CN101813554B - 可在同一模型上进行测量的进气道实验装置及工作方法 - Google Patents

可在同一模型上进行测量的进气道实验装置及工作方法 Download PDF

Info

Publication number
CN101813554B
CN101813554B CN2010101348678A CN201010134867A CN101813554B CN 101813554 B CN101813554 B CN 101813554B CN 2010101348678 A CN2010101348678 A CN 2010101348678A CN 201010134867 A CN201010134867 A CN 201010134867A CN 101813554 B CN101813554 B CN 101813554B
Authority
CN
China
Prior art keywords
air intake
intake duct
air inlet
air
measuring section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010101348678A
Other languages
English (en)
Other versions
CN101813554A (zh
Inventor
李博
梁德旺
黄国平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN2010101348678A priority Critical patent/CN101813554B/zh
Publication of CN101813554A publication Critical patent/CN101813554A/zh
Application granted granted Critical
Publication of CN101813554B publication Critical patent/CN101813554B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

可在同一模型上进行测量的进气道实验装置及工作方法,涉及亚声速和超声速进气道技术领域。本发明的飞机机身上设置进气口,飞机机身上靠近进气口处设置附面层隔道,位于进气道内通道处的飞机机身上安装内置盒式六分量应变天平,位于机身测量段处的飞机机身内壁上分别均布进气道出口总压测耙、静压孔,总压测耙前端和静压孔均位于进气道出口截面、靠近飞机机身的尾部;机身测量段的尾部出口处设置流量调节锥,流量调节锥通过驱动螺杆与步进电机连接。本发明可在同一套模型上进行进气道性能和阻力测量的实验技术,解决目前飞机设计时无法获知进气道的真实阻力的问题,可用于不同进气道方案的阻力特性对比分析,从而获得飞机的真实推阻特性。

