CN101795493B - Satellite onboard processing exchange system suitable for GEO satellite mobile communication system - Google Patents
Satellite onboard processing exchange system suitable for GEO satellite mobile communication system Download PDFInfo
- Publication number
- CN101795493B CN101795493B CN 201010125074 CN201010125074A CN101795493B CN 101795493 B CN101795493 B CN 101795493B CN 201010125074 CN201010125074 CN 201010125074 CN 201010125074 A CN201010125074 A CN 201010125074A CN 101795493 B CN101795493 B CN 101795493B
- Authority
- CN
- China
- Prior art keywords
- output
- module
- data
- input
- sub
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Radio Relay Systems (AREA)
Abstract
Description
技术领域 technical field
发明属于卫星通信技术领域,特别涉及卫星移动通信系统中的星上处理交换系统。The invention belongs to the technical field of satellite communication, in particular to an on-board processing and switching system in a satellite mobile communication system.
背景技术 Background technique
卫星移动通信能够实现真正意义上的全球覆盖,是第三代移动通信系统的重要组成部分。尤其在地面通信手段失效的特殊情况下,卫星移动通信成为唯一的选择,这一点在2008年汶川抗震救灾中表现尤为突出。在奥运通信保障、建国六十周年庆祝等重大活动中,卫星移动通信都发挥了不可替代的重要作用。Satellite mobile communication can achieve true global coverage and is an important part of the third generation mobile communication system. Especially in the special case of failure of ground communication means, satellite mobile communication has become the only choice, which was particularly prominent in the Wenchuan earthquake relief in 2008. Satellite mobile communications have played an irreplaceable and important role in major events such as Olympic communication support and the celebration of the 60th anniversary of the founding of the People's Republic of China.
随着地面网络的发展,3G、4G技术将成为地面通信网络的主要技术手段。为了与地面网络无缝融合,3G、4G技术应用于卫星移动通信逐渐成为必然的发展趋势。与此同时,GEO(地球同步轨道)卫星通信延时较长(单跳传输延时≈0.25秒),如果采用传统的星上透明转发、地面中心站处理的双跳应用模式将导致0.5秒的单向传输延时,无法满足移动用户的需求。从而使得GEO卫星移动通信系统必须采用基于星上处理的单跳通信模式。然而星上资源严格受限,3G、4G通信系统的处理复杂度较高,目前的卫星有效载荷不足以完成所有信号全解调。另一方面,在GEO卫星移动通信系统中存在网内通信和网间通信两类业务,据统计网内业务仅占全网通信业务的10%左右,而只有网内业务才需要在星上实时解调。针对这一特点,可以采用适合于卫星移动通信的星上处理交换新技术来解决性能需求和处理能力之间的矛盾。With the development of terrestrial networks, 3G and 4G technologies will become the main technical means of terrestrial communication networks. In order to seamlessly integrate with the terrestrial network, the application of 3G and 4G technologies to satellite mobile communications has gradually become an inevitable development trend. At the same time, the GEO (Geosynchronous Orbit) satellite communication delay is relatively long (single-hop transmission delay ≈ 0.25 seconds), if the traditional double-hop application mode of transparent forwarding on the satellite and processing by the ground center station will result in a delay of 0.5 seconds One-way transmission delay cannot meet the needs of mobile users. Therefore, the GEO satellite mobile communication system must adopt a single-hop communication mode based on on-board processing. However, the resources on the satellite are strictly limited, and the processing complexity of the 3G and 4G communication systems is relatively high. The current satellite payload is not enough to complete the full demodulation of all signals. On the other hand, in the GEO satellite mobile communication system, there are two types of services, intra-network communication and inter-network communication. According to statistics, the intra-network service only accounts for about 10% of the communication services of the entire network, and only the intra-network service needs to be real-time on the satellite. demodulation. In view of this characteristic, the new technology of on-board processing and switching suitable for satellite mobile communication can be used to solve the contradiction between performance requirements and processing capabilities.
本发明的目的在于提出一种星上资源动态配置、星上透明转发与处理交换相兼容的系统。本发明实现了星上透明转发与星上处理交换两种模式的兼容;设计了一种专用的分层可扩展的交换结构;采用动态配置方案,提高了星上处理资源的利用率。The purpose of the present invention is to propose a system in which resources are dynamically configured on a star and transparent forwarding on a star is compatible with processing and switching. The invention realizes the compatibility of two modes of on-star transparent forwarding and on-star processing and switching; designs a special layered and extensible switching structure; adopts a dynamic configuration scheme, and improves the utilization rate of on-star processing resources.
发明内容 Contents of the invention
本发明的目的在于,提出一种星上资源动态配置、星上透明转发与处理交换相兼容的技术方案。本发明的核心思想是实现星上透明转发与星上处理交换协同工作,网内业务在星上实时处理交换以实现一跳通信,网间业务透明转发到地面网关完成处理,仍然只有一跳延时。本发明设计专用的分层可扩展的星上交换结构,通过动态配置对星上处理资源进行优化配置。The purpose of the present invention is to propose a technical solution for dynamic configuration of on-board resources, transparent forwarding on-board and compatibility of processing and switching. The core idea of the present invention is to realize the collaborative work of on-star transparent forwarding and on-star processing and switching, real-time processing and switching of intra-network services on the star to realize one-hop communication, and transparent forwarding of inter-network services to the ground gateway to complete processing, still only one hop delay hour. The invention designs a special layered and extensible on-star switching structure, and optimizes the configuration of on-star processing resources through dynamic configuration.
