发明内容
技术问题:本发明公开了一种基于混合监测的索结构健康监测方法,采用递进式方法的、能够合理有效地识别支座位移、受损索和松弛索的健康监测。
技术方案:斜拉桥、悬索桥、桁架结构等结构有一个共同点,就是它们有许多承受拉伸载荷的部件,如斜拉索、主缆、吊索、拉杆等等,该类结构的共同点是以索、缆或仅承受拉伸载荷的杆件为支承部件,为方便起见本发明将该类结构表述为“索结构”。在索结构的服役过程中,索结构的支承系统(指所有承载索、及所有起支承作用的仅承受拉伸载荷的杆件,为方便起见,本专利将该类结构的全部支承部件统一称为“索系统”,但实际上索系统不仅仅指支承索,也包括仅承受拉伸载荷的杆件)会受损,同时索结构的支座也可能出现位移,这些变化对索结构的安全是一种威胁,
设索的数量和支座位移分量的数量之和为N。为叙述方便起见,本发明统一称被评估的索和支座位移为“被评估对象”,给被评估对象连续编号,本发明用用变量j表示这一编号,j=1,2,3,...,N,因此可以说有N个被评估对象。
依据支承索的索力变化的原因,可将支承索的索力变化分为三种情况:一是支承索受到了损伤,例如支承索出现了局部裂纹和锈蚀等等;二是支承索并无损伤,但索力也发生了变化,出现这种变化的主要原因之一是支承索自由状态(此时索张力也称索力为0)下的索长度(称为自由长度,本发明专指支承索两支承端点间的那段索的自由长度)发生了变化;三是支承索并无损伤,但索结构支座有了位移(其中在重力方向的分量就被称为沉降),也会引起结构内力的变化,当然也就会引起索力的变化。为了方便,本发明将自由长度发生变化的支承索统称为松弛索。
本发明由两大部分组成。分别是:一、建立被评估对象健康监测系统所需的知识库和参量的方法、基于知识库(含参量)和实测索结构的应变(或变形)的被评估对象健康状态评估方法;二、健康监测系统的软件和硬件部分。
本发明的第一部分:建立用于被评估对象健康监测的知识库和参量的方法。可按如下步骤依次循环往复地、递进式进行:
第一步:每一次循环开始时,首先需要建立或已建立本次循环开始时的被评估对象初始健康状态向量do i(i=1,2,3,…)、建立索结构的初始力学计算基准模型Ao(例如有限元基准模型,在本发明中Ao是不变的)、建立索结构的力学计算基准模型Ai(例如有限元基准模型,i=1,2,3,…)。字母i除了明显地表示步骤编号的地方外,在本发明中字母i仅表示循环次数,即第i次循环。
第i次循环开始时需要的索结构“初始健康状态向量do i”(如式(1)所示),用do i表示第i次循环开始时索结构(用力学计算基准模型Ai表示)的索结构的初始健康状态。
式(1)中di oj(i=1,2,3,…;j=1,2,3,.......,N)表示第i次循环开始时、力学计算基准模型Ai中的索系统的第j个被评估对象的当前健康状态,如果该被评估对象是索系统中的一根索(或拉杆),那么di表示其当前损伤,di为0时表示无损伤,为100%时表示该索彻底丧失承载能力,介于0与100%之间时表示丧失相应比例的承载能力,如果该被评估对象是一个支座的一个位移分量,那么di表示其当前位移数值。式(1)中T表示向量的转置(后同)。
第一次循环开始时建立初始健康状态向量(依据式(1)记为d1 o)时,利用索的无损检测数据等能够表达索的健康状态的数据以及支座位移测量建立被评估对象初始健康状态向量d1 o。如果没有索的无损检测数据及其他能够表达索的健康状态的数据时,或者可以认为结构初始状态为无损伤无松弛状态时,向量d1 o的中与索相关的各元素数值取0。
第i次(i=2,3,4,5,6…)循环开始时需要的被评估对象初始健康状态向量di o,是在前一次(即第i-1次,i=2,3,4,5,6…)循环结束前计算获得的,具体方法在后文叙述。
第i次循环开始时需要建立的力学计算基准模型或已建立的力学计算基准模型记为Ai。
根据索结构完工之时的索结构的实测数据(包括索结构形状数据、索力数据、拉杆拉力数据、索结构支座坐标数据、索结构模态数据等实测数据,对斜拉桥、悬索桥而言是桥的桥型数据、索力数据、桥的模态数据、索的无损检测数据等能够表达索的健康状态的数据)和设计图、竣工图,利用力学方法(例如有限元法)建立Ao;如果没有索结构完工之时的结构的实测数据,那么就在建立健康监测系统前对结构进行实测,得到索结构的实测数据(包括索结构形状数据、索力数据、拉杆拉力数据、索结构支座坐标数据、索结构模态数据等实测数据,对斜拉桥、悬索桥而言是桥的桥型数据、索力数据、桥的模态数据、索的无损检测数据等能够表达索的健康状态的数据),根据此数据和索结构的设计图、竣工图,利用力学方法(例如有限元法)建立Ao。不论用何种方法获得Ao,基于Ao计算得到的索结构计算数据(对斜拉桥、悬索桥而言是桥的桥型数据、索力数据、桥的模态数据)必须非常接近其实测数据,误差一般不得大于5%。这样可保证利用Ao计算所得的模拟情况下的应变计算数据、索力计算数据、索结构形状计算数据和位移计算数据、索结构角度数据等,可靠地接近所模拟情况真实发生时的实测数据。Ao是不变的,只在第一次循环开始时建立。
第一次循环开始时建立的索结构的力学计算基准模型记为A1,A1就等于Ao。A1对应的被评估对象的健康状态由d1 o描述。
第i次(i=2,3,4,5,6…)循环开始时需要的力学计算基准模型Ai,是在前一次(即第i-1次,i=2,3,4,5,6…)循环结束前计算获得的,具体方法在后文叙述。