Description

可在同一模型上进行测量的进气道实验装置及工作方法
技术领域
本发明涉及的是一种可在同一模型上进行性能和阻力测量的进气道实验技术,属于亚声速和超声速进气道技术领域、空气动力学实验技术领域。
背景技术
飞机动力装置的性能与进气道的工作特性关系很大,进气道性能的好坏直接影响到发动机所能产生的推力的大小以及发动机能否进行正常工作。长期以来,研究人员一直偏重于提高进气道的内流气动性能和进气道出口的流场品质,对进气道阻力特性的研究较少,而且在进气道性能研究实验中一般不测量阻力,通常采用理论分析法计算进气道的附加阻力并对发动机推力进行修正。
近年来,出于提高飞机气动性能和经济性的考虑,减阻气动布局和减阻方法等方面的研究得到了重视。作为飞机的关键部件之一,进气道不但影响全机的气动布局,而且对航空发动机的台架推力与安装推力的换算乃至对全机的推阻特性都有重要的影响。因此,进气道的阻力不容忽视,带进气道的飞机模型风洞实验中,所测量的模型气动力和力矩都包括由于进气道内流引起的气动力分量。
通常,进气道阻力划可分成内部阻力和外部阻力两部分。在飞机模型的气动力测量实验中,对进气道一般采用通气模型或堵锥模型(不通气模型),其中通气模型用来测定在进气道自由通流情况下飞机的内外流气动力,不通气模型则把进气道进口堵死并设计成尖劈或尖锥状来测量飞机的外部气动力。
由于在真实飞行条件下,航空发动机是以一定转速工作的,进气道出口具有一定的压力即反压,反压的大小要大于飞机前方自由来由的静压。当发动机工况变化时,反压也发生变化,此时进气道出口气流参数和气动力也相应发生变化,所以进气道的阻力应是在出口有一定反压情况下的阻力。
而目前在飞机模型风洞实验中所采用的气动力测量方法,不管是通气模型还是不通气模型,都无法测得进气道真实的内外流阻力,所测得的阻力都不是发动机在实际工作状态时进气道的真实阻力。因此实验所测得的飞机气动力,也与实际工作条件下飞机的气动力有很大差异。
发明内容
本发明目的是提供一种可在同一套模型上进行进气道性能和阻力测量的实验技术,该方法可应用于亚声速、超声速进气道,实验模型可以是全机模型,也可以是只包含前机身/进气道在内的模型。本发明可以解决目前飞机设计时无法获知进气道的真实阻力的问题,可用于不同进气道方案的阻力特性对比分析,从而获得飞机的真实推阻特性。
本发明为实现上述目的,采用如下技术方案:
可在同一模型上进行测量的进气道实验装置,包括飞机机身、进气口、附面层隔道、进气道内通道、内置盒式六分量应变天平、进气道出口总压测耙、机身测量段、流量调节锥、步进电机、支撑底座、风洞支撑、若干个静压孔,飞机机身上设置进气口,飞机机身上靠近进气口处设置附面层隔道,进气口向机身尾部延伸依次进入进气道内通道和机身测量段,位于进气道内通道处的飞机机身上安装内置盒式六分量应变天平,位于机身测量段处的飞机机身内壁上分别均布进气道出口总压测耙、静压孔,总压测耙前端和静压孔均位于进气道出口截面、靠近飞机机身的尾部;机身测量段的尾部出口处设置流量调节锥,流量调节锥通过驱动螺杆与步进电机连接;内置盒式六分量应变天平与步进电机分别设置在支撑底座上,支撑底座设置在风洞支撑上。
本发明的进气道内通道、机身测量段、流量调节锥位于同一轴线上。
本发明的静压孔为8个、总压测耙探针为41个。
基于可在同一模型上进行测量的进气道实验装置的工作方法,包括如下步骤:
第一步:控制步行电机,使流量调节锥沿轴向移动,改变了机身测量段出口面积大小,使进气道出口反压改变,利用进气道出口总压测耙测得不同锥位时进气道出口的总压分布,利用静压孔测得不同锥位时的静压值,从而计算得到进气道性能参数;
第二步:通过内置盒式六分量应变天平可测量风洞实验时模型所受的气动力;
第三步:根据进气道和发动机的共同工作匹配要求,可计算求得匹配点时进气道的性能参数,并可获得其性能参数随流量系数的变化曲线。
本发明采用上述技术方案,与现有技术相比具有如下的优点:
1)利用本发明可以在同一套模型上进行进气道出口性能和阻力测量实验,避免了加工多个模型,而且目前飞机进气道的风洞模型实验都无法测量阻力,测阻力的飞机模型无法测量进气道出口性能。
2)本发明可以在一次风洞吹风中同时完成进气道出口性能和阻力测量,也可以分两次吹风完成,即第一次吹风测量进气道出口性能,第二次吹风测量阻力。
3)本发明可以测量进气道在不同流量下(即不同反压下)的阻力,获得其阻力值随流量(或流量系数)的变化曲线,而目前的飞机进气道通流实验只能测得一个流量下的阻力,而且通流情况下的阻力并不是真实工作条件下的阻力。
附图说明
图1是一采用本发明的两侧进气的超声速进气道实验模型剖视图示意图。
图2是一采用本发明的两侧进气的超声速进气道实验模型在风洞中的安装示意图。
图3是进气道实验模型测量段静压孔和总压耙位置示意图。
图4是实验测得的进气道出口反压与流量系数关系曲线示意图。
图5是实验测得的进气道阻力系数与流量系数关系曲线示意图。
图中:1、亚声速或超声速来流,2、飞机机身,3、进气口,4、附面层隔道,5、进气道内通道,6、内置盒式六分量应变天平,7、进气道出口总压测耙,8、模型测量段,9、流量调节锥,10、流量调节锥的步进电机,11、支撑底座,12、风洞支撑,13、静压孔。
具体实施方式
本发明将在下面对照附图给予更全面地说明,各图中所给出的是本发明的一个应用实例,而不应当解释成本发明仅局限于在此所述的应用实例。图中所给飞机进气道模型为带前机身的、有附面层隔道的进气道模型,对于全机模型、无隔道进气道、有无机翼模型也同样适用,本应用实例为两侧进气方式,对于腹下进气、背部进气、头部进气,以及单通道(单发动机)、双通道(双发动机)进气道,本发明也可以予以实施。
