胞基底位移场求解过程中所表现出的内在特点,通过构建与图像灰度和图像能量密切相关的四个全局求和表,发展了一整套位移场求解快速递推方法,其步骤如下:As shown in Figure 1, the present invention is based on the inherent characteristics of the zero-mean normalized cross-correlation coefficient in the process of solving the cell substrate displacement field, by constructing four global sums closely related to image grayscale and image energy Table, developed a set of fast recursive method for solving displacement field, the steps are as follows:
1)将未发生弹性变形的细胞基底荧光图作为参考图像F(x,y),发生弹性变形的细胞基底荧光图作为变形图像G(x,y);设定采样间距为S,分别在参考图像F(x,y)和变形图像G(x,y)上以S为边长划分规则的方形采样网格(如图2所示),单位为像素;1) Take the cell base fluorescence image without elastic deformation as the reference image F(x, y), and the cell base fluorescence image with elastic deformation as the deformed image G(x, y); set the sampling interval as S, respectively in the reference On the image F(x, y) and the deformed image G(x, y), divide the regular square sampling grid (as shown in Figure 2) with S as the side length, and the unit is pixel;
2)分别以每个采样点(α,β)为中心,在参考图像F(x,y)上设定边长为(2N+1)的方形相关子区fα,β(x,y),在变形图像G(x,y)上选择边长为(2M+1)的方形搜索区域Gα,β(x,y),其中N的取值范围一般为15~30之间的任意整数(其单位为像素),而M的取值范围一般为20~80之间的任意整数(其单位也为像素),且M>N;2) With each sampling point (α, β) as the center, set a square related sub-area f α , β (x, y) with side length (2N+1) on the reference image F(x, y) , select a square search area G α, β (x, y) with a side length of (2M+1) on the deformed image G(x, y), where the value range of N is generally any integer between 15 and 30 (its unit is pixel), and the value range of M is generally any integer between 20 and 80 (its unit is also pixel), and M>N;
3)根据参考图像F(x,y)和变形图像G(x,y)的数字图像灰度分布结构表f(x,y)和g(x,y)(如表1、表2所示),利用递推方法分别建立参考图像F(x,y)和变形图像G(x,y)的图像灰度全局求和结构表Sf、Sg及图像能量全局求和结构表 如表3~表6所示,其递推方式如下:3) According to the digital image grayscale distribution structure table f(x, y) and g(x, y) of the reference image F(x, y) and the deformed image G(x, y) (as shown in Table 1 and Table 2 ), using the recursive method to establish the global summation structure table Sf, Sg and the global summation structure table of the image energy of the reference image F(x, y) and the deformed image G(x, y) respectively As shown in Table 3 to Table 6, the recursive method is as follows:
Sf(x,y)=f(x,y)+Sf(x-1,y)+Sf(x,y-1)-Sf(x-1,y-1), (1)S f (x, y) = f (x, y) + S f (x-1, y) + S f (x, y-1) - S f (x-1, y-1), (1)
Sg(x,y)=g(x,y)+Sg(x-1,y)+Sg(x,y-1)-Sg(x-1,y-1), (3)S g (x, y) = g (x, y) + S g (x-1, y) + S g (x, y-1) - S g (x-1, y-1), (3)
其中,当x,y≤0时, Among them, when x, y≤0,
表1 参考数字图像灰度分布结构表f(x,y)Table 1 Reference digital image gray distribution structure table f(x, y)
表2 变形后数字图像灰度分布结构表g(x,y)Table 2 Deformed digital image gray distribution structure table g(x, y)
表3 参考图相灰度求和结构表Sf Table 3 The reference image gray level summation structure table S f
表4 变形图相灰度求和结构表Sg Table 4 Deformed image phase gray summation structure table S g
表5 参考图像能量求和结构表 Table 5 Reference image energy summation structure table
表6 参考图像能量求和结构表 Table 6 Reference image energy summation structure table
上述各表格中,p、q、w、H均为参考的图像参考子区fα,β(x,y)与相应搜索区域Gα,β(x,y)内任意点的取值,其单位为像素;In the above-mentioned tables, p, q, w, and H are the values of any point in the reference image reference sub-area f α, β (x, y) and the corresponding search area G α, β (x, y). The unit is pixel;