已有力学计算基准模型A1和被评估对象初始健康状态向量d1 o后,模型A1中的各被评估对象的健康状态由向量d1 o表达。在A1的基础上,将所有被评估对象的健康状态数值变更为0,力学模型A1更新为一个所有被评估对象的健康状态都为0的力学模型(记为A0),力学模型A0实际上是完好无损无支座位移的索结构对应的力学模型。不妨称模型A0为索结构的无损伤无支座位移模型A0。
“结构的全部被监测的应变数据”可由结构上K个指定点的、及每个指定点的L个指定方向的应变来描述,结构应变数据的变化就是K个指定点的所有应变的变化。每次共有M(M=K×L)个应变测量值或计算值来表征结构应变信息。K和M一般不得小于N。
为方便起见,在本发明中将“结构的被监测的应变数据”简称为“被监测量”。在后面提到“被监测量的某某矩阵或某某向量”时,也可读成“应变的某某矩阵或某某向量”。
本发明中用被监测量初始数值向量Ci o”(i=1,2,3,…)表示第i次(i=1,2,3,4,5,6…)循环开始时所有指定的被监测量的初始值(参见式(2)),Ci o的全称为“第i次循环被监测量的初始数值向量”。
式(2)中Ci ok(i=1,2,3,…;k=1,2,3,....,M;M≥N;)是第i次循环开始时、索结构中第k个被监测量。向量Ci o是由前面定义的M个被监测量依据一定顺序排列而成,对此排列顺序并无特殊要求,只要求后面所有相关向量也按此顺序排列数据即可。
第一次循环开始时,“第1次循环被监测量的初始数值向量C1 o”(见式(2))由实测数据组成,由于根据模型A1计算所得被监测量的初始数值可靠地接近于相对应的实测数值,在后面的叙述中,将用同一符号来表示该计算值组成向量和实测值组成向量。
第i次(i=2,3,4,5,6…)循环开始时需要的“第i次循环被监测量的初始数值向量Ci o”,是在前一次(即第i-1次,i=2,3,4,5,6…)循环结束前计算获得的,具体方法在后文叙述。
第二步:每一次循环需建立“单位损伤被监测量数值变化矩阵”和“名义单位损伤向量”,第i次循环建立的“单位损伤被监测量数值变化矩阵”记为ΔCi,第i次循环建立的“名义单位损伤向量”记为Di u,i=1,2,3,…。
第一次循环建立的索结构“单位损伤被监测量数值变化矩阵”记为ΔC1。建立ΔC1的过程如下:
在索结构的力学计算基准模型A1的基础上进行若干次计算,计算次数数值上等于N。每一次计算假设只有一个被评估对象有单位损伤,具体的,如果该被评估对象是索系统中的一根支承索,那么就假设该支承索有单位损伤(例如取5%、10%、20%或30%等损伤为单位损伤),如果该被评估对象是一个支座的一个方向的位移分量,就假设该支座在该位移方向发生单位位移(例如10mm,20mm,30mm等为单位位移)。为叙述方便,本发明将假定的支承索的损伤和支座位移统称为单位损伤。为方便计算,每一次循环中设定单位损伤时可以都是把该次循环开始时的结构健康状态当成是完全健康的,并在此基础上设定单位损伤(在后续步骤中、计算出的、被评估对象的健康状态数值---称为名义健康状态向量di c(i=1,2,3,…),都是相对于将该次循环开始时的、将索结构的健康状态当成是完全健康而言的,因此必须依据后文给出的公式将计算出的名义健康状态数值换算成真实健康状态数值)。同一次循环的每一次计算中出现单位损伤的被评估对象不同于其它次计算中出现单位损伤的被评估对象,并且每一次假定有单位损伤的被评估对象的单位损伤值可以不同于其他被评估对象的单位损伤值,用“名义单位损伤向量Di u”(如式(3)所示)记录各次循环中所有被评估对象的假定的单位损伤,第一次循环时记为D1 u。每一次计算都利用力学方法(例如有限元法)计算索结构的、在前面已指定的M个被监测量的当前计算值,每一次计算所得M个被监测量的当前计算值组成一个“被监测量的计算当前数值向量”(当假设第j个被评估对象有单位损伤时,可用式(4)表示所有指定的M个被监测量的计算当前数值向量C1 tj);每一次计算得到的被监测量的计算当前数值向量减去被监测量的初始数值向量C1 o,所得向量就是此条件下(以有单位损伤的被评估对象的编号为标记)的“被监测量的数值变化向量”(当第j个被评估对象有单位损伤时,用δC1 j表示被监测量的数值变化向量,δC1 j的定义见式(5)、式(6)和式(7),式(5)为式(4)减去式(2)后再除以向量D1 u的第j个元素Duj所得),被监测量的数值变化向量δC1 j的每一元素表示由于计算时假定有单位损伤的那个被评估对象(例如第j个被评估对象)有单位损伤(例如Duj),而引起的该元素所对应的被监测量的数值改变量相对于假定的单位损伤Duj的变化率;有N个被评估对象就有N个“被监测量的数值变化向量”,每个被监测量的数值变化向量有M(一般的,M≥N)个元素,由这N个“被监测量的数值变化向量”依次组成有M×N个元素的“单位损伤被监测量数值变化矩阵ΔC1”(M行N列),每一个向量δC1 j(=1,2,3,.......,N)是矩阵ΔC1的一列,ΔC1的定义如式(8)所示。
式(3)中名义单位损伤向量Di u的元素Di uj(i=1,2,3,…;j=1,2,3,.......,N)表示第i次循环中假定的第j个被评估对象的单位损伤数值,向量Di u中的各元素的数值可以相同也可以不同。
式(4)中元素Ci tjk(i=1,2,3,...;j=1,2,3,.......,N;k=1,2,3,.......,M;M≥N)表示第i次循环由于第j个被评估对象有单位损伤时,依据编号规则所对应的第k个指定的被监测量的计算当前数值。