一种可在同一模型上进行测量的进气道实验装置,其特征在于包括飞机机身2、进气口3、附面层隔道4、进气道内通道5、内置盒式六分量应变天平6、进气道出口总压测耙7、机身测量段8、流量调节锥9、步进电机10、支撑底座11、风洞支撑12、若干个静压孔13,飞机机身2上设置进气口3,飞机机身2上靠近进气口3处设置附面层隔道4,进气口3向机身尾部延伸依次进入进气道内通道5和机身测量段8,位于进气道内通道5处的飞机机身2上安装内置盒式六分量应变天平6,位于机身测量段8处的飞机机身2内壁上分别均布进气道出口总压测耙7、静压孔13,总压测耙前端和静压孔13均位于进气道出口截面、靠近飞机机身2的尾部;机身测量段8的尾部出口处相对设置流量调节锥9,流量调节锥9通过驱动螺杆与步进电机10连接;内置盒式六分量应变天平6与步进电机10分别设置在支撑底座11上,支撑底座11设置在风洞支撑12上。
进气道内通道5、机身测量段8、流量调节锥9位于同一轴线上。
静压孔13为8个、总压测耙探针为41个。
基于本发明的可在同一模型上进行测量的进气道实验装置的工作方法,包括如下步骤:
第一步:控制步行电机10,使流量调节锥9沿轴向移动,改变了机身测量段8出口面积大小,使进气道出口反压改变,利用进气道出口总压测耙7测得不同锥位时进气道出口的总压分布,利用静压孔13测得不同锥位时的静压值,从而计算得到进气道性能参数,如总压恢复系数σ和总压畸变指数DC60
其中,总压恢复系数σ其定义为进气道出口截面平均总压与自由流总压之比值,公式如下:
σ = p e * ‾ p ∞ *
式中,p *为自由流来流总压,
Figure GSA00000067080100052
为进气道出口截面平均总压,采用流量平均等方法计算。流量平均公式计算如下:
式中,
Figure GSA00000067080100055
为第j环面上的流量,
Figure GSA00000067080100056
为第j环面上的平均总压。
总压畸变指数DC60的定义为
DC 60 = p e * ‾ 60 - p e * ‾ q e ‾
式中,为进气道出口截面60°扇形中平均总压最低值,
Figure GSA00000067080100063
为进气道出口截面平均总压,为进气道出口截面平均动压头。
第二步:通过内置盒式六分量应变天平6可测量风洞实验时模型所受的气动力:实验时,模型感受到的气动力通过应变天平转化为电信号,通过计算机进行数据采集和处理,将天平输出的电信号转化为升力L和阻力D的大小,从而求出模型的升阻力系数。
其中,升力系数定义为
C L = L 1 2 ρ ∞ v ∞ 2 A ref
阻力系数定义为
C D = D 1 2 ρ ∞ v ∞ 2 A ref
式中,L为升力,D为阻力,ρ为来流密度,v为来流速度,Aref为升阻力系数的计算参考面积。
第三步:根据进气道和发动机的共同工作匹配要求,可计算求得匹配点时进气道的性能参数,并可获得其性能参数随流量系数的变化曲线。
图1示出一采用本发明的两侧进气的超声速进气道实验模型剖视图示意图。超声速来流1经过飞机机身头部2,分两股进入进气道进口3,经靠近机身表面的附面层隔道4排出机身附面层,两侧气流经过进气道内通道5后汇合,内置式六分量应变天平6安装在模型内部,进气道出口总压测耙7安装在机身测量段8上,进气道出口总压测耙7的探针前端位于进气道出口截面,机身测量段出口通过流量调节锥9调节流通面积大小。
图2示出一采用本发明的两侧进气的超声速进气道实验模型在风洞中的安装示意图。流量调节锥9通过步进电机10驱动螺杆转动可使调节锥沿进气道出口轴线前后移动,流量调节锥及步进电机与实验模型不接触,而是通过支撑底座11固定在风洞支撑12上,保证调节锥所受气动力不会传到模型与天平上。
图3示出进气道实验模型测量段静压孔和总压耙位置示意图。总压耙7呈米字形布局,耙探针共41根,其中进气道出口中心点一根,其余40根按周向均布8根×径向5根安装,探针径向位置根据等环面积法计算出相应半径。静压孔13与总压探针的周向位置对应并且也按周向均布,静压孔垂直于测量段壁面,孔径0.8~1.0mm。顺流方向看,总压耙面积堵塞比应不大于进气道出口面积的5%。
本发明可以在一次风洞吹风中同时完成进气道出口性能和阻力测量,也可以分两次吹风完成,即第一次吹风测量进气道出口性能,第二次吹风测量阻力。分两次实验时,首先测量进气道出口性能,可获得不同锥位下,即不同流量下的性能曲线,并可获得进气道出口反压Pb与流量系数φ的关系,如图4所示。在测力实验时拆除模型测量段的总压测耙,仅保留进气道出口截面的8个静压孔以测量出口截面平均静压,然后密封模型上的不用的测量孔并进行气密性检查,并对模型表面进行清洁处理。测力实验时,不同锥位的进气道出口反压Pb不同,通过图4的关系换算,可求出对应的流量系数φ,再根据实验测得的阻力系数CD,即可获得进气道阻力系数CD随流量系数φ的变化曲线,如图4所示。
采用本发明时,如果需要比较不同进气道方案的性能差异,只需要更换相应的进气道模块,在相同的实验条件下测试,测量得到的模型的阻力差即为进气道的阻力差。
采用该进气道阻力测量技术,可以同时测量进气道的内部流场特性(如总压恢复特性等)和进气道的阻力特性,由于有流量调节锥进行反压调节,可以真实模拟进气道阻力随流量系数的变化,再通过求进气道特性曲线与发动机工作线的交点,即可获得进气道在发动机匹配点的性能参数和阻力特性。
上述实施例只是用于对本发明的解释,而不能作为对本发明的限制。因此凡是与本发明设计思路相同的实施方式均在本发明的保护范围内。