4)运用递推方法,根据参考图像F(x,y)和变形图像G(x,y)的数字图像灰度分布结构表f(x,y)和g(x,y),计算以采样点(α,β)为中心的参考图像的相关子区fα,β(x,y)与相应变形图像的搜索区域Gα,β(x,y)之间的互相关系数矩阵Pα,β,进而得到互相关系数矩阵Pα,β快速递推关系式为:4) Using the recursive method, according to the digital image gray distribution structure table f(x, y) and g(x, y) of the reference image F(x, y) and the deformed image G(x, y), calculate the sampling The cross-correlation coefficient matrix P α , β , and then get the cross-correlation coefficient matrix P α, and the fast recursive relation of β is:
Pα+S,β(u,v)=Pα,β(u,v)-Iα-D,β(u,v)+Iα,β(u,v), (5)P α+S,β (u,v)=P α,β (u,v)-I α-D,β (u,v)+I α,β (u,v), (5)
令
其中,(u,v)表示参考图像的相关子区fα,β(x,y)中采样点(α,β)在变形图像的搜索区域Gα,β(x,y)中的位移(如图2所示);D是相关子区fα,β(x,y)的边长,D=2N+1;Among them, (u, v) represents the displacement of the sampling point (α, β) in the relevant sub-region f α, β (x, y) of the reference image in the search area G α, β (x, y) of the deformed image ( As shown in Figure 2); D is the side length of the relevant sub-area f α, β (x, y), D=2N+1;
5)根据步骤3)和步骤4)的结果,计算参考图像的相关子区fα,β(x,y)与相应变形图像的搜索区域Gα,β(x,y)的变形子区gα,β(x,y)之间的零均值归一化互相关系数矩阵(Zero-normalized cross-correlation coefficient,ZNCC),该零均值归一化互相关系数矩阵Cα,β(u,v)为:5) According to the results of step 3) and step 4), calculate the relevant sub-area f α, β (x, y) of the reference image and the deformed sub-area g of the search area G α, β (x, y) of the corresponding deformed image The zero-normalized cross-correlation coefficient matrix (ZNCC) between α, β (x, y), the zero-normalized cross-correlation coefficient matrix C α, β (u, v )for:
令
其中,P(α,β;u,v)为图像参考子区fα,β(x,y)与相应搜索区域Gα,β(x,y)之间的互相关系数矩阵;F(α,β)为参考图像灰度平方和;G(α,β;u,v)为变形图像灰度平方和;Among them, P(α, β; u, v) is the cross-correlation coefficient matrix between the image reference sub-area f α, β (x, y) and the corresponding search area G α, β (x, y); F(α , β) is the gray-scale sum of the reference image; G(α, β; u, v) is the gray-scale sum of the deformed image;
公式(7)可由标准的零均值归一化互相关系数表达式经化简得到下式:Formula (7) can be simplified from the standard zero-mean normalized cross-correlation coefficient expression to obtain the following formula:
上述公式中,和分别表示参考图像灰度和变形图像灰度的均值;In the above formula, and respectively represent the mean value of the reference image grayscale and the deformed image grayscale;
6)采用基于梯度的亚像素位移定位算法,在步骤5)中的ZNCC系数矩阵最大峰值所在位置附近进行亚像素插值运算,这样可以把荧光弹性基底的位移测量精度由整像素水平延伸至亚像素水平,即求得参考图像中采样点(α,β)在变形图像中的准确位置为:6) Using a gradient-based sub-pixel displacement positioning algorithm, a sub-pixel interpolation operation is performed near the position of the maximum peak value of the ZNCC coefficient matrix in step 5), so that the displacement measurement accuracy of the fluorescent elastic substrate can be extended from the whole pixel level to the sub-pixel level Level, that is, to obtain the exact position of the sampling point (α, β) in the reference image in the deformed image is:
上式中,(Uα,β,Vα,β)表示采样点(α,β)在变形图像中的总位移大小,(uα,β,vα,β)是由步骤5)中的零均值归一化相关系数矩阵Cα,β(u,v)中最大元素所确定的整像素位移,(Δuα,β,Δvα,β)是(uα,β,vα,β)相应的亚像素位移;In the above formula, (U α, β , V α, β ) represents the total displacement of the sampling point (α, β) in the deformed image, and (u α, β , v α, β ) is derived from step 5) The integer pixel displacement determined by the largest element in the zero-mean normalized correlation coefficient matrix C α,β (u,v), (Δu α,β ,Δv α,β ) is (u α,β ,v α,β ) The corresponding sub-pixel displacement;
7)重复步骤4)~步骤6),计算所有采样点在变形后图像中的准确位置,进而得到整张变形图像位移场。7) Repeat steps 4) to 6) to calculate the exact positions of all sampling points in the deformed image, and then obtain the displacement field of the entire deformed image.