式(5)中各量的上标i(i=1,2,3,...)表示第i次循环,下标j(j=1,2,3,.......,N)表示第j个被评估对象有单位损伤,式中Di uj是向量Di u中的第j个元素。向量δCi j的定义如式(6)所示,δCi j的第k(k=1,2,3,.......,M;M≥N)个元素δCi jk表示第i次循环中,建立矩阵ΔCi时,假定第j个被评估对象有单位损伤时计算所得第k个被监测量的改变量相对于假定的单位损伤Di uj的变化率,其定义如式(7)所示。
(7)
式(7)中各量的定义已在前面叙述过。
式(8)中向量δCi j(i=1,2,3,.......,,j=1,2,3,.......,N)表示第i次循环中,由于第j个被评估对象有单位损伤Di uj而引起的、所有被监测量的相对数值变化。矩阵ΔCi的列(下标j)的编号规则与前面向量di o的元素的下标j的编号规则相同。
第三步:识别被评估对象的当前健康状态(识别支座位移、受损索和松弛索)。具体过程如下。
第i(i=1,2,3,...)次循环中,“被监测量的当前(计算或实测)数值向量Ci”同“被监测量的初始数值向量Ci o”、“单位损伤被监测量数值变化矩阵ΔCi”和“当前名义健康状态向量di c”间的近似线性关系,如式(9)或式(10)所示。
式(9)和式(10)中被监测量的当前(计算或实测)数值向量Ci的定义类似于被监测量的初始数值向量Ci o的定义,见式(11);被评估对象当前名义健康状态向量di c的定义见式(12)。
式(11)中元素Ci k(i=1,2,3,.......;k=1,2,3,.......,M;M≥N)是第i次循环时索结构的、依据编号规则所对应的编号为k的被监测量的当前数值。
式(12)中di cj(i=1,2,3,.........;j=1,2,3,.......,N)是第i次循环中索结构第j个被评估对象的当前名义损伤值,向量di c的元素的下标j的编号规则与矩阵ΔCi的列的编号规则相同。
当被评估对象实际损伤或支座位移不太大时,由于索结构材料仍然处在线弹性阶段,索结构的变形也较小,式(9)或式(10)所表示的这样一种线性关系同实际情况的误差较小,误差可用误差向量ei(式(13))定义,表示式(9)或式(10)所示线性关系的误差。
式(13)中abs()是取绝对值函数,对括号内求得的向量的每一个元素取绝对值。
由于式(9)或式(10)所表示的线性关系存在一定误差,因此不能简单根据式(9)或式(10)和“被监测量的当前(实测)数值向量Ci”来直接求解得到当前名义健康状态向量di c。而获得当前名义健康状态向量di c的可接受的解(即带有合理误差,但可以比较准确的从索系统中确定受损索的位置及其损伤程度、确定支座位移量)成为一个合理的解决方法,可用式(14)来表达这一方法。
式(14)中abs()是取绝对值函数,向量gi描述偏离理想线性关系(式(9)或式(10))的合理偏差,由式(15)定义。
式(15)中gi k(i=1,2,3,.......;k=1,2,3,.......,M)描述了第i次循环中偏离式(9)或式(10)所示的理想线性关系的最大允许偏差。向量gi可根据式(13)定义的误差向量ei试算选定。
在被监测量的初始数值向量Ci o(实测或计算得到)、单位损伤被监测量数值变化矩阵ΔCi(计算得到)和被监测量的当前数值向量Ci(实测得到)已知时,可以利用合适的算法(例如多目标优化算法)求解式(14),获得当前名义健康状态向量di c的可接受的解,当前实际健康状态向量di(定义见式(16))的元素可以根据式(17)计算得到,也就是得到了被评估对象当前实际健康状态向量di,从而可由di确定受损索的位置和损伤程度、确定支座位移量,也就是实现了损伤识别和支座位移识别。
式(16)中di j(i=1,2,3,…;j=1,2,3,.......,N)表示第i次循环中第j个被评估对象的实际损伤值,其定义见式(17),如果该被评估对象是索系统中的一根索(或拉杆),那么di j表示其当前损伤,di j为0时表示该索无损伤,为100%时表示该索彻底丧失承载能力,介于0与100%之间时表示该索丧失相应比例的承载能力,确定受损索之后对所有的受损索进行无损检测,经无损检测查明该索没有损伤,那么di表示该索与di损伤值力学等效的松弛,由此就确定了松弛索,具体松弛量的计算方法在下面说明;如果该被评估对象是一个支座的一个位移分量,那么di j表示其当前位移数值。向量di的元素的编号规则与式(1)中向量di o的元素的编号规则相同。
式(17)中di oj(i=1,2,3,4,…;j=1,2,3,.......,N)是向量di o的第j个元素,di cj是向量di c的第j个元素。
下面叙述得到了索结构当前实际健康状态向量d后,如何确定松弛索的位置和松弛程度。
设索系统中共有Q根支承索,结构索力数据由Q根支承索的索力来描述。可用“初始索力向量Fo”表示索结构中所有支承索的初始索力(定义见式(18))。因为基于索结构的计算基准模型计算所得的初始索力可靠地接近于初始索力的实测数据,在后面的叙述中,将用同一符号来表示该计算值和实测值。
Fo=[Fo1 Fo2 …Fok…FoQ]T (18)
式(18)中Fo(k=1,2,3,.......,Q)是索结构中第k根支承索的初始索力,该元素依据编号规则对应于指定支承索的索力。向量Fo是常量。在建立索结构的初始力学计算基准模型Ao时使用了向量Fo。