Claims (4)

1.一种可在同一模型上进行测量的进气道实验装置,其特征在于包括飞机机身(2)、进气口(3)、附面层隔道(4)、进气道内通道(5)、内置盒式六分量应变天平(6)、进气道出口总压测耙(7)、机身测量段(8)、流量调节锥(9)、步进电机(10)、支撑底座(11)、风洞支撑(12)、若干个静压孔(13),飞机机身(2)上设置进气口(3),飞机机身(2)上靠近进气口(3)处设置附面层隔道(4),进气口(3)向机身尾部延伸依次进入进气道内通道(5)和机身测量段(8),位于进气道内通道(5)处的飞机机身(2)上安装内置盒式六分量应变天平(6),位于机身测量段(8)处的飞机机身(2)内壁上分别均布进气道出口总压测耙(7)、静压孔(13),总压测耙(7)前端和静压孔(13)均位于进气道出口截面、靠近飞机机身(2)的尾部;机身测量段(8)的尾部出口处设置流量调节锥(9),流量调节锥(9)通过驱动螺杆与步进电机(10)连接;内置盒式六分量应变天平(6)与步进电机(10)分别设置在支撑底座(11)上,支撑底座(11)设置在风洞支撑(12)上。
2.根据权利要求1所述的可在同一模型上进行测量的进气道实验装置,其特征在于上述进气道内通道(5)、机身测量段(8)、流量调节锥(9)位于同一轴线上。
3.根据权利要求1所述的可在同一模型上进行测量的进气道实验装置,其特征在于上述静压孔(13)为8个、总压测耙(7)探针为41个。
4.基于权利要求1所述的可在同一模型上进行测量的进气道实验装置的工作方法,其特征在于包括如下步骤:
第一步:控制步行电机(10),使流量调节锥(9)沿轴向移动,改变了机身测量段(8)出口面积大小,使进气道出口反压改变,利用进气道出口总压测耙(7)测得不同锥位时进气道出口的总压分布,利用静压孔(13)测得不同锥位时的静压值,从而计算得到进气道性能参数;
第二步:通过内置盒式六分量应变天平(6)可测量风洞实验时模型所受的气动力;
第三步:根据进气道和发动机的共同工作匹配要求,可计算求得匹配点时进气道的性能参数,并可获得其性能参数随流量系数的变化曲线。
CN2010101348678A 2010-03-29 2010-03-29 可在同一模型上进行测量的进气道实验装置及工作方法 Expired - Fee Related CN101813554B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010101348678A CN101813554B (zh) 2010-03-29 2010-03-29 可在同一模型上进行测量的进气道实验装置及工作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010101348678A CN101813554B (zh) 2010-03-29 2010-03-29 可在同一模型上进行测量的进气道实验装置及工作方法

Publications (2)

Publication Number Publication Date
CN101813554A CN101813554A (zh) 2010-08-25
CN101813554B true CN101813554B (zh) 2011-08-24

Family

ID=42620869

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010101348678A Expired - Fee Related CN101813554B (zh) 2010-03-29 2010-03-29 可在同一模型上进行测量的进气道实验装置及工作方法

Country Status (1)