本发明的特征在于,含有:波束接收单元、馈电链路发射单元、收信号交换单元、固定配置信号接收处理单元、全局信号接收处理单元、业务交换单元、固定配置信号发射处理单元、全局信号发射处理单元、发信号交换单元、馈电链路接收单元、星上控制单元、信号叠加器以及波束发射单元,都由数字集成电路芯片构成,其中:The present invention is characterized in that it includes: a beam receiving unit, a feeder link transmitting unit, a receiving signal switching unit, a fixed configuration signal receiving and processing unit, a global signal receiving and processing unit, a service switching unit, a fixed configuration signal transmitting and processing unit, a global signal The transmission processing unit, the signal exchange unit, the feeder link receiving unit, the on-board control unit, the signal superimposer and the beam transmitting unit are all composed of digital integrated circuit chips, among which:
波束接收单元,设有:Y个输入端,构成Y个波束通道,每个波束含有多路用户数据,输入Y个波束的全部采样数据YD包括网内和网际两种采样数据,又设有:三路输出端:第一路输出端,共有Y个,输出在所述YD个波束采样数据中经内置的判决模块判决后不需经星上处理的各路数据YD1,第二路输出端,有Y个,输出在所述YD个波束采样数据中经所述判决模块判决后在所述固定配置信号接收处理单元处理范围内的多路数据YD2,第三路输出端,有Y个,输出在所述YD个波束采样数据中经所述判决模块判决后在所述固定配置信号接收处理单元处理能力范围外其余需要做星上处理的多路数据YD3,所述YD=YD1+YD2+YD3;馈电链路发射单元,有Y个数据输入端,与所述波束接收单元的第一路各输出端相连,还设有:星地网管控制信令输入端,以便根据星地网管控制单元的控制信号将多路数据YD1转发到地面站;The beam receiving unit is provided with: Y input terminals, forming Y beam channels, each beam contains multiple user data, and inputting all sampled data Y D of Y beams includes two kinds of sampled data in the network and the Internet, and is provided with : Three output terminals: the first output terminal, Y in total, outputs the data Y D1 of each channel that does not need to be processed on the star after being judged by the built-in judgment module in the Y D beam sampling data, and the second channel There are Y output terminals, which output multi-channel data Y D2 within the processing range of the fixed configuration signal receiving and processing unit after being judged by the decision module in the Y D beam sampling data, and the third output terminal, There are Y ones, and output the multi-channel data Y D3 that needs to be processed on the star after being judged by the judgment module in the Y D beam sampling data, and the remaining multi-channel data that needs to be processed on the satellite is outside the processing capacity of the fixed configuration signal receiving and processing unit. Y D = Y D1 + Y D2 + Y D3 ; the feeder link transmitting unit has Y data input terminals, which are connected with the first output terminals of the beam receiving unit, and are also provided with: satellite-ground network management control signal command input, in order to forward the multi-channel data Y D1 to the ground station according to the control signal of the star-ground network management control unit;
固定配置信号接收处理单元,共有YP个,Y是波束总数,P是每个波束配置的固定配置信号接收处理单元数,从所述波束接收单元的第二路输出端输入自己处理能力范围内供网内处理的第二路数据YD2,输出YP路基带数据;There are YP fixedly configured signal receiving and processing units, Y is the total number of beams, P is the number of fixedly configured signal receiving and processing units configured for each beam, and the input from the second output of the beam receiving unit is within the scope of its own processing capability. The second data Y D2 processed in the network outputs the YP subgrade data;
收信号交换单元,至少一个,设有Y个输入端,分别与所述波束接收单元中第三路输出端的各输出端相连,所述收信号交换单元采用可扩展分层交换结构,含有:一级模块和二级模块共两类模块,用数字集成电路芯片实现,其中:The receiving signal switching unit, at least one, is provided with Y input terminals, which are respectively connected to the output terminals of the third output terminal in the beam receiving unit, and the receiving signal switching unit adopts a scalable layered switching structure, including: a There are two types of modules, the first-level module and the second-level module, which are realized by digital integrated circuit chips, among which:
一级模块,含有N个子一级模块,每个子一级模块由第一级多路选择器和N个第二级多路选择器连接而成,其中,M是所述全局信号接收处理单元的个数,设YD3是在所述YD路采样数据中所述YP个固定配置信号接收处理单元处理能力范围外的用户多路数据中用户的数目,在数值上等于所述用户多路数据的数目,在所述Y个波束通道中传输,第n个所述子一级模块对应的多个波束的采样数据所对应的波束数I=[Y/N],在第n个所述子一级模块中:The first-level module contains N sub-level-1 modules, and each sub-level-1 module is formed by connecting a first-level multiplexer and N second-level multiplexers, wherein, M is the number of the global signal receiving and processing units, and Y D3 is the number of users in the multi-channel data of users outside the processing capability range of the YP fixed configuration signal receiving and processing units in the YD channel sampling data, Numerically equal to the number of multi-channel data of the user, transmitted in the Y beam channels, the number of beams corresponding to the sampling data of multiple beams corresponding to the nth sub-level module I=[Y/ N], in the nth sub-level module:
第一级多路选择器只有一个,有I个输入端,分别输入以下数据:Inputn×1、…、Inputn×1、...、Inputn×1,其中,下标n表示所述第一级多路选择器的序号,n=1、2、...、N、下标i表示第n个所述一级子模块中所包含的第i个波束输入端中采样数据序号,共有N个,输出端总数有N2个,The first-stage multiplexer has only one, and I input terminals are arranged to input the following data respectively: Input n×1 ,…, Input n×1 ,…, Input n×1 , wherein, subscript n represents described The serial number of the first-stage multiplexer, n=1, 2, ..., N, the subscript i represents the serial number of the sampled data in the i-th beam input terminal included in the n-th first-level submodule, There are N in total, and the total number of output terminals is N 2 .
