CN101794682B - 框架断路器智能控制器 - Google Patents

框架断路器智能控制器 Download PDF

Info

Publication number
CN101794682B
CN101794682B CN2010101111215A CN201010111121A CN101794682B CN 101794682 B CN101794682 B CN 101794682B CN 2010101111215 A CN2010101111215 A CN 2010101111215A CN 201010111121 A CN201010111121 A CN 201010111121A CN 101794682 B CN101794682 B CN 101794682B
Authority
CN
China
Prior art keywords
signal
microcontroller
module
voltage
mcu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010101111215A
Other languages
English (en)
Other versions
CN101794682A (zh
Inventor
梁隆军
陈俊
庞丰波
彭章军
郑春桥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Nanrui Science and Technology Co Ltd
Original Assignee
Zhejiang Nanrui Science and Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Nanrui Science and Technology Co Ltd filed Critical Zhejiang Nanrui Science and Technology Co Ltd
Priority to CN2010101111215A priority Critical patent/CN101794682B/zh
Publication of CN101794682A publication Critical patent/CN101794682A/zh
Application granted granted Critical
Publication of CN101794682B publication Critical patent/CN101794682B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明涉及一种可靠性及安全性高,生产成本低的框架断路器智能控制器,包括:微控制器,与微控制器相连的电流信号调理模块、电压信号调理模块、互感器断线检测模块、频率检测模块、键盘及显示模块、执行机构驱动模块和继电器输出模块;电流信号调理模块及电压信号调理模块分别与电流互感器和电压互感器的输出端相连;本发明大量使用用数字方法实现同类产品中由硬件实现的功能,大幅度简化了电路硬件、减少了元器件数量,从而提高了系统可靠性,降低了生产成本。在电源电路的设计方面,采用具有滞回特性的DC/DC稳压电路,显著提高电源效率,从而明显降低产品的温升。