Country Link
CN (1) CN101813554B (zh)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102478451B (zh) * 2010-11-30 2015-01-21 中国航空工业第一集团公司沈阳空气动力研究所 一种高速风洞进气道主动流动控制实验装置
CN102607799B (zh) * 2012-02-10 2014-04-23 南京航空航天大学 一种改变超声速风洞模型实验马赫数的装置及工作方法
CN102692310B (zh) * 2012-05-11 2014-07-16 西北工业大学 一种风洞试验用三孔探针式测压尾耙
CN103048110A (zh) * 2012-12-14 2013-04-17 中国航空工业集团公司沈阳空气动力研究所 一种实现推力转向实验装置及其实验技术
CN103089444B (zh) * 2013-01-25 2014-10-15 西北工业大学 一种减小吸气式脉冲爆震发动机进气道反压的结构
US9884688B2 (en) * 2013-02-14 2018-02-06 Gulfstream Aerospace Corporation Propulsion system using large scale vortex generators for flow redistribution and supersonic aircraft equipped with the propulsion system
CN105069221B (zh) * 2015-08-04 2016-05-11 中国航天空气动力技术研究院 用于超声速进气道优化设计的临界性能计算方法
CN105157948B (zh) * 2015-09-14 2016-08-17 南京航空航天大学 一种适用于超声速/高超声速流道的流量测试系统及测试方法
CN105424309B (zh) * 2015-11-03 2017-12-15 南京航空航天大学 一种单/双涵道模式转换过程气流动态响应试验台
CN105465028B (zh) * 2016-01-05 2017-04-05 农业部南京农业机械化研究所 一种通风机测试用流量调控装置及其使用方法
CN106092495A (zh) * 2016-05-26 2016-11-09 中国人民解放军63820部队吸气式高超声速技术研究中心 风洞试验中飞行器机体阻力的测量方法
CN107655691B (zh) * 2017-08-28 2020-07-10 西北工业大学 一种飞行器进气道喘振锤击波试验装置及方法
CN107830986B (zh) * 2017-11-29 2024-05-07 中国航空工业集团公司沈阳空气动力研究所 一种进气道模型流量调节机构
CN107860552B (zh) * 2017-12-26 2023-10-24 中国空气动力研究与发展中心高速空气动力研究所 一种涡扇发动机短舱溢流阻力的测量装置
CN108760223B (zh) * 2018-08-23 2024-04-09 上海佐竹冷热控制技术有限公司 流道固定装置
CN109186920B (zh) * 2018-09-06 2020-09-18 中国航天空气动力技术研究院 一种冲压发动机进气道节流特性自动化控制风洞试验方法
CN109580161B (zh) * 2018-11-29 2020-09-18 中国航天空气动力技术研究院 一种应用于通气模型内阻测量的低扰流防砸装置
CN109632242B (zh) * 2018-12-17 2020-11-20 中国航天空气动力技术研究院 一种超音速风洞中材料表面阻力测量装置
CN110108439B (zh) * 2019-05-10 2024-03-19 中国空气动力研究与发展中心超高速空气动力研究所 一种用于脉冲风洞的应力波风洞天平
CN110793746B (zh) * 2019-09-10 2024-03-19 中国空气动力研究与发展中心超高速空气动力研究所 用于高超飞行器斜切喷管推力测量的风洞试验装置
CN111044252B (zh) * 2019-12-19 2021-12-07 中国航天空气动力技术研究院 一种高精准度进气道流量测量方法
CN111024361B (zh) * 2019-12-19 2021-12-07 中国航天空气动力技术研究院 一种通气测力试验模型内阻测量装置及测量方法
CN111487029B (zh) * 2020-03-25 2021-11-02 中国空气动力研究与发展中心高速空气动力研究所 流量精确控制的高速风洞进气道节流锥及试验节流装置
CN111487031B (zh) * 2020-04-21 2021-12-10 中国人民解放军空军工程大学 基于微型扇形探针实现三维流场气流角度实时监测的装置与方法
CN111498141B (zh) * 2020-04-21 2021-10-01 中国人民解放军空军工程大学 一种基于微型探针实现气流角度实时监测的方法与装置
CN111537183B (zh) * 2020-05-19 2021-09-24 刘祥 通气模型内阻支撑测量系统
CN112432759B (zh) * 2020-11-10 2023-06-02 北京动力机械研究所 轴对称双通道进气道出口反压调节及流场测量装置
CN112432760B (zh) * 2020-11-10 2023-05-12 北京动力机械研究所 轴对称双通道进气道出口反压调节及流场测量方法
CN112729853B (zh) * 2020-12-24 2023-04-14 中国航空工业集团公司西安飞机设计研究所 一种螺旋桨飞机主发进气口阻力修正方法
CN113155401B (zh) * 2021-02-24 2022-12-20 中国空气动力研究与发展中心空天技术研究所 一种可旋转一字型流量测量装置及测量方法
CN112683485B (zh) * 2021-03-12 2021-06-04 中国空气动力研究与发展中心低速空气动力研究所 一种进气道试验模拟装置及模拟方法
CN113405763B (zh) * 2021-06-11 2022-11-29 中国空气动力研究与发展中心空天技术研究所 一种“3+4+5”米字耙流量计测点布置方法
CN113405805B (zh) * 2021-06-18 2023-03-28 中国航发沈阳发动机研究所 一种考虑进气道附面层的航空发动机进口流量获取方法
CN113479343B (zh) * 2021-07-05 2023-12-19 中国航空工业集团公司沈阳空气动力研究所 一种用于进气道与测力一体化试验方法
CN114414192B (zh) * 2021-12-24 2024-03-01 上海理工大学 喷水推进器进水流道水力性能测试装置及方法
CN114635802A (zh) * 2022-01-17 2022-06-17 南京航空航天大学 超声速进气道自适应试验节流系统及其控制方法
CN115031919B (zh) * 2022-08-10 2022-11-01 中国航空工业集团公司沈阳空气动力研究所 一种连续式风洞二喉道
CN115371933B (zh) * 2022-10-24 2023-03-24 中国航发四川燃气涡轮研究院 一种进气道与飞行器前体之间气动耦合试验方法
CN115493802B (zh) * 2022-11-18 2023-03-10 中国空气动力研究与发展中心空天技术研究所 机体推进一体模型内外流气动力解耦结构及工作安装方法
CN116399548B (zh) * 2023-06-08 2023-08-11 中国空气动力研究与发展中心高速空气动力研究所 进气道内表面气动特性测量试验装置及其安装和试验方法
CN116448374B (zh) * 2023-06-15 2023-08-22 中国航空工业集团公司沈阳空气动力研究所 一种模拟多发干扰的进气道风洞试验方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201688962U (zh) * 2010-03-29 2010-12-29 南京航空航天大学 可在同一模型上进行测量的进气道实验装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2458903B (en) * 2008-04-01 2010-07-28 Rolls Royce Plc Method for determining the total pressure distribution across a fan entry plane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201688962U (zh) * 2010-03-29 2010-12-29 南京航空航天大学 可在同一模型上进行测量的进气道实验装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李博等.高超声速进气道等直隔离段的反压特性研究.《宇航学报》.2008,第29卷(第1期),78-83. *