N个第二级多路选择器,每一个第二级多路选择器有N个对应于所述第一级多路选择器的N个输出端,有N个目的地址输出端,所述N个第二级多路选择器总计共有N2个目的地址输出端,用Road1、Road2、...、表示,N second-stage multiplexers, each second-stage multiplexer has N output terminals corresponding to the first-stage multiplexer, N destination address output terminals, and the N A total of N 2 destination address output terminals in the second stage multiplexer, with Road 1 , Road 2 , ..., express,
二级模块,由N个子二级模块构成,每个子二级模块是一个多路选择器,每一个多路选择器的各输入端与所述一级模块中对应序号的子一级模块内N个第二级多路选择器的各输出端相连,共计N2个,整个二级模块总共输入N×N2个目的地址,每一个作为所述子二级模块的所述多路选择器n输出N2个目的地址,表示为:Output1×1、Output1×2、...、Output1×n、...、 The secondary module is composed of N sub-secondary modules, and each sub-secondary module is a multiplexer, and each input terminal of each multiplexer is connected to the sub-level N in the sub-level module of the corresponding serial number in the first-level module. Each output end of a second-stage multiplexer is connected, and there are N 2 in total, and the whole secondary module inputs N×N 2 destination addresses in total, and each is used as the multiplexer n of the sub-secondary module. Output N 2 destination addresses, expressed as: Output 1×1 , Output 1×2 ,..., Output 1×n ,...,
所述收信号交换单元按以下步骤完成输入数据的调度,以完成输入数据与输出数据之间的交换,The receiving signal exchange unit completes the scheduling of input data according to the following steps, so as to complete the exchange between input data and output data,
步骤(1).所述第n个子一级模块输入共I路波束内采样数据中的用户数据个数,Step (1). The nth sub-level module inputs the number of user data in the sampling data in the beam of the total I road,
步骤(2).判别是否存在X1≤Y1,其中:Step (2). Determine whether X 1 ≤ Y 1 exists, where:
X1是所述一级模块内输入到所述第n个子一级模块的共I路波束内的用户数据个数,X 1 is the number of user data input to the total I beams of the nth sub-level module in the first level module,
Y1是所述二级模块内对应于所述第n个子一级模块的所述子二级模块内空余的输出端口数,在数字上等于目的地址个数,Y 1 is the number of vacant output ports in the sub-level module corresponding to the nth sub-level module in the second level module, which is numerically equal to the number of destination addresses,
若:X1≤Y1,则所述第n个子一级模块内所述第一级多路选择器直接输出所述共I路波束内采样数据中的用户数据个数X1,所述每一个用户数据都包含有目的地址在内,直接通过对应于所述子二级模块序号的第n个所述第n个子一级模块内第二级多路选择器的对应序号的所述子二级模块输出,If: X 1 ≤ Y 1 , then the first-stage multiplexer in the nth sub-level-1 module directly outputs the number of user data X 1 in the sampling data in the total I beams, and each A piece of user data includes the destination address, and directly passes through the sub-two corresponding to the serial number of the second-stage multiplexer in the n-th sub-level one module corresponding to the sub-secondary module serial number. level module output,
若:X1>Y1,If: X 1 >Y 1 ,
则:所述一级模块内的第一级多路选择器复制k份的所述共I路波束内的用户数据个数向所述一级模块内N个所述第二级多路选择器中顺序对应的k个第二级多路选择器的输入端转发,其中:1≤k≤N,该条件不等式从第一个模块开始计算,在该不等式条件未满足前顺序向下累加,直至求出k值,Then: the first-level multiplexer in the first-level module copies the number of user data in the total I beams of k shares to N second-level multiplexers in the first-level module The input terminals of the k second-stage multiplexers corresponding to the sequence in the sequence are forwarded, wherein: 1≤k≤N, the conditional inequality starts to be calculated from the first module, and accumulates downwards in order before the condition of the inequality is not satisfied until the value of k is obtained.
步骤(3).所述第n个子二级模块接到步骤(2)发来的所述第n个子一级模块输出的对应于所述Inputn×1、…、Inputn×1、...、Inputn×1采样数据的N个地址信号Road1、Road2、...、后,一一对应地直接通过N2个输出端口地址输出第Output1×1、Output1×2、...、Output1×n、...、,个采样数据,整个二级模块输入信号为N个第Road1至第个采样数据,而总输出则有N2个采样数据Output1×1、Output1×2、...、Output1×n、...、 Step (3). The nth sub-level module receives the output of the nth sub-level module from step (2) corresponding to the Input n×1 , ..., Input n×1 , .. ., N address signals Road 1 , Road 2 ,..., Input n×1 sampling data After that, directly output the first Output 1×1 , Output 1×2 , ..., Output 1×n , ..., through the N 2 output port addresses in one-to-one correspondence, sampled data, the input signal of the entire secondary module is N road 1 to road sampled data, and the total output has N 2 sampled data Output 1×1 , Output 1×2 ,..., Output 1×n ,...,
全局信号接收处理单元,共M个把从所述收信号交换单元输入的采样数据处理为基带数据后送到业务交换单元,Global signal receiving and processing units, a total of M processing the sampling data input from the receiving signal switching unit into baseband data and then sending it to the business switching unit,
业务交换单元,用时分总线实现,把从所述固定配置信号接收处理单元收到的基带数据送到所述固定配置信号发射单元,把从所述全局信号发射处理单元收到的数据送到所述全局信号发射处理单元,The service switching unit is implemented by a time-division bus, and sends the baseband data received from the fixed configuration signal receiving and processing unit to the fixed configuration signal transmitting unit, and sends the data received from the global signal transmitting and processing unit to the The global signal transmission processing unit,