本发明中用“当前索力向量Fi”表示第i次循环时实测得到的索结构中所有支承索的当前索力(定义见式(19))。
式(19)中Fi k(i=1,2,3,4,…;k=1,2,3,.......,Q)是第i次循环时索结构中第k根支承索的当前索力。
本发明中,在支承索初始状态(无损伤、无松弛)下,且支承索处于自由状态(自由状态指索力为0,后同)时,支承索的长度称为初始自由长度,用“初始自由长度向量lo表示索结构中所有支承索的初始自由长度(定义见式(20))。
lo=[li1 lo2 …lok…loQ]T (20)
式(20)中lok(k=1,2,3,.......,Q)是索结构中第k根支承索的初始自由长度。向量lo是常量,与循环次数无关,在第一次循环开始时确定后,就不再变化。
本发明中,用“当前自由长度向量li”表示第i次循环时索结构中所有支承索的当前自由长度(定义见式(21))。
式(21)中li k(i=1,2,3,4,…;k=1,2,3,.......,Q)是第i次循环时索结构中第k根支承索的当前自由长度。
本发明中,用“自由长度改变向量Δli”(或称支承索当前松弛程度向量)表示第i次循环时索结构中所有支承索的自由长度的改变量(定义见式(22)和式(23))。
式(22)中Δli k(i=1,2,3,4,…;k=1,2,3,.........,Q)是当前(第i次循环时)索结构中第k根支承索的自由长度的改变量,其定义见式(23),Δli k不为0的索为松弛索,Δli k的数值为索的松弛量,并表示索系统第k根支承索的当前松弛程度,也是调整索力时该索的索长调整量。
在本发明中通过将松弛索同受损索进行力学等效来进行松弛索的松弛程度识别,等效的力学条件是:
一、两等效的索的无松弛和无损伤时的初始自由长度、几何特性参数及材料的力学特性参数相同;
二、松弛或损伤后,两等效的松弛索和损伤索的索力和变形后的总长相同。
满足上述两个等效条件时,这样的两根支承索在结构中的力学功能就是完全相同的,即如果用等效的受损索代替松弛索后,索结构不会发生任何变化,反之亦然。
本发明中,第i次循环时,如果同第k个支承索(其当前松弛程度用Δli k定义)进行等效的虚拟受损的支承索的当前实际虚拟损伤程度用di j表示(di j的定义见式(16)和式(17))。松弛的第k个支承索的当前松弛程度Δli k(Δli k的定义见式(22))同等效的受损索的当前实际虚拟损伤程度di j之间的关系由前述两项力学等效条件确定。Δli k同di j之间的具体关系可以采用多种方法实现,例如可以直接根据前述等效条件确定(参见式(24)),也可采用基于Ernst等效弹性模量代替式(24)中的E进行修正后确定(参见式(25)),也可以采用基于有限元法的试算法等其它方法来确定。
式(24)和式(25)中E是该支承索的弹性模量,A是该支承索的横截面面积,Fi j是该支承索的当前索力,di j是该支承索的当前实际虚拟损伤程度,ωk是该支承索的单位长度的重量,li kx是该支承索的两个支承端点的水平距离。式(25)中[]内的项是该支承索的Ernst等效弹性模量,由式(24)或式(25)可以就可以确定支承索当前松弛程度向量Δli。式(25)是对式(24)的修正。
第四步:判断是否结束本次(第i次)循环,如果是,则完成本次循环结束前的收尾工作,为下一次(即第i+1次,i=1,2,3,4,…)循环准备力学计算基准模型和必要的向量。具体过程如下。
在本次(第i次)循环中求得当前名义健康状态向量di c后,首先,按照式(26)建立标识向量Bi,式(27)给出了标识向量Bi的第j个元素的定义;如果标识向量Bi的元素全为0,则在本次循环中继续对索结构的健康监测和计算;如果标识向量Bi的元素不全为0,则完成后续步骤后,进入下一次循环。所谓的后续步骤为:首先,根据式(28)计算得到下一次(即第i+1次,i=1,2,3,4,…)循环所需的初始损伤向量di+1 o的每一个元素di+1 oj;第二,在力学计算基准模型Ai(i=1,2,3,4,…)或索结构的无损伤模型A0的基础上,令被评估对象的健康状况状况为di+1 o后更新得到下一次(第i+1次,i=1,2,3,4,…)循环所需的力学计算基准模型Ai+1;最后,通过对力学计算基准模型Ai+1的计算得到被监测量的初始数值,由其组成下一次(即第i+1次,i=1,2,3,4,…)循环所需的“被监测量的初始数值向量Ci+1 o”(i=1,2,3,4,…)。
式(26)中标识向量Bi的上标i表示第i次循环,其元素Bi j(j=1,2,3,…,N)的下标j表示第j个被评估对象的损伤特征,只能取0和1两个量,具体取值规则见式(27)。
式(27)中元素Bi j是标识向量Bi的第j个元素,Di uj是名义单位损伤向量Di u的第j个元素(见式(3)),di cj是当前名义健康状态向量di c的第j个元素(见式(12)),它们都表示第j个被评估对象的相关信息。
式(28)中Di uj是名义单位损伤向量Di u的第j个元素(见式(3)),di cj是当前名义健康状态向量di c的第j个元素(见式(12))。
本发明的第二部分:健康监测系统的软件和硬件部分。
硬件部分包括被监测量监测系统、信号采集器和计算机等。要求实时或准实时监测每一个被监测量。
软件应当具用下列功能:软件部分应当能够完成本发明的第一部分所设定的过程,即完成本发明中所需要的、可以用计算机实现的监测、记录、控制、存储、计算、通知、报警等功能。
本发明方法具体包括:
a.为叙述方便起见,本发明统一称被评估的支承索和支座位移分量为被评估对象,设被评估的支承索的数量和支座位移分量的数量之和为N,即被评估对象的数量为N;确定被评估对象的编号规则,按此规则将索结构中所有的被评估对象编号,该编号在后续步骤中将用于生成向量和矩阵;本发明用变量j表示这一编号,j=1,2,3,...,N;
b.确定指定的被监测点,被监测点即表征结构应变信息的所有指定点,并给所有指定点编号;确定被监测点的被监测的应变方向,并给所有指定的被监测应变编号;“被监测应变编号”在后续步骤中将用于生成向量和矩阵;“结构的全部被监测的应变数据”由上述所有被监测应变组成;本发明将“结构的被监测的应变数据”简称为“被监测量”;所有被监测量的数量之和不得小于N;
c.利用被评估对象的无损检测数据等能够表达被评估对象的健康状态的数据建立被评估对象初始健康状态向量di o;如果没有被评估对象的无损检测数据时,向量di o的各元素数值取0;向量di o的元素的编号规则和被评估对象的编号规则相同;本发明用i表示循环次数,i=1,2,3,......;这里是第一次循环,i取1,即这里建立的初始健康状态向量di o可以具体化为di o;
d.在建立初始健康状态向量d1 o的同时,直接测量计算得到索结构的所有被监测量的初始数值,组成被监测量的初始数值向量Ci o;这里是第一次循环,i取1,即这里建立的被监测量的初始数值向量Ci o可以具体化为C1 o;在实测得到被监测量初始数值向量C1 o的同时,实测得到索结构的初始几何数据和初始索结构支座坐标数据;直接测量计算得到所有支承索的初始索力,组成初始索力向量Fo;同时,依据结构设计数据、竣工数据得到所有支承索的初始自由长度,组成初始自由长度向量lo;向量Fo和向量lo是不变的;同时,实测或根据结构设计、竣工资料得到所有索的弹性模量、密度、初始横截面面积;
e.根据索结构的设计图、竣工图和索结构的实测数据、索的无损检测数据和初始索结构支座坐标数据建立索结构的力学计算基准模型Ai;这里是第一次循环,i取1,即这里建立的索结构的力学计算基准模型Ai可以具体化为A1;
f.在力学计算基准模型Ai的基础上进行若干次力学计算,通过计算获得“单位损伤被监测量数值变化矩阵ΔCi”和“名义单位损伤向量Di u”;
g.实测得到索结构的所有指定被监测量的当前实测数值,组成“被监测量的当前数值向量Ci”给本步及本步之前出现的所有向量的元素编号时,应使用同一编号规则,这样可以保证本步及本步之前出现的各向量的、编号相同的元素,表示同一被监测量的、对应于该元素所属向量所定义的相关信息;实测得到索结构的所有支承索的当前索力,组成当前索力向量Fi;实测计算得到所有支承索的两个支承端点的空间坐标,两个支承端点的空间坐标在水平方向分量的差就是两个支承端点水平距离;
h.定义当前名义健康状态向量di c和当前实际健康状态向量di,两个损伤向量的元素个数等于被评估对象的数量,当前名义健康状态向量di c的元素数值代表对应被评估对象的当前名义损伤程度或支座位移,当前实际健康状态向量di的元素数值代表对应被评估对象的当前实际损伤程度或支座位移,两个损伤向量的元素的元素个数等于被评估对象的数量,两个损伤向量的元素和被评估对象之间是一一对应关系,两个损伤向量的元素的编号规则和被评估对象的编号规则相同;
i.依据“被监测量的当前数值向量Ci”同“被监测量的初始数值向量Ci o”、“单位损伤被监测量数值变化矩阵ΔCi”和“当前名义健康状态向量di c”间存在的近似线性关系,该近似线性关系可表达为式1,式1中除di c外的其它量均为已知,求解式1就可以算出当前名义健康状态向量di c;
式1
j.利用式2表达的当前实际健康状态向量di同初始损伤向量di o和当前名义健康状态向量di c的元素间的关系,计算得到当前实际健康状态向量di的所有元素;
式2
式2中j=1,2,3,……,N;
当前实际健康状态向量di的元素数值代表对应被评估对象的实际损伤程度或实际支座位移,根据当前实际健康状态向量di就能确定有哪些索受损及其损伤程度,就能确定实际支座位移;若当前实际健康状态向量的某一元素对应于是索系统中的一根索,且其数值为0,表示该元素所对应的索是完好的,没有损伤或松弛的的,若其数值为100%,则表示该元素所对应的索已经完全丧失承载能力,若其数值介于0和100%之间,则表示该索丧失了相应比例的承载能力;如果当前实际健康状态向量的某一元素对应于一个支座的一个位移分量,那么di j表示其当前位移数值;
k.从第j步中识别出的有问题的支承索中鉴别出受损索,剩下的就是松弛索。
l.利用在第j步获得的当前实际虚拟损伤向量di得到松弛索的当前实际虚拟损伤程度,利用在第g步获得的当前索力向量Fi,利用在第g步获得的所有支承索的两个支承端点的水平距离,利用在第d步获得的初始自由长度向量lo,利用在第d步获得的所有索的弹性模量、密度、初始横截面面积数据,通过将松弛索同受损索进行力学等效来计算松弛索的、与当前实际虚拟损伤程度等效的松弛程度,等效的力学条件是:一、两等效的索的无松弛和无损伤时的初始自由长度、几何特性参数、密度及材料的力学特性参数相同;二、松弛或损伤后,两等效的松弛索和损伤索的索力和变形后的总长相同;满足上述两个等效条件时,这样的两根支承索在结构中的力学功能就是完全相同的,即如果用等效的松弛索代替受损索后,索结构不会发生任何变化,反之亦然;依据前述力学等效条件求得那些被判定为松弛索的松弛程度,松弛程度就是支承索自由长度的改变量,也就是确定了那些需调整索力的支承索的索长调整量;这样就实现了支承索的松弛识别;计算时所需索力由当前索力向量Fi对应元素给出。