Description

框架断路器智能控制器
技术领域
本发明涉及一种框架断路器智能控制器。
背景技术
断路器作为配电保护的基础设备,对电网的安全、稳定运行起到十分重要的作用。可靠性是配电保护系统的四大基本要求之一,需要比电网本身可靠性指标更高的设备来实现,所以断路器的可靠性尤为重要。智能控制器是断路器正确完成功能的核心部件,因此,对智能控制器的可靠性要求尤为严格。
智能控制器是一个典型的电子产品。根据电子产品可靠性基本理论,产品可靠性受到其使用元器件的质量、数量、温升和使用环境等四大因素影响。断路器所使用的环境是典型的工业场所,这是在设计产品时必须考虑的因素,但无法改变。所以,要提高智能控制器可靠性指标应该选用高质量的器件,更要采用先进的设计理念和方法来减少元器件数量,同时降低元器件的工作温升。
现有的断路器智能控制器中的电流信号调理电路,如图2所示。
所述的电流信号调理电路包括四个模块电路:其中,Ma为电流互感器输出信号(SI)的相位校正模块、Mb为第一级信号放大模块、Mc为第二级信号放大模块、Md为互感器断线检测模块。ADL为经第一级信号放大模块处理后的电流采样信号,即大信号通道采样点;ADS为经第一级和第二级信号放大模块处理后的电流采样信号,即小信号通道采样点;BZ为互感器断线检测模块输出的逻辑电平。
所述的相位校正模块Ma采用阻容器件对电流互感器的输出信号进行相位校正。该电路有两大缺点:其一,输入信号跃变时,其信号输出具有过冲现象,会造成电流误判现象;其二,该电路本质上是积分器,对电容的要求很高,而常用的普通电容本身存在较大的离散性,因此降低了测量精度。
所述的第一级信号放大模块Mb和第二级信号放大模块Mc都是由运放构成的放大电路。其实现方法为:微控制器MCU同时对ADL(大信号通道信号)和ADS(小信号通道信号)进行采样和运算,然后选择合适的通道数据作为当前电流通道的实际数值。该设计方法有两个缺陷:其一、电路结构复杂,元器件数量多、成本高、可靠性低。其二、当输入信号增大时,ADS(小信号通道)的电压超过了ADC的参考电平,容易对器件造成损坏,使可靠性进一步降低。
所述的互感器断线检测模块Md是以比较器为核心构成的检测电路,软件通过检测比较器输出高低电平信号来判断当前互感器是否连接良好。该方法虽然具有程序简单的优点,但同样存在电路结构复杂,应用元器件多的缺点。
现有的同类断路器智能控制器的电压信号调理电路,如图3所示。
该电压信号调理电路由电阻分压电路Me和放大电路Mf组成。所述的电阻分压电路Me是将输入强电(220V或380V)通过电阻分压的方式转换为弱电(与ADC参考电压相适应的电压),该方式没有实现强电和弱电的隔离,降低了产品使用安全性。
另外,现有的同类断路器智能控制器,其电源系统一般采用线性稳压电路或不具有滞回特性的DC/DC稳压电路,其缺点在于:该两种电路器件本身工作温升较高,导致系统可靠性降低。
发明内容
本发明要解决的技术问题是提供一种结构简单、可靠性和安全性高且成本低的框架断路器智能控制器。
为了解决上述技术问题,本发明提供了一种框架断路器智能控制器,包括:微控制器MCU,与微控制器MCU相连的电流信号调理模块、电压信号调理模块、互感器断线检测模块、频率检测模块、键盘及显示模块、执行机构驱动模块和继电器输出模块;电流信号调理模块与电流互感器输出端相连;电压信号调理模块与电压互感器M5的输出端相连。
所述电流信号调理模块包括:互感器断线检测模块M1、增益可调信号放大模块M2、第一反混叠滤波器M3和第一分割器电路M4;电流互感器的输出信号SI经增益可调信号放大模块M2和第一反混叠滤波器M3后送入微控制器MCU的电流采样信号输入端ADLS;微控制器MCU通过控制端CH调节增益可调信号放大模块M2的增益;互感器断线检测模块M1包括一个电阻上拉电阻或下拉电阻,设于所述增益可调信号放大模块M2的电流信号输入端,微控制器MCU通过DFT算法来识别电流互感器是否与被测信号电路处于良好连接状态。所述电压信号调理模块包括:电压互感器M5、放大电路M6、第二反混叠滤波器M7和第二分割器电路M8;电压互感器M5的输入电压信号SV经电压互感器M5、放大电路M6和第二反混叠滤波器M7后送入微控制器MCU的电压采样信号输入端ADV。