固定配置信号发射处理单元,对每个波束配置Q个,共计YQ个,把接收到的在所述固定配置信号接收处理单元处理能力范围内的基带数据送到所述信号叠加器,The fixed configuration signal transmission processing unit is configured with Q units for each beam, a total of YQ units, and sends the received baseband data within the processing capacity of the fixed configuration signal reception processing unit to the signal superimposer,
全局信号发射处理单元,共L个,把从所述业务交换单元收到的基带数据送到发信号交换单元,A global signal transmission processing unit, L in total, sends the baseband data received from the service switching unit to the signaling switching unit,
发信号交换单元,由发信号交换的一级和二级模块串联而成,其中:The signaling switching unit is composed of the first-level and second-level modules of signaling switching in series, wherein:
发信号交换用的一级模块,由N个子一级模块组成,第n个所述一级交换模块有N2个采样数据,表示为Input′n×1、…、符号“’”表示为发信号交换单元的分路通过一个加法器后再分别送入一个多路选择器,所述的加法器中,第一个加法器的输出,其中一路送到第二个加法器,第二个加法器的输出其中的一路送到第三个加法器,以此类推,一直到第N2个加法器位置,而第n个所述子一级模块中共N2个输出送到第n+1个所述子一级模块中的第一个加法器,所述多路选择器输出N2个地址信号Road1、Road2、...、直接送到发信号交换单元的二级模块对应子二级模块的各输入端,完成N个N2输入到N个N2输出的交换,The first-level module for signal exchange is composed of N sub-level-one modules, The nth primary switching module has N 2 sampled data, expressed as Input' n×1 ,..., The symbol "'" indicates that the branch of the signal switching unit is sent to a multiplexer after passing through an adder. In the adder, the output of the first adder is sent to the second An adder, one of the outputs of the second adder is sent to the third adder, and so on until the N2th adder position, and the nth sub-level module has a total of N2 outputs sent to the first adder in the n+1th sub-level module, and the multiplexer outputs N 2 address signals Road 1 , Road 2 , . . . Directly sent to each input terminal of the secondary module corresponding to the sub-secondary module of the signal exchange unit, and completes the exchange of N N 2 inputs to N N 2 outputs,
发信号交换单元的二级模块,由N个子二级模块构成,子二级模块也是一个多路选择器输出I′路采样数据1≤K≤N,完成N个N2输入到I′个输出的交换,The secondary module of signaling exchange unit is made of N sub-secondary modules, and the sub-secondary module is also a multiplexer output I '
同时,所述发信号交换单元也是一个输入采样数据路数大于输出采样数据路数的非对称结构;At the same time, the signaling exchange unit is also an asymmetric structure in which the number of input sampling data channels is greater than the number of output sampling data channels;
馈电链路接收单元,根据所述星上控制单元发出的星地网管信令把地面站发送上来的一跳采样数据直接送到所述信号叠加器,The feeder link receiving unit directly sends the one-hop sampling data sent by the ground station to the signal superimposer according to the satellite-ground network management signaling sent by the on-board control unit,
信号叠加器,把接收到的地面站采样数据和发信号交换单元送来的采样数据进行叠加,送往波束发射单元。The signal superimposer superimposes the received sampling data of the ground station and the sampling data sent by the signaling switching unit, and sends them to the beam transmitting unit.
图1为本发明的系统结构示意图,其中:Fig. 1 is a schematic diagram of the system structure of the present invention, wherein:
发信号交换单元1和收信号交换单元7内部结构根据特定可扩展分层交换结构设计实现,具体方法如下:The internal structure of the
1.收信号交换单元结构实现(图3):所述收信号交换单元结构为非对称交换结构,根据图1可知收信号交换单元的输入为I路波束,输出为N3路数据。由于输入的每个波束内部含有输出的多路用户数据,因此输入数小于输出数。首先,利用公式求出参数N值,从而得到参数然后,利用参数N、I设计结构如下:一级模块共N个,每个完成I到N2的交换;二级模块共N个,每个完成N2到N2的交换。其中,一级模块内部结构如图4所示:一级模块内部含有N个N输入N输出的基本交换模块,基本模块可由多路选择器实现,一级模块的输入与基本模块的输入间由多路选择器连接。二级模块由N2输入N2输出的多路选择器实现。最后,确定一级模块的输出与二级模块的输入的连接关系为:第1个一级模块的1至N路输出按顺序分别连接到各个二级模块的第1路输入,第k个一级模块的1至N路输出按顺序分别连接到各个二级模块的第k路输入(1≤k≤n);第1个一级模块的(m-1)N+1至mN路输出按顺序分别连接到各个二级模块的第(m-1)N+1路输入,第k个一级模块的(m-1)N+1至mN路输出按顺序分别连接到各个二级模块的第(m-1)N+k路输入(1≤k≤N,1≤m≤N)。1. receive signal switching unit structure and realize (Fig. 3): described receiving signal switching unit structure is an asymmetric switching structure, according to Fig. 1 can know that the input of receiving signal switching unit is I road beam, and output is N 3 road data. Since each input beam contains multiple channels of output user data, the number of inputs is smaller than the number of outputs. First, using the formula Find the value of parameter N, so as to get the parameter Then, use the parameters N and I to design the structure as follows: a total of N primary modules, each of which completes the exchange from I to N2 ; a total of N secondary modules, each of which completes the exchange from N2 to N2 . Among them, the internal structure of the first-level module is shown in Figure 4: the first-level module contains N basic switching modules with N input and N output, and the basic module can be realized by a multiplexer. multiplexer connection. The secondary module is realized by a multiplexer with N2 input and N2 output. Finally, determine the connection relationship between the output of the first-level module and the input of the second-level module: the
所述收信号交换单元按以下步骤完成输入数据的调度,以完成输入数据与输出数据之间的交换,The receiving signal exchange unit completes the scheduling of input data according to the following steps, so as to complete the exchange between input data and output data,