上述步骤4)中,互相关系数矩阵Pα,β快速递推关系式通过以下步骤得到:In the above step 4), the cross-correlation coefficient matrix P α, β fast recursive relation is obtained by the following steps:
①对于采样点(α,β),令参考图像的相关子区fα,β(x,y)与相应的变形图像的搜索区域Gα,β(x,y)之间构成的互相关系数矩阵Pα,β为:① For the sampling point (α, β), let the correlation coefficient formed between the relevant sub-region f α, β (x, y) of the reference image and the search area G α, β (x, y) of the corresponding deformed image The matrix P α, β is:
②同理,对于与采样点(α,β)相邻的采样点(α+S,β)而言,其对应的相关子区fα+S,β(x,y)与相应的搜索区域Gα+S,β(x,y)之间的互相关系数矩阵Pα+S,β可以表示为:②Similarly, for the sampling point (α+S, β) adjacent to the sampling point (α, β), its corresponding relevant sub-area f α+S, β (x, y) and the corresponding search area The cross-correlation coefficient matrix P α+S, β between G α+S , β (x, y) can be expressed as:
③将上述两个互相关系数矩阵Pα,β和Pα+S,β进行对比后,可以得到:③ After comparing the above two cross-correlation coefficient matrices P α, β and P α+S, β , we can get:
其中,令
显然,将Jα,β(u,v)与公式(6)进行对比后可知,Jα,β(u,v)=Iα-D,β(u,v),D是相关子区fα,β(x,y)的边长,即D=2N+1;Obviously, after comparing J α, β (u, v) with formula (6), it can be seen that J α, β (u, v) = I α-D, β (u, v), D is the relevant sub-area f α, the side length of β (x, y), namely D=2N+1;
④由上述步骤中各式可建立如下快速递推关系:④ From the above steps, the following fast recursive relationship can be established:
Pα+S,β(u,v)=Pα,β(u,v)-Iα-D,β(u,v)+Iα,β(u,v)。P α+S,β (u,v)=P α,β (u,v)-I α-D,β (u,v)+I α,β (u,v).
上述步骤5)中,互相关系数矩阵P(α,β;u,v)根据步骤4)中的互相关系数矩阵Pα,β快速递推关系式可以得到:In the above-mentioned step 5), the cross-correlation coefficient matrix P (α, β; u, v) according to the cross-correlation coefficient matrix P α in the step 4), the fast recursive relational expression of β can be obtained:
公式(7)中的Q(α,β;u,v)、F(α,β)和G(α,β;u,v)可以通过快速查询步骤3)中预先建立的四个图像灰度、图像能量全局求和结构表(表3~表6)得到,即:Q(α, β; u, v), F(α, β) and G(α, β; u, v) in formula (7) can quickly query the four pre-established image gray levels in step 3) , Image energy global summation structure table (table 3~table 6) obtains, namely:
上述步骤6)中,亚像素位移(Δuα,β,Δvα,β)为:In the above step 6), the sub-pixel displacement (Δu α, β , Δv α, β ) is:
上式中,和分别表示在u和v方向上灰度的一阶梯度,灰度梯度算子取为[1/12,-8/12,0,8/12,-1/12],这时:In the above formula, and represent the first-order gradient of the grayscale in the u and v directions respectively, and the grayscale gradient operator is taken as [1/12, -8/12, 0, 8/12, -1/12], then:
下面通过具体实施例对本发明的测量方法进行进一步的描述。The measuring method of the present invention will be further described below through specific examples.