所述第一反混叠滤波器M3的截止频率等于所述电流互感器输出信号SI的32次谐波频率第二反混叠滤波器M7的截止频率等于所述输入电压信号SV的32次谐波频率,微控制器MCU的采样频率依据奈奎斯特定律确定,以消除测量的系统误差,提高电流、电压采样的精度和真实性。
本发明的上述技术方案相比现有技术具有以下优点:(1)、本发明以提高智能控制器可靠性、安全性为宗旨,借助MCU的强大能力和软件优势,采样大量的数字方法实现同类产品中由硬件实现的功能,从而大幅度简化了电路硬件、减少了元器件数量。在电源电路的设计方面,采用具有滞回特性的DC/DC稳压电路,显著提高电源效率,从而明显降低产品的温升。(2)本发明所述的增益可调信号放大模块M2,采用多路模拟信号开关为核心构件,实现大小信号采样的切换,达到增益可调的目的。该方法使用软件判断当前输入信号的大小,并通过微控制器MCU给出增益调节控制信号,控制多路模拟信号开关切换到相应的信号通道。该方法代替了现有的采用两路放大电路的结构,减少了元器件的使用数量,增加了控制的灵活性,提高了系统的可靠性。另外,这种可调增益电路可以确保输出信号的幅度在模数转换(ADC)的参考电平范围内,不至于因过压而损坏器件。(3)所述的互感器断线检测模块包括一个电阻上拉电阻或下拉电阻,设于所述增益可调信号放大模块的电流信号输入端,微控制器通过DFT算法来识别电流互感器是否与信号电路处于良好连接状态,即实现电流互感器的断线检测;该方法代替了现有的使用比较器为核心器件构成的互感器断线检测方法,大量的减少了元器件的使用数量,提高了系统的可靠性。(4)所述电流和电压信号调理模块均以一个分割器电路的输出为基准,分割器电路的输出电压正好等于微控制器模数转换参考电压的1/2。从而简化了整个系统电源电路的结构,从典型的双极性电源变成了单极性电源;另外还简化了电流、电压输出信号与ADC的接口电路。(5)电流互感器和电压互感器的输出信号是双极性的,为了配合信号处理,大部分系统采用双极性电源供电,例如信号处理过程使用的运放采用±5V电源。使用分割器电路后,将所述电流互感器和电压互感器输出信号的电平抬高,使原先为双极性的信号变为单极性,因此可以将系统电源变为单极性电源,从而简化了电源电路及电流和电压输出信号与模数转换(ADC)的接口电路。(6)使用反混叠滤波器,滤除信号采样通道上的干扰信号,提高采样精度和准确度;(7)上述的微控制器配置了两套监控电路,以两个不同的周期监控微控制器的运行,且这两个监控周期之比不等于整数,两套监控电路有效保障了微控制器正常运行。微控制器配置两套时钟电路,两个时钟电路形成互为备用的结构。当常用时钟电路发生故障时,系统迅速切换到备用时钟电路。在备用时钟工作期间,周期性地检测常用时钟是否恢复。如果恢复,则程序控制微控制器切换到常用时钟工作。两个时钟电路之间的切换时间小于50us,因而不影响系统正常工作,有效的提高了系统的平均无故障工作时间。微控制器的电源系统采用两个互为备用的独立电源,两种电源均采用具有滞回特性的DC/DC稳压电路,该种控制电路降低了器件本身的工作温升,提高了系统工作的可靠性。(8)所述的电流信号调理电路中的电流互感器输出信号相位校正是通过数值积分和数字高通滤波器相结合的方法实现的,该方法代替了现有的由阻容器件构成的模拟相位校正模块。其优点在于,其一,克服了使用模拟校正器时,输入信号跃变时输出信号过冲的现象;其二,由于简化了硬件电路,因此提高了系统的可靠性。数值积分和数字高通滤波器的实现方法较多,在本发明中采用″模拟数字化法″,即根据系统的技术要求先设计模拟积分器和高通滤波器,再用双线性变换法将其转换成差分方程。(9)所述的电压信号调理模块中的电压互感器在降低输入信号SV的同时,将强电和弱电相隔离,该方法和现有的采用电阻分压降压方式的方式相比,提高了系统的的安全性。
附图说明
图1为实施实例中的框架断路器智能控制器的电路框图;
图2为现有的断路器智能控制器中的电流信号调理电路的模块图;
图3为现有的断路器智能控制器中的电压信号调理电路的模块图;