步骤(1).所述与n个子一级模块输入共I路波束内采样数据中的用户数据个数,Step (1). The number of user data in the sampled data in the total I road beam inputted with n sub-level modules,
步骤(2).判别是否存在X1≤Y1,其中:Step (2). Determine whether X 1 ≤ Y 1 exists, where:
X1是所述一级模块内输入到所述第n个子一级模块的共I路波束内的用户数据个数,X 1 is the number of user data input to the total I beams of the nth sub-level module in the first level module,
Y1是所述二级模块内对应于所述第n个子一级模块的所述子二级模块内空余的输出端口数,在数字上等于目的地址个数,Y 1 is the number of vacant output ports in the sub-level module corresponding to the nth sub-level module in the second level module, which is numerically equal to the number of destination addresses,
若:X1≤Y1,则所述第n个子一级模块内所述第一级多路选择器直接输出所述共I路波束内采样数据中的用户数据个数X1,每一个用户数据都包含有目的地址在内,直接通过对应于所述子二级模块序号的第n个所述第n个子一级模块内第二级多路选择器的对应序号的所述子二级模块输出,If: X 1 ≤ Y 1 , then the first-stage multiplexer in the nth sub-level one module directly outputs the number of user data X 1 in the sampling data in the total I beams, and each user The data includes the destination address, and directly passes through the sub-secondary module of the corresponding serial number of the second-stage multiplexer in the nth sub-level one module corresponding to the sub-secondary module serial number output,
若:X1>Y1,If: X 1 >Y 1 ,
则:所述一级模块内的第一级多路选择器复制k份的所述共I路波束内的用户数据个数同所述一级模块内N个所述第二级多路选择器中顺序对应的k个第二级多路选择器的输入转发端,其中:Y1,1≤k≤N,该条件不等式从第一个模块开始计算,在该不等式条件未满足前顺序向下累加,直至求出k值,Then: the first-level multiplexer in the first-level module replicates the number of user data in the total I-way beam of k shares to be the same as the N second-level multiplexers in the first-level module The input forwarding ends of the k second-stage multiplexers corresponding to the sequence in the middle, wherein: Y 1 , 1≤k≤N, the conditional inequality starts to be calculated from the first module, and accumulates downwards sequentially until the value of k is obtained before the condition of the inequality is not met.
步骤(3).所述第n个子二级模块接到步骤(2)发来的所述第n个子一级模块输出的对应于所述Inputn×1、…、Inputn×1、...、Inputn×1采样数据的N个地址信号Road1、Road2、....、后,一一对应地直接通过N2个输出端口地址输出第Output1×1、Output1×2、...、Output1×n、...、,个采样数据,整个二级模块输入信号为N个第Road1至第个采样数据,而总输出则有N2个采样数据Output1×1、Output1×2、...、Output1×n、...、 Step (3). The nth sub-level module receives the output of the nth sub-level module from step (2) corresponding to the Input n×1 , ..., Input n×1 , .. ., N address signals Road 1 , Road 2 , ...., Input n×1 sampling data After that, directly output the first Output 1×1 , Output 1×2 , ..., Output 1×n , ..., through the N 2 output port addresses in one-to-one correspondence, sampled data, the input signal of the entire secondary module is N road 1 to road sampled data, and the total output has N 2 sampled data Output 1×1 , Output 1×2 ,..., Output 1×n ,...,
2.发信号交换单元结构实现(图6):根据图1可知发信号交换单元的输入为来自L个全局信号发射处理单元的采样数据,输出为K路波束。由于发信号交换单元的多路输入数据加入一路输出波束,因此该交换结构为输入数大于输出数的非对称结构。因此,发信号交换单元结构采用与收信号交换单元相反结构。利用公式求出参数N,利用公式求出参数I。将参数N、I代入特定可扩展分层交换结构设计原理图。则:每个一级模块由N个N2输入N2输出的模块组成,完成N2到N2的交换;每个二级模块由N个N2输入I输出的模块组成,完成N2到I的交换。由于发信号交换单元需要将多路数据合并到一路波束内,因此发信号交换单元二级模块(对应于特定可扩展分层交换结构的一级模块)内部结构变更为图5所示。其余结构不变。2. Realization of the structure of the signaling switching unit (FIG. 6): According to FIG. 1, it can be seen that the input of the signaling switching unit is the sampling data from L global signal transmission processing units, and the output is K beams. Since multiple input data of the signaling switching unit is added to one output beam, the switching structure is an asymmetric structure in which the number of inputs is greater than the number of outputs. Therefore, the structure of the switching unit for sending signals adopts the opposite structure of the switching unit for receiving signals. use the formula To find the parameter N, use the formula Find the parameter I. Substitute the parameters N and I into the design schematic diagram of a specific scalable layered switching structure. Then: each primary module is composed of N modules with N 2 input and N 2 output, completing the exchange from N 2 to N 2 ; each secondary module is composed of N modules with N 2 input and I output, completing N 2 to N 2 I exchange. Since the signaling switching unit needs to merge multiple channels of data into one beam, the internal structure of the secondary module of the signaling switching unit (corresponding to the primary module of a specific scalable layered switching structure) is changed as shown in FIG. 5 . The rest of the structure remains unchanged.
所述发信号交换单元,利用一级模块内部的加法器,将目的波束相同的采样数据加权到其中一路送到一级模块的输出端,而后按目的地址送到相应输出所属的二级模块,而后根据目的地址送到相应输出端。The signal exchange unit uses the adder inside the first-level module to weight the sampling data of the same target beam to one of the output terminals of the first-level module, and then sends it to the second-level module to which the corresponding output belongs according to the destination address. Then it is sent to the corresponding output terminal according to the destination address.