m.在求得当前名义健康状态向量di c后,按照式3建立标识向量Bi,式4给出了标识向量Bi的第j个元素的定义;
式3
式4
式4中元素Bi j是标识向量Bi的第j个元素,Di uj是名义单位损伤向量Di u的第j个元素,di cj是当前名义健康状态向量di c的第j个元素,它们都表示第j个被评估对象的相关信息,式4中j=1,2,3,……,N;
n.如果标识向量Bi的元素全为0,则回到第g步继续本次循环;如果标识向量Fi的元素不全为0,则进入下一步、即第o步;
o.根据式5计算得到下一次、即第i+1次循环所需的初始损伤向量di+1 o的每一个元素di+1 oj;
式5
式5中Di uj是名义单位损伤向量Di u的第j个元素,di cj是当前名义健康状态向量di c的第j个元素,Fi j是标识向量Fi的第j个元素,式5中j=1,2,3,……,N;向量di+1 o的元素的编号规则和被评估对象的编号规则相同;
p.在力学计算基准模型Ai的基础上,令被评估对象的健康状况为di+1 o后更新得到下一次、即第i+1次循环所需的力学计算基准模型Ai+1;
q.通过对力学计算基准模型Ai+1的计算得到对应于模型Ai+1的结构的所有被监测应变的点的、将被监测的应变方向的应变数值,这些数值组成下一次、即第i+1次循环所需的被监测量的初始数值向量Ci+1 o;
r.回到第f步,开始下一次循环。
在步骤f中,在力学计算基准模型Ai的基础上进行若干次力学计算,通过计算获得“单位损伤被监测量数值变化矩阵ΔCi”和“名义单位损伤向量Di u”的具体方法为:
f1.在索结构的力学计算基准模型Ai的基础上进行若干次力学计算,计算次数数值上等于N;依据被评估对象的编号规则,依次进行计算;每一次计算假设只有一个被评估对象在原有损伤或位移的基础上再增加单位损伤或单位位移,具体的,如果该被评估对象是索系统中的一根支承索,那么就假设该支承索再增加单位损伤,如果该被评估对象是一个支座的一个方向的位移分量,就假设该支座在该位移方向再增加单位位移,每一次计算中再增加单位损伤或单位位移的被评估对象不同于其它次计算中再增加单位损伤或单位位移的被评估对象,用“名义单位损伤向量Di u”记录记录所有假定的再增加的单位损伤或单位位移,其中i表示第i次循环,每一次计算都利用力学方法计算索结构的所有被监测量的当前计算值,每一次计算得到的所有被监测量的当前计算值组成一个被监测量计算当前数值向量;
f2.每一次计算得到的被监测量计算当前数值向量减去被监测量初始数值向量后再除以该次计算所假设的单位损伤或单位位移数值,得到一个被监测量变化向量,有N个被评估对象就有N个被监测量变化向量;
f3.由这N个被监测量变化向量按照N个被评估对象的编号规则,依次组成有N列的索结构被监测量单位变化矩阵ΔCi。
有益效果:本发明公开的方法可以非常准确地监测评估出索结构的健康状态(包括所有支座位移、所有松弛索和受损索的位置、及其松弛程度或损伤程度),本发明公开的系统和方法对索结构的安全是非常有益的。
具体实施方式
针对索结构的健康监测,本发明公开了一种能够合理有效地同时监测索结构中索系统中每一根索的健康状况和每一个支座位移分量的系统和方法。本发明的实施例的下面说明实质上仅仅是示例性的,并且目的绝不在于限制本发明的应用或使用。
在索结构支座出现位移、出现受损索、松弛索的情况下,本发明采用一种算法,该算法用于监测索结构的健康状态(包括识别支座位移、受损索、松弛索)。具体实施时,下列步骤是可采取的各种步骤中的一种。
第一步:为叙述方便起见,本发明统一称被评估的支承索和支座位移分量为被评估对象,设被评估的支承索的数量和支座位移分量的数量之和为N,即被评估对象的数量为N;确定被评估对象的编号规则,按此规则将索结构中所有的被评估对象编号,该编号在后续步骤中将用于生成向量和矩阵;本发明用变量j表示这一编号,j=1,2,3,...,N。
确定被测量点(即所有表征结构应变信息的指定点,设有K个指定点),给所有指定点编号;确定每一个指定点的被测量的应变(设测量每个指定点的L个指定方向的应变,不要求每个指定点有相同个数的被指定方向的应变,这里只是为了叙述方便而设测量每个指定点的L个指定方向的应变),并给所有被测量的应变编号;上述编号在后续步骤中同样将用于生成向量和矩阵。每一个指定点可以就是每一根索的固定端点(例如是斜拉桥的拉索在桥面上的固定端)附近的一个点,该指定点还可以是结构支座附近的一个点,该点一般不应当是应力集中点,以避免出现过大的应变测量值;该编号在后续步骤中同样将用于生成向量和矩阵。在每一指定点可以仅仅测量一个方向的应变,也可以测量多个方向的应变。“结构的全部被监测的应变数据”由上面确定的结构上K个指定点的、过每个指定点的L个指定方向的应变来描述,结构应变的变化就是所有指定点的、所有指定直线的所有指定方向的应变的变化。每次共有M(M=K×L)个应变测量值或计算值来表征结构的应变信息。K和M不得小于N。为方便起见,在本发明中将“结构的被监测的应变数据”简称为“被监测量”。
第二步:利用被评估对象的无损检测数据等能够表达被评估对象的健康状态的数据建立被评估对象初始健康状态向量d1 o;如果没有被评估对象的无损检测数据时,向量d1 o的各元素数值取0;向量d1 o的元素的编号规则和被评估对象的编号规则相同。