图4本发明实施实例中电流信号调理模块的模块图。
图5本发明实施实例中电压信号调理模块的模块图。
图6本发明实施实例中分割器电路的原理图。
图7本发明实施实例中反混叠滤波器原理图。
图8为实施实例中具有滞回特性的DC/DC稳压电路的原理图。
图9为实施实例中的可变增益反馈电路的原理图。
图10为实施实例中通过DFT算法来识别电流互感器断线检测方法的流程框图。
图11为实施实例中通过数值积分和数字高通滤波器相结合的方法对电流互感器输出信号进行相位校正的流程图。
具体实施方式
见图1、3-11,本实施实例的框架断路器智能控制器包括:微控制器MCU,与微控制器MCU相连的电流信号调理模块、电压信号调理模块、互感器断线检测模块、频率检测模块、键盘及显示模块、执行机构驱动模块和继电器输出模块;电流信号调理模块与电流互感器输出端相连;电压信号调理模块与电压互感器M5的输出端相连;所述电流信号调理模块包括:互感器断线检测模块M1、增益可调信号放大模块M2、第一反混叠滤波器M3和第一分割器电路M4;电流互感器的输出信号SI经增益可调信号放大模块M2和第一反混叠滤波器M3后送入微控制器MCU的电流采样信号输入端ADLS;微控制器MCU通过控制端CH调节增益可调信号放大模块M2的增益;互感器断线检测模块M1包括一个电阻上拉电阻或下拉电阻,设于所述增益可调信号放大模块M2的电流信号输入端,微控制器MCU通过DFT算法来识别电流互感器是否与被测信号电路处于良好连接状态;所述的电压信号调理模块包括:电压互感器M5、放大电路M6、第二反混叠滤波器M7和第二分割器电路M8;电压互感器M5的输入电压信号SV经电压互感器M5、放大电路M6和第二反混叠滤波器M7后送入微控制器MCU的电压采样信号输入端ADV;所述第一反混叠滤波器M3的截止频率等于所述电流互感器输出信号SI的32次谐波频率,第二反混叠滤波器M7的截止频率等于所述输入电压信号SV的32次谐波频率,微控制器MCU的采样频率依据奈奎斯特定律确定,这样设计可以消除测量的系统误差,提高采样精度和真实性。所述电流互感器采用罗果夫斯基线圈;电流互感器的输出信号SI经电流信号调理模块后接入微控制器MCU的输入端ADLS,微控制器MCU通过对该信号依次进行模数转换、数值积分和数字高通滤波,来校正该信号的相位差。
如图6,所述第一、第二分割器电路M4和M8都包括:第一分压电阻R1和第二分压电阻R2,选择合适的阻值,以使分割器电路的输出电压正好等于微控制器MCU模数转换(ADC)参考电压的1/2,以简化整个系统电源电路的结构,将典型的双极性电源变成了单极性电源;另外还简化了电流、电压输出信号与ADC的接口电路。所述的第一、第二分割器电路(M4和M8)可以为同一个电路。
见图11,所述微控制器MCU通过DFT算法判断互感器是否断线的步骤是:微控制器MCU通过AD转换将输入的模拟信号转换成数字信号,然后通过DFT算法将该数字信号分离成直流分量和基波分量,将分离出来的直流分量和基波分量分别与微控制器MCU中预存的相应的预设值进行比较,如果所述直流分量大于直流分量的预设值,且基波分量小于基波分量的预设值,则判断所述电流互感器断线;反之,则判断所述电流互感器连接良好。
所述预设值由实验获得并预先存于微控制器中;该实验方法为:将所述电流互感器断开,测出当前输入信号中的直流分量和基波分量的数值分别设为直流分量和基波分量预设值。
微控制器MCU还配置了两套监控电路,以两个不同的周期监控微控制器MCU的运行,且这两个监控周期之比不等于整数,两套监控电路有效保障了微控制器MCU的正常运行。在实现时,两套监控电路采用不同的结构和驱动方式,即:一个采用计数方式,另一个采用边沿触发方式。
微控制器MCU还配置了两套时钟电路,两套时钟电路形成互为备用的结构。为保证可靠性,两套时钟电路采用失效率不同的电子元器件构成。
本实施例的断路器智能控制器,采用了两个互为备用的独立电源。一路电源来自速饱和互感器,是电流型电源。另一路来自断路器的辅助电源,是电压型电源。在结构和参数设计时,应确保两路电源均正常时优先使用电流源。为了降低电源功率管的温升,两种电源均采用具有滞回特性的DC/DC稳压电路。