3.业务交换单元:对业务级数据进行全交换处理,可采用基于时分总线、共享存储器或者Crossbar等交换结构实现。图2为一种采用时分总线结构的实例。3. Business switching unit: perform full switching processing on business-level data, which can be realized by using switching structures based on time-division bus, shared memory or Crossbar. Figure 2 is an example of using a time-division bus structure.
本发明所述的适用于GEO卫星移动通信系统的星上处理交换系统按以下步骤实现(图1):The on-star processing and switching system applicable to the GEO satellite mobile communication system of the present invention is realized in the following steps (Fig. 1):
步骤(1)波束接收单元9利用其内部的判决器将接收到的波束采样数据中不需要做星上处理的数据送到馈电链路发射单元11,将在固定配置信号接收处理单元处理能力范围内的数据送到固定配置信号接收处理单元2,将其余需要做星上处理的数据送到收信号交换单元1;Step (1) The
步骤(2)负责控制馈电链路的星上控制单元13利用星地网管信令控制馈电链路发射单元11将收到的波束采样数据直接透明转发到地面站;Step (2) The on-star control unit 13 responsible for controlling the feeder link uses the star-ground network management signaling to control the feeder
步骤(3)固定配置信号接收处理单元2将收到的采样数据处理为基带数据后送到业务交换单元4;Step (3) The fixed configuration signal receiving
步骤(4)收信号交换单元1将接收到的采样数据交换到全局信号接收处理单元3处理为基带数据后送到业务交换单元4;Step (4) receiving
步骤(5)业务交换单元4将接收到的基带数据中在波束内部信号发射处理单元5处理能力范围内的基带数据送到固定配置信号发射处理单元5,将其他基带数据送到全局信号发射处理单元6;Step (5) The
步骤(6)固定配置信号发射处理单元5将接收到的基带数据处理成采样数据后送到信号叠加器8,全局信号发射处理单元6将接收到的基带数据处理成采样数据后送到发信号交换单元7;Step (6) The fixed configuration signal
步骤(7)发信号交换单元7将接收到的采样数据根据用户要求交换后送到信号叠加器8;Step (7) The
步骤(8)负责控制馈电链路的星上控制单元13利用星地网管信令控制馈电链路接收单元12将地面站发送上来的波束采样数据直接送到信号叠加器8;Step (8) The on-star control unit 13 responsible for controlling the feeder link uses the star-ground network management signaling to control the feeder
步骤(9)信号叠加器8将接收到的采样数据叠加到各个波束内后送出。Step (9) The
与现有技术相比,本发明具有如下优点:Compared with prior art, the present invention has following advantage:
1、本发明实现了星上同时支持数字透明转发和处理交换两种模式。对不同的用户需求可以有不同的处理方案,既保证了通信质量,同时也能对星上资源的配置和利用有很大的优化作用。1. The present invention realizes the simultaneous support of two modes of digital transparent forwarding and processing switching on the star. There are different processing schemes for different user needs, which not only guarantees the communication quality, but also greatly optimizes the configuration and utilization of on-board resources.
2、本发明中星上处理部分利用分层式交换设计,分解了交换压力。2. The on-board processing part of the present invention uses a layered exchange design to decompose the exchange pressure.
3、设计了特定可扩展分层交换结构,运用该交换结构实现GEO卫星星上处理资源动态配置,降低了星上结构的复杂度。3. A specific extensible layered switching structure is designed, and the switching structure is used to realize the dynamic configuration of on-board processing resources of GEO satellites, reducing the complexity of the on-board structure.
附图说明 Description of drawings
图1为GEO卫星星上交换处理结构示意图Figure 1 is a schematic diagram of the GEO satellite on-board switching processing structure
图2为业务交换单元实例示意图Figure 2 is a schematic diagram of an example of a service switching unit
图3为收信号交换单元原理示意图Figure 3 is a schematic diagram of the receiving signal exchange unit
图4为收信号交换单元一级模块内部结构示意图Figure 4 is a schematic diagram of the internal structure of the first-level module of the receiving signal switching unit
图5为发信号交换单元一级模块内部结构示意图Figure 5 is a schematic diagram of the internal structure of the first-level module of the signaling switching unit
图6为发信号交换单元原理示意图Figure 6 is a schematic diagram of the signaling switching unit
具体实施方式 Detailed ways
下面我们结合附图和实施例,对本发明的具体实施方式做进一步详细的描述。以下实施例用于说明本发明,但不用来限制本发明的范围。Below we will further describe in detail specific implementations of the present invention in conjunction with the accompanying drawings and embodiments. The following examples are used to illustrate the present invention, but are not intended to limit the scope of the present invention.
实例1:本发明实施例以基于3G技术的GEO卫星通信系统的星上处理与交换结构为例来说明本发明的提出的GEO卫星高速星上处理与交换方法。Example 1: The embodiment of the present invention takes the on-board processing and switching structure of the GEO satellite communication system based on 3G technology as an example to illustrate the high-speed on-board processing and switching method of the GEO satellite proposed by the present invention.
应用背景:GEO卫星移动通信系统由GEO卫星S频段卫星有效载荷、中央站(网络管理中心、运行控制中心)、网关站和各种用户站/终端组成。卫星采用大型可展开网状天线,产生100个点波束。点波束满足手持式终端对较高G/T(品质因数)值和较高EIRP(等效全向辐射功率)的需求。Application background: GEO satellite mobile communication system consists of GEO satellite S-band satellite payload, central station (network management center, operation control center), gateway station and various user stations/terminals. The satellite employs a large deployable mesh antenna, producing 100 spot beams. Spot beams meet the needs of handheld terminals for higher G/T (figure of merit) and higher EIRP (equivalent isotropic radiated power).