第三步:在初始健康状态向量d1 o的同时,直接测量计算得到索结构的所有被监测量的初始数值,组成被监测量的初始数值向量C1 o。
第四步:在实测得到被监测量的初始数值向量C1 o的同时,可以采用成熟的测量方法进行索力测量、应变测量、角度测量和空间坐标测量。同时,直接测量计算得到索结构的所有支承索的初始索力,组成“初始索力向量Fo”。同时,依据结构设计数据、竣工数据得到所有索的初始自由长度,组成“初始自由长度向量lo”。同时,实测或根据结构设计、竣工资料得到所有索的弹性模量、密度、初始横截面面积。同时,直接测量或测量后计算得到索结构初始几何形状数据(对于斜拉桥就是其初始桥型数据),索结构的初始几何形状数据可以是所有索的端点的空间坐标数据加上结构上一系列的点的空间坐标数据,目的在于根据这些坐标数据就可以确定索结构的几何特征。对斜拉桥而言,初始几何形状数据可以是所有索的端点的空间坐标数据加上桥梁两端上若干点的空间坐标数据,这就是所谓的桥型数据。
根据索结构的设计图、竣工图和索结构的实测数据(包括结构初始几何形状数据、应变数据、所有索的初始索力、结构模态数据等数据,对斜拉桥、悬索桥而言是桥的桥型数据、应变数据、索力数据、桥的模态数据)、索的无损检测数据和初始索结构支座坐标数据建立索结构的力学计算基准模型Ao,基于力学计算基准模型Ao计算得到结构的计算数据必须非常接近其实测数据,误差一般不得大于5%。
Ao是不变的,只在第一次循环开始时建立;第i次循环开始时建立的索结构的力学计算基准模型记为Ai,其中i表示循环次数;本发明的申请书中字母i除了明显地表示步骤编号的地方外,字母i仅表示循环次数,即第i次循环;因此第一次循环开始时建立的索结构的力学计算基准模型记为A1,本发明中A1就等于Ao;
第五步:安装索结构健康监测系统的硬件部分。硬件部分至少包括:被监测量监测系统(例如含应变传感器、信号调理器等)、信号(数据)采集器、计算机和通信报警设备。每一个被监测量都必须被监测系统监测到,监测系统将监测到的信号传输到信号(数据)采集器;信号经信号采集器传递到计算机;计算机则负责运行索结构的索系统的健康监测软件,包括记录信号采集器传递来的信号;当监测到被评估对象的健康状态有变化时,计算机控制通信报警设备向监控人员、业主和(或)指定的人员报警。
第六步:编制并在监控计算机上安装索结构的健康监测系统软件。在每一次循环时都运行该软件,或者说此软件始终在运行。该软件将完成本发明的各项任务所需要的监测、记录、控制、存储、计算、通知、报警等功能(即本具体实施方法中所有可以用计算机完成的工作),并能定期或由人员操作健康监测系统生成索结构健康情况报表,还能依据设定的条件(例如损伤达到某一值),自动通知或提示监控人员通知特定的技术人员完成必要的计算工作。
第七步:由此步开始循环运作,为叙述方便记为第i次循环,其中i=1,2,3,4,5,...。
第八步:在索结构的力学计算基准模型记为Ai的基础上进行若干次力学计算,通过计算获得索结构单位损伤被监测量变化矩阵ΔCi和名义单位损伤向量Di u。具体方法为:
a.在第i次循环开始时,在索结构的力学计算基准模型Ai的基础上进行若干次力学计算,计算次数数值上等于N;依据被评估对象的编号规则,依次进行计算;每一次计算假设只有一个被评估对象在原有损伤或位移的基础上再增加有单位损伤或单位位移,具体的,如果该被评估对象是索系统中的一根支承索,那么就假设该支承索再增加单位损伤,如果该被评估对象是一个支座的一个方向的位移分量,就假设该支座在该位移方向再增加单位位移,每一次计算中再增加单位损伤或单位位移的被评估对象不同于其它次计算中再增加单位损伤或单位位移的被评估对象,用“名义单位损伤向量Di u”记录记录所有假定的再增加的单位损伤或单位位移,其中i表示第i次循环,每一次计算都利用力学方法计算索结构的所有被监测量的当前计算值,每一次计算得到的所有被监测量的当前计算值组成一个被监测量计算当前数值向量;在本步骤中给各向量的元素编号时,应同本发明中其它向量使用同一编号规则,这样可以保证本步骤中各向量中的任意一个元素,同其它向量中的、编号相同的元素,表达了同一被监测量或同一被评估对象对象的相关信息。
b.每一次计算得到的被监测量计算当前数值向量减去被监测量初始数值向量后再除以该次计算所假设的单位损伤或单位位移数值,得到一个被监测量变化向量δCi j;有N个被评估对象就有N个被监测量变化向量δCi j(j=1,2,3,…,N)。
c.由这N个被监测量变化向量按照N个被评估对象的编号规则,依次组成有N列的索结构被监测量单位变化矩阵ΔCi。“单位损伤被监测量变化矩阵ΔCi”的列的编号规则与后面定义的当前名义健康状态向量di c和当前实际健康状态向量di的元素编号规则相同。
在本步骤中及其后给各向量的元素编号时,应同本发明中其它向量使用同一编号规则,这样可以保证本步骤中各向量中的任意一个元素,同其它向量中的、编号相同的元素,表达了同一被监测量或同一对象的相关信息。