Claims (5)

1.一种框架断路器智能控制器,其特征在于包括:微控制器(MCU),与微控制器(MCU)相连的电流信号调理模块、电压信号调理模块、频率检测模块、键盘及显示模块、执行机构驱动模块和继电器输出模块;电流信号调理模块及电压信号调理模块分别与电流互感器和电压互感器(M5)的输出端相连;
所述电流信号调理模块包括:互感器断线检测模块(M1)、增益可调信号放大模块(M2)、第一反混叠滤波器(M3)和第一分割器电路(M4);电流互感器的输出信号(SI)经增益可调信号放大模块(M2)和第一反混叠滤波器(M3)后送入微控制器(MCU)的电流采样信号输入端(ADLS);微控制器(MCU)通过控制端(CH)调节增益可调信号放大模块(M2)的增益;
互感器断线检测模块(M1)包括一个电阻上拉电阻或下拉电阻,设于所述增益可调信号放大模块(M2)的电流信号输入端,微控制器(MCU)通过DFT算法来识别电流互感器是否与被测信号电路处于良好连接状态;
所述电压信号调理模块包括:电压互感器(M5)、放大电路(M6)、第二反混叠滤波器(M7)和第二分割器电路(M8);
输入电压信号(SV)经电压互感器(M5)、放大电路(M6)和第二反混叠滤波器(M7)后送入微控制器(MCU)的电压采样信号输入端(ADV);
所述第一反混叠滤波器(M 3)的截止频率等于所述电流互感器输出信号(SI)的32次谐波频率,第二反混叠滤波器(M7)的截止频率等于所述输入电压信号(SV)的32次谐波频率,微控制器(MCU)的采样频率依据奈奎斯特定律确定。
2.根据权利要求1所述框架断路器智能控制器,其特征在于:所述电流互感器采用罗果夫斯基线圈;
电流互感器的输出信号(SI)经电流信号调理模块后接入微控制器(MCU)的输入端(ADLS),微控制器(MCU)通过对该信号(SI)依次进行模数转换、数值积分和数字高通滤波,来校正该信号的相位差。
3.根据权利要求1或2所述框架断路器智能控制器,其特征在于:所述第一、第二分割器电路(M4和M8)包括:第一分压电阻(R1)和第二分压电阻(R2),以使分割器电路的输出电压正好等于微控制器(MCU)模数转换参考电压的1/2。
4.根据权利要求1所述框架断路器智能控制器,其特征在于:所述微控制器(MCU)通过DFT算法判断互感器是否断线的步骤是:微控制器(MCU)通过AD转换器将输入到微控制器(MCU)输入端(ADLS)的信号转换成数字信号,然后通过D FT算法将该数字信号分离成直流分量和基波分量,将分离出来的直流分量和基波分量分别与微控制器(MCU)中预存的相应的预设值进行比较,如果所述直流分量大于直流分量的预设值且基波分量小于基波分量的预设值,则判断所述电流互感器断线;反之,则判断所述电流互感器连接良好。
5.根据权利要求4所述框架断路器智能控制器,其特征在于:所述预设值由实验获得并预先存于微控制器中;该实验方法为:将所述电流互感器断开,测出当前输入信号中的直流分量和基波分量的数值分别设为直流分量和基波分量预设值。
CN2010101111215A 2010-02-02 2010-02-02 框架断路器智能控制器 Expired - Fee Related CN101794682B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010101111215A CN101794682B (zh) 2010-02-02 2010-02-02 框架断路器智能控制器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010101111215A CN101794682B (zh) 2010-02-02 2010-02-02 框架断路器智能控制器

Publications (2)

Publication Number Publication Date
CN101794682A CN101794682A (zh) 2010-08-04
CN101794682B true CN101794682B (zh) 2012-07-25

Family

ID=42587291

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010101111215A Expired - Fee Related CN101794682B (zh) 2010-02-02 2010-02-02 框架断路器智能控制器

Country Status (1)