星上交换预处理的功能需求:Functional requirements for on-board exchange preprocessing:
(1)支持数字透明和星上处理交换两种工作模式;(1) Support two working modes of digital transparency and on-board processing and switching;
(2)星上完成上行多路信号的处理(接收升余弦滤波、相关器、PN码生成器、信道估计器、相位旋转器、延迟均衡器以及多径合并模块、Viterbi译码、CRC校验);(2) Complete the processing of uplink multi-channel signals on the star (receiving raised cosine filter, correlator, PN code generator, channel estimator, phase rotator, delay equalizer and multipath combining module, Viterbi decoding, CRC check );
(3)星上完成下行多路信号的处理(添加CRC校验位、1/3速率卷积码、OVSF码扩频、QPSK调制);(3) Complete the processing of downlink multi-channel signals on the satellite (add CRC check digit, 1/3 rate convolution code, OVSF code spread spectrum, QPSK modulation);
(4)每个波束至少要保证10个星上处理用户业务,全网最多需要同时完成1330个星上处理业务;(4) At least 10 on-board user services must be guaranteed for each beam, and a maximum of 1330 on-board processing services must be completed simultaneously in the entire network;
(5)基础器件IO口数上限为100。(5) The upper limit of the number of IO ports of the basic device is 100.
利用本发明系统结构图(图1),应用本发明具体的方案实施如下:Utilize system structural diagram (Fig. 1) of the present invention, apply the concrete scheme of the present invention and implement as follows:
1、设计收信号交换单元、发信号交换单元:1. Design the receiving signal switching unit and the sending signal switching unit:
根据功能要求(4)设定参数:P=Q=10。又因为卫星点波束数为100,得到参数I=100,进而得到参数:M=L=1330-100×10=330。Set parameters according to functional requirements (4): P=Q=10. And because the number of satellite spot beams is 100, the parameter I=100 is obtained, and then the parameter: M=L=1330-100×10=330 is obtained.
根据功能要求(4)(5)及M、N值,设计交换结构部分如下:According to the functional requirements (4)(5) and the values of M and N, the design of the switching structure is as follows:
收信号交换结构设计(图6):根据收信号结构特点,利用图3结构设计收信号交换结构,利用公式求出则该结构由7个16输入49输出的一级模块和7个49输入49输出的二级模块构成。模块内部结构及模块间连接根据原理结构实现。该结构交换能力:总交换能力为112输入、343输出。Design of the receiving signal switching structure (Figure 6): According to the characteristics of the receiving signal structure, use the structure shown in Figure 3 to design the receiving signal switching structure, and use the formula to find Then the structure consists of seven primary modules with 16 inputs and 49 outputs and seven secondary modules with 49 inputs and 49 outputs. The internal structure of the module and the connection between the modules are realized according to the principle structure. The switching capacity of this structure: the total switching capacity is 112 inputs and 343 outputs.
发信号交换结构设计(图6):根据发信号结构特点,利用公式求出则结构由7个49输入49输出的一级模块和7个49输入16输出的二级模块构成。网络结构与收信号结构相反。模块内部结构及模块间连接根据原理结构实现。结构交换能力:总交换能力为输入343、输出112。Signal switching structure design (Figure 6): according to the characteristics of the signaling structure, use the formula to find Then the structure consists of seven primary modules with 49 inputs and 49 outputs and seven secondary modules with 49 inputs and 16 outputs. The network structure is opposite to the signal receiving structure. The internal structure of the module and the connection between the modules are realized according to the principle structure. Structural switching capacity: The total switching capacity is 343 for input and 112 for output.
2、结合实例背景完成方案设计(图1):2. Combined with the example background to complete the scheme design (Figure 1):
波束接收单元9由S波段多波束接收天线系统(100波束)实现,波束发射单元8由S波段多波束发射天线系统(100波束)实现,馈电链路发射单元11由S波段单波束发射天线系统实现,馈电链路接收单元12由S波段单波束接收天线系统实现。The
其余部分用FPGA实现(可选用Xilinx的抗辐射版本FPGA:XQR4VFX60-10CF1144V)。其中:收信号交换单元1、发信号交换单元7的内部逻辑结构根据第1部分中设计实现(每个一级、二级模块均由一片FPGA构成),业务交换单元4由时分总线结构实现,信号叠加器8内部可采用基于WCDMA公共信道的帧同步方案实现,波束内部信号接收处理单元2、全局信号接收处理单元3内部实完成功能需求(2)要求,波束内部信号发射处理单元5、全局信号发射处理单元6内部完成功能需求(3)要求,星上控制单元13完成全局控制CPU功能。The rest is implemented with FPGA (Xilinx's anti-radiation version FPGA: XQR4VFX60-10CF1144V can be selected). Wherein: the internal logic structure of receiving
上面结合附图对本发明的具体实施例进行了详细说明,但本发明并不限制于上述实施例,在不脱离本申请的权利要求的精神和范围情况下,本领域的技术人员可做出各种修改或改型。The specific embodiments of the present invention have been described in detail above in conjunction with the accompanying drawings, but the present invention is not limited to the above embodiments, and those skilled in the art can make various modifications without departing from the spirit and scope of the claims of the application. modification or modification.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010125074 CN101795493B (en) | 2010-03-12 | 2010-03-12 | Satellite onboard processing exchange system suitable for GEO satellite mobile communication system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010125074 CN101795493B (en) | 2010-03-12 | 2010-03-12 | Satellite onboard processing exchange system suitable for GEO satellite mobile communication system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101795493A CN101795493A (en) | 2010-08-04 |
CN101795493B true CN101795493B (en) | 2012-12-26 |
Family
ID=42587858
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201010125074 Expired - Fee Related CN101795493B (en) | 2010-03-12 | 2010-03-12 | Satellite onboard processing exchange system suitable for GEO satellite mobile communication system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101795493B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101917222B (en) * | 2010-08-13 | 2012-12-26 | 西安空间无线电技术研究所 | Star-borne switchboard with distributed mixing structure and implementation method thereof |