Also Published As

Publication number Publication date
CN101813554A (zh) 2010-08-25

Similar Documents

Publication Publication Date Title
CN101813554B (zh) 可在同一模型上进行测量的进气道实验装置及工作方法
CN201688962U (zh) 可在同一模型上进行测量的进气道实验装置
Carrier et al. Numerical and experimental aerodynamic investigations of boundary layer ingestion for improving propulsion efficiency of future air transport
CN110937129B (zh) 一种用于涡桨动力无人机飞行性能计算的推阻体系划分方法
CN104848904A (zh) 进气道流量测量系统
CN107436219B (zh) 一种非常规布局形式进排气管路装置
CN116448374B (zh) 一种模拟多发干扰的进气道风洞试验方法
CN107860552A (zh) 一种涡扇发动机短舱溢流阻力的测量装置
CN106092494A (zh) 带动力飞行器推阻特性天地换算方法
CN114018532B (zh) 一种高超声速风洞连续变总压的试验方法
CN115014690A (zh) 一种进气道连续变流量瞬态气动特性风洞测试方法
CN103234730A (zh) 气动性能试验方法及试验装置
CN106092495A (zh) 风洞试验中飞行器机体阻力的测量方法
CN112504610A (zh) 高空螺旋桨低密度风洞试验测试系统及方法
Wakelam et al. Separation control for aeroengine intakes, part 1: low-speed investigation of control strategies
CN112179671A (zh) 一种具有非定常尾迹模拟功能的低压涡轮环形叶栅试验台
CN112268709B (zh) 基于圆锥凹腔的航空发动机动态压力畸变发生器设计方法
CN113252280B (zh) 一种进排气同时模拟的短舱试验装置
Allen et al. An experimental investigation into the impacts of varying the circumferential extent of tip-low total pressure distortion on fan stability
CN109204883B (zh) 一种用于风洞试验的通气短舱
CN214793713U (zh) 一种引射器试验高压气体控制装置
CN113029577B (zh) 一种用于平面叶栅流动模拟装置的扩张段
Graiff et al. Impact of Inlet Conditions on TVF Exit Flow Field
Roadman et al. Large scale gust generation for small scale wind tunnel testing of atmospheric turbulence
CN112729853B (zh) 一种螺旋桨飞机主发进气口阻力修正方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110824

Termination date: 20190329

CF01 Termination of patent right due to non-payment of annual fee