实施例一:如图3~图6所示,给出的一组细胞变形图像,其图像尺寸为1027×533像素,当参考子区边长为40和60个像素时的计算效率测试结果如表7、表8所示,Example 1: As shown in Figures 3 to 6, a set of cell deformation images is given, the image size is 1027 × 533 pixels, and the calculation efficiency test results when the side length of the reference sub-region is 40 and 60 pixels are as follows As shown in Table 7 and Table 8,
表7 传统数字图像相关方法与本发明的测量方法计算时间之比(即加速比)Table 7 Traditional digital image correlation method and the ratio (being speed-up ratio) of measuring method calculation time of the present invention
表8 传统数字图像相关方法与本发明的测量方法计算时间之比(即加速比)Table 8 The traditional digital image correlation method and the ratio (i.e. the acceleration ratio) of the measurement method calculation time of the present invention
从上述两个表中可以看到,当搜索半径介于10~50个像素,采样网格边长为5~20个像素时,传统数字图像相关方法与本发明的测量方法计算时间之比(即加速比)大约在10~50之间变化,这表明本发明的测量方法能够较传统数字图像相关方法提高计算效率大约10到50倍。特别是当采样网格边长减小时,计算效率尤为突出,这一特点预示着本发明的测量方法更适于高时空分辨率的细胞原位主动变形测量。As can be seen from the above two tables, when the search radius is between 10 to 50 pixels and the sampling grid side length is 5 to 20 pixels, the ratio of the traditional digital image correlation method to the measurement method calculation time of the present invention ( That is, the speedup ratio) varies between about 10 and 50, which indicates that the measurement method of the present invention can improve the calculation efficiency by about 10 to 50 times compared with the traditional digital image correlation method. Especially when the side length of the sampling grid is reduced, the calculation efficiency is particularly prominent, which indicates that the measurement method of the present invention is more suitable for in-situ active deformation measurement of cells with high temporal and spatial resolution.
上述各实施例仅用于说明本发明,凡是在本发明技术方案的基础上进行的等同变换和改进,均不应排除在本发明的保护范围之外。The above-mentioned embodiments are only used to illustrate the present invention, and all equivalent transformations and improvements based on the technical solutions of the present invention should not be excluded from the protection scope of the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010170691 CN101813693A (en) | 2010-05-06 | 2010-05-06 | Cell in-situ active deformation measurement method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010170691 CN101813693A (en) | 2010-05-06 | 2010-05-06 | Cell in-situ active deformation measurement method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101813693A true CN101813693A (en) | 2010-08-25 |
Family
ID=42621003
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201010170691 Pending CN101813693A (en) | 2010-05-06 | 2010-05-06 | Cell in-situ active deformation measurement method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101813693A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101980304A (en) * | 2010-10-20 | 2011-02-23 | 北京大学 | A method for measuring deformation of three-dimensional digital volume images |
CN103234454A (en) * | 2013-04-23 | 2013-08-07 | 合肥米克光电技术有限公司 | Self calibration method for image measuring instrument |
CN105232087A (en) * | 2015-11-05 | 2016-01-13 | 无锡祥生医学影像有限责任公司 | Ultrasonic elastic imaging real-time processing system |
CN110264490A (en) * | 2019-08-15 | 2019-09-20 | 成都新西旺自动化科技有限公司 | A kind of sub-pixel precision edge extracting method applied in NI Vision Builder for Automated Inspection |
CN110779454A (en) * | 2019-10-10 | 2020-02-11 | 北京科技大学 | Improved digital image correlation method based on double-channel structure speckle cross-correlation algorithm |
WO2020155324A1 (en) * | 2019-02-02 | 2020-08-06 | 东南大学 | Multimodal biomechanical microscope and measurement method |
-
2010
- 2010-05-06 CN CN 201010170691 patent/CN101813693A/en active Pending
Non-Patent Citations (2)
Title |
---|
《Meas. Sci. Technol.》 20100125 Jianyong Huang等 A high-efficiency digital image correlation method based on a fast recursive scheme 第1-12页 第21卷, * |