CN101917728B (en) * | 2010-08-13 | 2012-11-14 | 西安空间无线电技术研究所 | Dynamic allocation realization structure of satellite-borne treatment source pool |
CN102255650B (en) * | 2011-08-25 | 2014-01-15 | 西安空间无线电技术研究所 | An Onboard Switching System Based on Time-Frequency Domain |
CN104270793A (en) * | 2014-09-18 | 2015-01-07 | 北京邮电大学 | A Resource Allocation Method Based on Satellite Coordinated Transmission |
CN105827305B (en) * | 2016-04-15 | 2018-10-09 | 中国电子科技集团公司第五十四研究所 | The transparent reconfigurable flexible being combined with processing forwards implementation method |
CN106169981B (en) * | 2016-08-25 | 2019-06-28 | 中国电子科技集团公司第十研究所 | Spaceborne signal processing platform layered circuit exchange system |
CN114124194A (en) * | 2021-11-15 | 2022-03-01 | 中国电子科技集团公司第五十四研究所 | Satellite flexible switching system and method based on digital channelized beam forming |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1310893A (en) * | 1998-05-19 | 2001-08-29 | 史丹佛电信公司 | Flux density reduction in OCDMA satellite communication system |
FR2886086A1 (en) * | 2005-05-20 | 2006-11-24 | Cnes Epic | METHOD FOR ALLOCATING FREQUENCY SUBWAYS TO AMOUNT RADIO FREQUENCY LINKS AND NETWORK USING SUCH A METHOD |
US7277641B1 (en) * | 2003-05-06 | 2007-10-02 | Ball Aerospace & Technologies Corp. | Multiple access space communications optical system using a common telescope aperture |
US7366463B1 (en) * | 2000-05-05 | 2008-04-29 | The Directv Group, Inc. | Military UHF and commercial Geo-mobile system combination for radio signal relay |
CN101414866A (en) * | 2007-10-17 | 2009-04-22 | 中卫视讯卫星科技(北京)有限公司 | Mobile target satellite tracking localization, recognition, voice video and data transmission terminal |
-
2010
- 2010-03-12 CN CN 201010125074 patent/CN101795493B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1310893A (en) * | 1998-05-19 | 2001-08-29 | 史丹佛电信公司 | Flux density reduction in OCDMA satellite communication system |
US7366463B1 (en) * | 2000-05-05 | 2008-04-29 | The Directv Group, Inc. | Military UHF and commercial Geo-mobile system combination for radio signal relay |
US7277641B1 (en) * | 2003-05-06 | 2007-10-02 | Ball Aerospace & Technologies Corp. | Multiple access space communications optical system using a common telescope aperture |
FR2886086A1 (en) * | 2005-05-20 | 2006-11-24 | Cnes Epic | METHOD FOR ALLOCATING FREQUENCY SUBWAYS TO AMOUNT RADIO FREQUENCY LINKS AND NETWORK USING SUCH A METHOD |
CN101414866A (en) * | 2007-10-17 | 2009-04-22 | 中卫视讯卫星科技(北京)有限公司 | Mobile target satellite tracking localization, recognition, voice video and data transmission terminal |
Also Published As
Publication number | Publication date |
---|---|
CN101795493A (en) | 2010-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101795493B (en) | Satellite onboard processing exchange system suitable for GEO satellite mobile communication system | |
US11909508B2 (en) | Flexible capacity satellite communications system | |
Yan et al. | The application of power-domain non-orthogonal multiple access in satellite communication networks | |
CN103929232B (en) | Wide-band mobile communication method and system based on multi-beam GEO satellite | |
EP3346619B1 (en) | Flexible capacity satellite communications system | |
ES2554286T3 (en) | Method and apparatus for routing IP packets in multi-beam satellite networks | |
CN107872273B (en) | On-satellite processing method and system for multi-carrier multi-rate dynamic demodulation | |
CN101917222B (en) | Star-borne switchboard with distributed mixing structure and implementation method thereof | |
CN1287944A (en) | Dynamic satellite filter controller for low Earth's orbit satellite | |
CN111193539A (en) | On-satellite transparent switching method of high-throughput satellite communication system | |
CN113329466B (en) | Communication routing method for satellite networking cross information fusion | |
CN101316155A (en) | Wireless Transmission Method Using Distributed MIMO and Network Coding Technology | |
Perez-Trufero et al. | High throughput satellite system with Q/V-band gateways and its integration with terrestrial broadband communication networks | |
CN101990220A (en) | Downlink multi-antenna and multi-base station cooperation method, base station and user equipment | |
CN108418632A (en) | Device and method for integrating passive optical local area network business and wireless indoor business | |
CN115833904A (en) | A Design and Optimization Method of Beam Hopping Pattern in Satellite Communication System | |
Ali | Combine and conquer: Simultaneous transmission over multiband multi-hop WLAN systems | |
CN221710081U (en) | Multichannel low-orbit satellite-borne mobile communication base station load | |
CN119945516A (en) | Digital transparent processing realization system and method for multi-domain flexible application | |
Feng et al. | The development of satellite mobile communication system | |
Geraniotis et al. | Bit error rate evaluation of a spectrally efficient CDMA scheme for geostationary satellite communications | |
Zhong et al. | Network Coding-Based Capacity Optimization | |
CN116260504A (en) | Configuration method for sub-band hinge between digital transparent processing load beams | |
Dinh et al. | Wireless energy harvesting relaying networks under imperfect CSI: throughput analysis | |
Pike et al. | Evolution of small ground terminals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20121226 |
|
CF01 | Termination of patent right due to non-payment of annual fee |