Country Link
CN (1) CN101794682B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103490373B (zh) * 2013-09-06 2016-08-17 常熟开关制造有限公司(原常熟开关厂) 一种防止断路器误动作的方法及一种断路器
CN103794417B (zh) * 2014-01-17 2016-08-17 上海磊跃自动化设备有限公司 一种低压断路器用智能控制装置
CN106026129A (zh) * 2016-07-07 2016-10-12 安徽众升电力科技有限公司 一种无功补偿装置电流采集装置
CN106058886A (zh) * 2016-07-07 2016-10-26 安徽众升电力科技有限公司 一种无功补偿装置电压采集装置
CN106208094A (zh) * 2016-07-07 2016-12-07 安徽众升电力科技有限公司 一种无功补偿装置信号采集装置
CN105978000A (zh) * 2016-07-07 2016-09-28 安徽众升电力科技有限公司 一种无功补偿装置
CN112526437A (zh) * 2020-11-27 2021-03-19 国网湖北省电力有限公司营销服务中心(计量中心) 一种高压互感器群运行状态实时采集系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7009406B2 (en) * 2003-04-24 2006-03-07 Delphi Technologies, Inc. Arc fault detector and method
CN1988098A (zh) * 2006-07-03 2007-06-27 浙江中凯电器有限公司 数字化控制与保护开关电器的控制装置
CN101106262A (zh) * 2007-01-26 2008-01-16 西安交通大学 塑壳式低压断路器用双核智能型可通讯控制器
CN201336565Y (zh) * 2009-01-05 2009-10-28 济源市科灵电器有限责任公司 井下低压馈电开关综合保护器
CN201663117U (zh) * 2010-02-02 2010-12-01 浙江南瑞科技有限公司 一种框架断路器智能控制器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7009406B2 (en) * 2003-04-24 2006-03-07 Delphi Technologies, Inc. Arc fault detector and method
CN1988098A (zh) * 2006-07-03 2007-06-27 浙江中凯电器有限公司 数字化控制与保护开关电器的控制装置
CN101106262A (zh) * 2007-01-26 2008-01-16 西安交通大学 塑壳式低压断路器用双核智能型可通讯控制器
CN201336565Y (zh) * 2009-01-05 2009-10-28 济源市科灵电器有限责任公司 井下低压馈电开关综合保护器
CN201663117U (zh) * 2010-02-02 2010-12-01 浙江南瑞科技有限公司 一种框架断路器智能控制器

Also Published As

Publication number Publication date
CN101794682A (zh) 2010-08-04

Similar Documents

Publication Publication Date Title
CN101794682B (zh) 框架断路器智能控制器
CN103812335A (zh) 电子装置、电力供给装置及电力供给方法
CN201663117U (zh) 一种框架断路器智能控制器
CN102315844B (zh) 一种可编程逻辑控制器数字量输出装置及自检方法
CN204694824U (zh) 变频电机智能测试装置
CN104422897A (zh) 双直流电源系统中直流互窜的检测方法及装置
CN110350485A (zh) 一种电流保护模块、系统及方法
CN103105798A (zh) 一种AS-i高精度模拟量输出模块
CN105391320A (zh) 多相电源电路
CN101447663B (zh) 一种硬件保护电路
CN204012680U (zh) 信号调理电路及其组成的断路器的智能控制电路
CN206906452U (zh) 一种示波器输入调理电路及cc型雷达测试与故障检测系统
CN202797865U (zh) 一种m-bus通讯总线的短路保护器
CN203444256U (zh) 智能产品信号处理电路
CN101446602B (zh) 电压变化率检测器
CN103529885A (zh) 一种配电线路故障指示器检测用输出控制装置
CN104418194A (zh) 一种电梯控制柜
CN105486916B (zh) 一种面向智能变电站的直流信号采集电路
CN205092657U (zh) 一种变电站的交流电源监控装置
CN110763985A (zh) 一种电流自动标定装置及方法
CN213069025U (zh) 电力系统和基于负载特征的电力系统负载识别匹配电路
CN101776296B (zh) 微波炉的机型选择控制装置及其选择控制方法
CN201689299U (zh) 计算机控制恒加载压力试验机用控制器
CN104267280A (zh) 一种多通道电涌保护器检测装置及方法
CN201805276U (zh) 总线型低压控制系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120725

Termination date: 20140202