《Optics and Lasers in Engineering》 20100113 Jianyong Huang等 High-efficiency cell-substrate displacement acquisition via digital image correlation method using basis functions 第1058-1066页 第48卷, * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101980304A (en) * | 2010-10-20 | 2011-02-23 | 北京大学 | A method for measuring deformation of three-dimensional digital volume images |
CN103234454A (en) * | 2013-04-23 | 2013-08-07 | 合肥米克光电技术有限公司 | Self calibration method for image measuring instrument |
CN103234454B (en) * | 2013-04-23 | 2016-03-30 | 合肥米克光电技术有限公司 | A kind of self-calibrating method of image measurer |
CN105232087A (en) * | 2015-11-05 | 2016-01-13 | 无锡祥生医学影像有限责任公司 | Ultrasonic elastic imaging real-time processing system |
CN105232087B (en) * | 2015-11-05 | 2018-01-09 | 无锡祥生医疗科技股份有限公司 | Ultrasonic elastograph imaging real time processing system |
WO2020155324A1 (en) * | 2019-02-02 | 2020-08-06 | 东南大学 | Multimodal biomechanical microscope and measurement method |
CN110264490A (en) * | 2019-08-15 | 2019-09-20 | 成都新西旺自动化科技有限公司 | A kind of sub-pixel precision edge extracting method applied in NI Vision Builder for Automated Inspection |
CN110264490B (en) * | 2019-08-15 | 2019-12-10 | 成都新西旺自动化科技有限公司 | sub-pixel precision edge extraction method applied to machine vision system |
CN110779454A (en) * | 2019-10-10 | 2020-02-11 | 北京科技大学 | Improved digital image correlation method based on double-channel structure speckle cross-correlation algorithm |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101813693A (en) | Cell in-situ active deformation measurement method | |
CN114254561B (en) | Waterlogging prediction method, system and storage medium | |
Martiel et al. | Measurement of cell traction forces with ImageJ | |
CN107590354B (en) | Simulation method and real-time computing device of surface runoff confluence based on stable water flow field | |
CN106372749A (en) | Ultrashort-term photovoltaic power prediction method based on cloud change analysis | |
CN106679620B (en) | A kind of regional land subsidence spatio-temporal prediction method | |
CN101105489B (en) | Soil infiltration performance real-time automatic measuring system | |
CN103217238B (en) | The High-precision display method of pressure sensitive coating measurement result | |
Wei et al. | Study on the estimation of precipitation resources for rainwater harvesting agriculture in semi-arid land of China | |
CN111275744B (en) | Non-contact vibration frequency measurement method based on deep learning and image processing | |
CN101980304A (en) | A method for measuring deformation of three-dimensional digital volume images | |
Plant et al. | The effect of bathymetric filtering on nearshore process model results | |
CN113553782A (en) | Downscaling method for forecasting wind speed | |
CN115617935A (en) | A fusion model-based method for downscaling groundwater storage deviations | |
CN116611702A (en) | Integrated learning photovoltaic power generation prediction method for building integrated energy management | |
CN105258642B (en) | Based on the relevant real-time optical extensometer measurement method of digital picture | |
Moussiopoulos et al. | Application of the improved version of CONDOR to the Greater Thessaloniki area | |
CN106443735A (en) | Beidou high-precision measurement method based on comprehensive analysis method | |
CN114581729A (en) | A high-score remote sensing impervious surface extraction method based on weakly supervised learning | |
CN117933095B (en) | A real-time inversion and assimilation method of surface emissivity based on machine learning | |
CN110210300A (en) | A kind of fusion multispectral image sky-spectrum information urban construction sub-pixed mapping localization method | |
Zech et al. | End-to-end learning of representative PV capacity factors from aggregated PV feed-ins | |
CN112528943A (en) | SAR image ocean target detection method based on entropy modulation SLIC | |
CN104616272A (en) | Iterative displacement field smoothing method applicable to digital image correlation | |
CN114580114A (en) | Concrete prefabricated part structure deformation measuring method and system based on artificial intelligence |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20100825 |