第九步:建立线性关系误差向量ei和向量gi。利用前面的数据(“被监测量的初始数值向量Ci o”、“单位损伤被监测量变化矩阵ΔCi”),在第八步进行每一次计算的同时,即在每一次计算中假设索系统中只有一个被评估对象在原有损伤或位移的基础上再增加有单位损伤或单位位移的同时,每一次计算组成一个健康状态向量di t,健康状态向量di t的元素个数等于被评估对象的数量,向量di t的所有元素中只有一个元素的数值取每一次计算中假设增加单位损伤的索的单位损伤值或增加的单位位移值,di t的其它元素的数值取0,那个不为0的元素的编号与假定增加单位损伤或单位位移的被评估对象的对应关系、同其他向量的同编号的元素同该索的对应关系是相同的;将Ci tj、Ci o、ΔCi、di t带入式(13),式(13)di c用di t带入,得到一个线性关系误差向量ei,每一次计算得到一个线性关系误差向量ei;有N个被评估对象就有N次计算,就有N个线性关系误差向量ei,将这N个线性关系误差向量ei相加后得到一个向量,将此向量的每一个元素除以N后得到的新向量就是最终的线性关系误差向量ei。向量gi于最终的误差向量ei。将向量gi保存在运行健康监测系统软件的计算机硬盘上,供健康监测系统软件使用。将所有获得等参数以数据文件的方式保存在运行健康监测系统软件的计算机硬盘上。
第十步:实测得到索结构的所有指定被监测量的当前实测数值,组成“被监测量的当前数值向量Ci”。实测得到索结构的所有支承索的当前索力,组成当前索力向量Fi。实测计算得到所有支承索的两个支承端点的空间坐标,两个支承端点的空间坐标在水平方向分量的差就是两个支承端点水平距离。
第十一步:依据“被监测量的当前数值向量Ci”同“被监测量的初始数值向量Ci o”、“单位损伤被监测量变化矩阵ΔCi”和“当前名义健康状态向量di c”间存在的近似线性关系(式(9)),按照多目标优化算法计算索系统当前名义健康状态向量di c的非劣解。
可以采用的多目标优化算法有很多种,例如:基于遗传算法的多目标优化、基于人工神经网络的多目标优化、基于粒子群的多目标优化算法、基于蚁群算法的多目标优化、约束法(Constrain Method)、加权法(Weighted Sum Method)、目标规划法(Goal Attainment Method)等等。由于各种多目标优化算法都是常规算法,可以方便地实现,本实施步骤仅以目标规划法为例给出求解当前名义健康状态向量di c的过程,其它算法的具体实现过程可根据其具体算法的要求以类似的方式实现。
按照目标规划法,式(9)可以转化成式(29)和式(30)所示的多目标优化问题,式(29)中γi是一个实数,R是实数域,空间区域Ω限制了向量di c的每一个元素的取值范围(本实施例要求向量di c的每一个元素不小于0,不大于1)。式(29)的意思是寻找一个绝对值最小的实数γi,使得式(30)得到满足。式(30)中G(di c)由式(31)定义,式(30)中加权向量Wi与γi的积表示式(30)中G(di c)与向量gi之间允许的偏差,gi的定义参见式(15),其值在第八步计算得到。实际计算时向量Wi可以与向量gi相同。目标规划法的具体编程实现已经有通用程序可以直接采用。按照目标规划法就可以求得当前名义健康状态向量di c。
minimizeγi (29)
γi∈R,
求得当前名义健康状态向量di c后,可依据式(17)得到的当前实际健康状态向量di每一个元素,当前实际健康状态向量di就是带有合理误差、但可以比较准确地识别有问题的索(可能是受损也可能是松驰)、可以比较准确地确定所有支座位移的解。di的每一个元素对应于一个被评估对象的健康状态,如果该被评估对象是索系统中的一根索(或拉杆),那么该元素的数值表示其当前损伤或松驰,如果该被评估对象是一个支座的一个位移分量,那么该元素的数值表示其当前位移数值。
第十二步:识别受损索和松驰索。由于当前实际健康状态向量di的元素数值代表对应被评估对象的当前实际健康状态,如果di的一个元素di j对应于索系统中的一根索(或拉杆),那么di j表于其当前可能的实际损伤,di j为0时表于无损伤,为100%时表示该索彻底丧失承载能力,介于0与100%之间时表示丧失相应比例的承载能力,但这根索究竟是发生了损伤还是发生了松弛,需进行鉴别。鉴别的方法多种多样,可以通过去除支承索的保护层,对支承索进行目视鉴别,或者借助光学成像设备进行目视鉴别,也可以通过无损检测方法对支承索是否受损进行鉴别,超声波探伤就是一种目前广泛使用的无损检测方法。鉴别后那些没有发现损伤且di j数值不为0的支承索就是发生了松弛的索,就是需调整索力的索,依据式(24)或式(25)可以求得这些索的松弛程度(即索长调整量)。这样就实现了受损索识别和松弛索识别。
第十三步:识别支座位移。当前实际健康状态向量di的对应于支座位移的元素数值就是支座位移量。
第十四步:在本次循环,即第i次循环中求得当前名义健康状态向量di c后,按照式(26)、式(27)建立标识向量Bi。如果标识向量Bi的元素全为0,则回到第十步继续本次循环;如果标识向量Bi的元素不全为0,则进入下一步、即第十五步。
第十五步:根据式(28)计算得到下一次、即第i+1次循环所需的初始损伤向量di+1 o的每一个元素di+1 oj。
第十六步:在索结构力学计算基准模型Ai的基础上,令被评估对象的健康状况为上一步计算得到的向量di+1 o后,得到新的力学计算基准模型,即下一次(第i+1次)循环所需的力学计算基准模型Ai+1。
第十七步:通过对力学计算基准模型Ai+1的计算得到对应于模型Ai+1的结构的所有被监测量的数值,这些数值组成下一次、即第i+1次循环所需的向量Ci+1 o,即被监测量的初始数值向量。
第十八步:健康监测系统中的计算机定期自动或由人员操作健康监测系统生成索系统健康情况报表。
第十九步:在指定条件下,健康监测系统中的计算机自动操作通信报警设备向监控人员、业主和(或)指定的人员报警。
第二十步:回到第七步,开始下一次循环。